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Abstract. Three different data products from the Soil Mois-
ture Ocean Salinity (SMOS) mission are assimilated sepa-
rately into the Goddard Earth Observing System Model, ver-
sion 5 (GEOS-5) to improve estimates of surface and root-
zone soil moisture. The first product consists of multi-angle,
dual-polarization brightness temperature (Tb) observations
at the bottom of the atmosphere extracted from Level 1 data.
The second product is a derived SMOS Tb product that mim-
ics the data at a 40◦ incidence angle from the Soil Moisture
Active Passive (SMAP) mission. The third product is the op-
erational SMOS Level 2 surface soil moisture (SM) retrieval
product. The assimilation system uses a spatially distributed
ensemble Kalman filter (EnKF) with seasonally varying cli-
matological bias mitigation for Tb assimilation, whereas a
time-invariant cumulative density function matching is used
for SM retrieval assimilation. All assimilation experiments
improve the soil moisture estimates compared to model-only
simulations in terms of unbiased root-mean-square differ-
ences and anomaly correlations during the period from 1
July 2010 to 1 May 2015 and for 187 sites across the US.
Especially in areas where the satellite data are most sensi-
tive to surface soil moisture, large skill improvements (e.g.,
an increase in the anomaly correlation by 0.1) are found in
the surface soil moisture. The domain-average surface and
root-zone skill metrics are similar among the various assim-
ilation experiments, but large differences in skill are found
locally. The observation-minus-forecast residuals and analy-
sis increments reveal large differences in how the observa-
tions add value in the Tb and SM retrieval assimilation sys-
tems. The distinct patterns of these diagnostics in the two
systems reflect observation and model errors patterns that

are not well captured in the assigned EnKF error parameters.
Consequently, a localized optimization of the EnKF error pa-
rameters is needed to further improve Tb or SM retrieval as-
similation.

1 Introduction

Microwave satellite missions are collecting large amounts of
data for soil moisture monitoring. It is not yet clear, how-
ever, how this wealth of data can be used in the most effi-
cient way to obtain global estimates of soil moisture that can
improve, e.g., weather prediction, flood and drought model-
ing, agricultural yield monitoring, or landslide predictions.
Many such applications require knowledge of soil moisture
in a deeper layer, where water is extracted by plant roots or
stored to buffer drainage and runoff, not the approximately
5 cm surface layer to which the current L-band (∼ 1.4 GHz)
microwave missions are sensitive. Moreover, L-band satel-
lite observations have a fairly coarse spatial resolution (about
40 km) and are available only at particular overpass times,
typically once every 2–3 days for a given location. The chal-
lenge is thus to derive soil profile moisture information at all
times and locations through data assimilation, that is, through
the merger of satellite observations with information from a
dynamical land surface model.

The Soil Moisture Ocean Salinity (SMOS; Kerr et al.,
2010) mission and the Soil Moisture Active Passive (SMAP;
Entekhabi et al., 2014) mission are the two L-band observato-
ries currently orbiting in space with the specific aim of mea-
suring global soil moisture. These missions supply Level 1
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(L1) brightness temperature (Tb) data, Level 2 (L2) surface
soil moisture (SM) retrievals, and derived Level 3 (L3) prod-
ucts. The SMAP mission also provides an operational Level 4
surface and root-zone soil moisture product (L4_SM; En-
tekhabi et al., 2014; Reichle et al., 2016) that is based on
the assimilation of L1 SMAP Tb data into Goddard Earth
Observing System Model, version 5 (GEOS-5) land surface
simulations. Alternatively, a soil moisture assimilation sys-
tem could ingest L2 SM retrievals instead of L1 Tb observa-
tions.

In this paper, we compare Tb and SM retrieval assimi-
lation using a historical (5-year) record of SMOS observa-
tions over North America in an assimilation system similar
to that of the SMAP L4_SM system. The main differences
between the SMAP L4_SM system and the experiments in
this paper pertain to the differences in assimilated data, to
the difference in spatial resolution of the resulting soil mois-
ture products (36 km in the current paper; see below; 9 km
for the L4_SM product), and to differences in meteorological
forcing input (re-analysis meteorology in the current paper;
operational forecast meteorology corrected with gauge-based
precipitation in the L4_SM product).

It is more difficult to assimilate Tb observations than SM
retrievals because brightness temperatures are only indirectly
connected with the land surface variables of interest and the
Tb data come in multiple polarizations. SMOS Tb observa-
tions are even more complex because of their multi-angular
nature. Some of the SMOS L1 Tb data complexity is re-
duced in the L3 SMOS Tb product and further addressed in
Munoz-Sabater et al. (2014) and De Lannoy et al. (2015),
who prepared the L1 SMOS Tb data for assimilation into
(quasi-)operational systems.

Successful examples of SMOS Tb assimilation using a va-
riety of simplifying assumptions are illustrated in Lievens
et al. (2015); De Lannoy and Reichle (2016); Kornelsen et al.
(2016). These studies use a radiative transfer model (RTM) to
dynamically invert Tb information into corrections to mod-
eled soil moisture estimates. In this paper, we advance the
spatially distributed multi-angle and dual-polarization Tb as-
similation of De Lannoy and Reichle (2016) in the GEOS-5
land surface model with a new version of Tb observations
and an improved spatial support and forward simulation of
the Tb observation predictions. Moreover, to mimic SMAP
Tb assimilation we also assimilate dual-polarization single-
angle 40◦ SMOS Tb observations after fitting the multi-angle
Tb data (De Lannoy et al., 2015).

A key disadvantage of a system that assimilates SM re-
trievals is that the SM retrievals may be produced with incon-
sistent ancillary data, such as for example soil temperature
simulated by another model than that used in the assimila-
tion system. The current SMOS SM retrievals by themselves
have been found to be skillful (Al-Yaari et al., 2014; Fascetti
et al., 2016), and research is ongoing to further improve them
(Rodriguez-Fernandez et al., 2015; Ye et al., 2015; Zhao
et al., 2015; van der Schalie et al., 2016; Wigneron et al.,

2016). The use of these SMOS SM retrievals has been mani-
fold, e.g., to derive enhanced estimates of precipitation (Wan-
ders et al., 2015; Koster et al., 2016), to derive offline root-
zone soil moisture estimates (Ford et al., 2014), or to of-
fline downscale the data to higher-resolution soil moisture
estimates (Piles et al., 2014). Other studies have assimilated
SMOS SM retrievals online into land surface models to pos-
sibly downscale the retrievals and consistently improve soil
moisture and other land surface variables (Ridler et al., 2014;
Zhao et al., 2014; Lievens et al., 2015), leading to, e.g., im-
proved estimates of floods (Alvarez-Garreton et al., 2015)
and crop growth (Chakrabart et al., 2014). In this paper, we
use a spatially distributed assimilation system to integrate
SMOS SM retrievals into the GEOS-5 land surface model
with the aim of inferring improved surface and root-zone soil
moisture estimates. Our study mainly differs from the above
SMOS SM retrieval studies in the continental and multi-year
scale of the experiments, in the advanced quality screening
and spatial support of the SM retrieval observations, and in
the comparison between Tb and SM retrieval assimilation
(also discussed in Lievens et al., 2015).

To assess the potential of Tb and SM retrieval assimilation,
5 years of SMOS Tb data or SM data are assimilated into
the GEOS-5 land surface model using a careful data quality
control and data preprocessing. The observations are associ-
ated with a realistic antenna pattern, containing 50 % of the
signal power in a circular area with 20 km radius. Special
attention is paid to large-scale patterns of random and per-
sistent forecast and observation errors in the different assim-
ilation systems, and to the impact of the different assimila-
tion schemes on the skill of surface and root-zone soil mois-
ture estimates. Section 2 describes the SMOS observations,
the various modeling components, and the in situ validation
data. Section 3 highlights the technical differences between
the various assimilation schemes, and Sect. 4 presents the re-
sults.

2 Data and model

2.1 SMOS Tb observations

The Microwave Imaging Radiometer with Aperture Synthe-
sis (MIRAS) onboard SMOS provides multi-angle Tb data,
with a nominal (3 dB) spatial resolution of 43 km and a global
coverage approximately every 3 days (at either 06:00 or
18:00 local time, i.e., ascending or descending half-orbits,
separately). The most recent version (v620) of the SCLF1C
Tb data is used. Observations are retained for further pro-
cessing only (a) in the alias-free zone, (b) when the data are
not contaminated by point source radio frequency interfer-
ence (RFI) or tails thereof, (c) when the values fall within
the range 100–320 K, and (d) when valid data are available
for both horizontal (H ) and vertical (V ) polarization. The
flag for snapshot RFI is not activated, because it is currently
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Figure 1. Flowchart of Tb assimilation. The forward simulation consists of (a) land surface model simulations and (b) Tb simulations on
the 36 km EASEv2 grid. The Tb simulations are subsequently (c) aggregated using weights based on an approximate antenna pattern. The
resulting footprint-scale brightness temperature observation predictions are compared to (d) SMOS observations to calculate innovations
(O–F) at the footprint scale. (e) The three-dimensional EnKF maps the footprint-scale innovations to the 36 km EASEv2 grid based on the
modeled error correlations between the footprint-scale Tb and the 36 km soil moisture and soil temperature state variables (per Eqs. 1 and 2).

too sensitive (R. Oliva and Y. Kerr, personal communica-
tion, 2016). After the initial screening, we correct the L1
Tb values for geometric and Faraday rotation and for atmo-
spheric and reflected extraterrestrial radiation (De Lannoy
et al., 2015) using Modern-Era Retrospective Analysis for
Research and Applications (MERRA) version 2 (MERRA2;
Bosilovich et al., 2015) background fields. The resulting Tb
values at the bottom of the atmosphere are then binned into
41 evenly spaced angular bins with the center angle ranging
from 20 through 60◦. Next, the data are regridded from the
15 km discrete global grid (DGG) on which they are posted to
the 36 km cylindrical Equal-Area Scalable Earth (EASEv2)
grid (Brodzik et al., 2014), and the data are screened for ex-
cessive sub-36 km heterogeneity (spatial standard deviation
> 7 K), which is indicative of open water bodies or RFI. Tb
values for a given 36 km EASEv2 grid cell are computed only
if at least two valid DGG observations are available.

From these preprocessed Tb data, two datasets are derived
for assimilation: (i) a seven-angle Tb dataset, with incidence
angles θ = [30, 35, 40, 45, 50, 55, 60◦] (De Lannoy et al.,
2013), and (ii) a fitted Tb dataset (De Lannoy et al., 2015)
from which only the Tb at a 40◦ incidence angle is used to
mimic the single-angle nature of SMAP Tb observations. We
refer to these datasets as Tb_7ang and Tb_fit, respectively.
Tb_fit data are only retained when the fitting error is less than
5 K and a minimum of 15 data points contribute to the entire
fitted angular signature, with at least 5 data points above and

below the 40◦ incidence angle and at least 10 data points in
the incidence angle interval between 30 and 50◦.

2.2 SMOS SM retrieval observations

The SMOS SM retrievals are extracted from the SMUDP2
product v552. Because this product version ends in early
May 2015, we limit our study period to 1 July 2010–1 May
2015. (The reprocessed v620 version of the SM retrievals
was not yet available at the time we conducted the exper-
iments.) The SMOS retrieval algorithm simultaneously re-
trieves soil moisture and vegetation opacity, by fitting multi-
angle Tb observations at both H - and V -polarization with
simulations of the L-band Microwave Emission of the Bio-
sphere Model (L-MEB, Wigneron et al., 2007). Based on
the quality information provided within the SMOS products,
the SM data are retained only if (a) all retrieved variables
fall within a realistic range (0–0.6 m3 m−3 for soil moisture),
(b) the SM uncertainty estimated by the SMOS retrieval algo-
rithm is less than 0.1 m3 m−3, (c) the RFI probability for both
H - and V -polarization is less than 0.3, and (d) SM retrieval
flags are not raised for high topographic complexity, high ur-
ban fraction, high open water fraction, sea ice, coastal areas,
and high total electron content. Further screening for frozen
temperature and snow is based on GEOS-5 model output
(Sect. 2.3). After the regridding from the 15 km DGG grid
to the 36 km cylindrical EASEv2 grid, the data are screened
for excessive sub-36 km heterogeneity (spatial standard devi-
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ation > 0.2 m3 m−3). SM values for a given 36 km EASEv2
grid cell are computed only if at least two valid DGG obser-
vations are available.

2.3 Soil moisture and brightness temperature modeling

The land data assimilation system used here employs the
GEOS-5 catchment land surface model (CLSM; Koster et al.,
2000), along with an L-band tau-omega radiative transfer
model (RTM; De Lannoy et al., 2013, 2014b). The CLSM
simulations use GEOS-5 parameters (Mahanama et al., 2015;
De Lannoy et al., 2014a) similar to those used in the SMAP
L4_SM product, and are forced with 1/2◦× 2/3◦ GEOS-5
forcing data from MERRA (Rienecker et al., 2011) bilinearly
interpolated to the model grid. The study domain covers most
of North America, with the northwestern corner at (125◦W,
55◦ N) and the southeastern corner at (60◦W, 24◦ N).

The computational elements are the 36 km EASEv2 grid
cells. The land model computation time step is 7.5 min, and
output is saved at 3 h intervals. At each grid cell, the sur-
face soil moisture content (sfmc, 0–5 cm) and root-zone soil
moisture content (rzmc, 0–100 cm) are diagnosed based on
three prognostic variables: catchment deficit (catdef), root-
zone excess (rzexc), and surface excess (srfexc). Similarly,
the surface (skin) temperature is diagnosed from the prog-
nostic land surface temperatures across the saturated (tc1),
unsaturated (tc2), and wilting (tc4) sub-grid areas. Finally,
the soil temperature (tp1 for the topmost layer) is diagnosed
from the prognostic ground heat content (ght1 for the top
layer). An overview of the model variables is given in Re-
ichle et al. (2015); Koster et al. (2000) and Ducharne et al.
(2000).

The L-band tau-omega RTM converts the 36 km CLSM
soil moisture and temperature simulations into 36 km L-
band Tb estimates when the soil is not frozen or covered
with snow, when precipitation is less than 10 mm day−1, and
where the open water fraction is less than 5 %. For each
36 km grid cell, key parameters of the RTM are estimated
by minimizing Eq. (B.1) in De Lannoy et al. (2014b), using a
5-year history of SMOS v620 Tb data, and computing obser-
vation predictions (see below) at the footprint scale. Specif-
ically, all 36 km grid cells within one footprint area are ini-
tially assigned the same set of RTM parameters, while the
dynamic background information is spatially variable. For
each 36 km grid cell, the calibration estimates a spatially ho-
mogeneous set of RTM parameters for the entire associated
footprint area, and the resulting values are assigned to the
central (and typically dominant) 36 km grid cell only. For the
forward calculation of the Tb observation predictions during
the data assimilation, all 36 km pixels have a unique set of
RTM parameters. The RTM is calibrated using all 5 years
of available Tb data and aims at minimizing climatologi-
cal biases. The data assimilation is performed over the same
5 years and aims at addressing random (or short-term) errors.
The methodology is very similar to that in De Lannoy and

Reichle (2016), but with the difference that, here, the RTM
does not simulate atmospheric contributions (because the Tb
observations are now a priori corrected for atmospheric con-
tributions) and the observation predictions are now spatially
aggregated using a realistic (but approximate) antenna pat-
tern.

For the computation of differences between SMOS obser-
vations and footprint-scale model simulations in the RTM
calibration and for the computation of the “observation-
minus-forecast” (O–F) residuals in the assimilation system
(Sect. 3.1, Fig. 1), the modeled 36 km soil moisture or Tb
simulations are aggregated to the footprint scale by spa-
tial convolution with weights given by an approximation
of the SMOS antenna pattern. We also refer to these spa-
tially aggregated model estimates as “observation predic-
tions”. The SMOS antenna pattern is approximated by a two-
dimensional Gaussian function containing 50 % of the signal
within a circle with a radius of 20 km. The simulations out-
side a radius of 40 km are discarded in the computation of the
footprint-scale estimates.

The number of 36 km EASEv2 grid cells included in one
footprint area varies with latitude. The circular footprint
shape is preserved everywhere on the globe. In contrast, the
shape of the EASEv2 grid cells projected on the globe varies
with the latitude, with an aspect ratio of 1 at 30◦ (north–
south) latitude, larger than 1 towards the poles and less than
1 towards the Equator. Therefore, at higher latitudes multiple
EASEv2 grid cells with the same latitude and various longi-
tudes belong to one circular footprint, whereas towards the
Equator, several EASEv2 grid cells with the same longitude
and various latitudes contribute to the footprint. Overall, the
difference between single 36 km simulations and footprint-
scale values is small, but the number of valid Tb observa-
tion predictions at the footprint scale is reduced, because of
the increased likelihood of finding a 36 km grid cell with a
non-negligible water fraction, snow amount, or precipitation
within the footprint area.

2.4 In situ soil moisture data and metrics

The assimilation results are evaluated using independent in
situ measurements of surface and root-zone soil moisture
from two sparse networks across the US: the US Natural
Resources Conservation Service Soil Climate Analysis Net-
work (SCAN; Schaefer et al., 2007) and the US Climate Ref-
erence Network (USCRN; Diamond et al., 2013; Bell et al.,
2013). Surface soil moisture measurements are taken at ap-
proximately 5 cm depth. Root-zone soil moisture measure-
ments are a weighted average of measurements at 5, 10, 20,
and 50 cm depth, with respective weights of 0.1, 0.1, 0.27,
and 0.53. Given the difference in spatial support between
these point measurements and the 36 km gridded model
and assimilation results, the skill is quantified in terms of
anomaly time series correlation (anomR) and unbiased root-
mean-square difference (RMSDub; Entekhabi et al., 2010),
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using all 3 h forecast and analysis time steps in the period
1 July 2010–1 May 2015, excluding times when the soil is
frozen (top layer soil temperature < 274.15 K) or snow cov-
ered (snow water equivalent > 0 kg m−2). The anomaly cor-
relation is based on anomaly time series obtained by subtract-
ing a multi-year smoothed climatology from both the simula-
tions and in situ observations. Note that the assimilation and
open-loop simulations have, by design, the same climatolog-
ical variability; the assimilation only corrects for random er-
rors. Metrics at a single site are only calculated if at least
200 data points are available. Skill metrics across an entire
network are calculated by clustering the sites within SCAN
and USCRN to avoid densely sampled areas dominating the
validation metrics and to ensure realistic confidence inter-
vals (De Lannoy and Reichle, 2016). The number of clusters
is estimated a priori after prescribing an average cluster ra-
dius of 3◦, which approximately reflects the autocorrelation
length of large-scale topographic and meteorological phe-
nomena, or of large-scale soil moisture patterns (Vinnikov
et al., 1996). The actual size of the clusters that results from
the clustering algorithm varies strongly in space.

3 Data assimilation

3.1 Distributed ensemble Kalman filter

For both Tb and SM retrieval assimilation, a spatially dis-
tributed (or three-dimensional, 3-D) ensemble Kalman filter
(EnKF; Reichle and Koster, 2003; De Lannoy and Reichle,
2016) is used. This system simultaneously assimilates mul-
tiple spatially distributed observation sets, using horizontal
and vertical error covariance structures, to update the simu-
lations at each 36 km model grid cell. The details of the Tb
assimilation system are explained in De Lannoy and Reichle
(2016) and differ only in that the observations are here asso-
ciated with a spatially variable antenna pattern reaching out
to a radius of 40 km.

During the model integration, a data assimilation step is
activated every 3 h. All the SMOS observations yi collected
within 1.5 h of the analysis time i are assimilated simulta-
neously to update the forecasted state x̂

j−
k,i at location k as

follows:

x̂
j+
k,i = x̂

j−
k,i +Kk,i[y

j
i − ŷ

j−
i ], (1)

with j denoting the ensemble member, Kk,i the Kalman gain,
y
j
i the perturbed observations, ŷ

j−
i = hi(x̂

j−
i ) the observa-

tion predictions, and hi(.) the observation operator mapping
the simulated land surface variables to observed quantities.
Bias in the observation-minus-forecast residuals is addressed
prior to the analysis (Sect. 3.2). The ensemble is created by
perturbing the model forcing, the model forecasts, and the
observations (Sect. 3.3). The Kalman gain is calculated as

Kk,i = Cov(x̂−k,i, ŷ
−

i )
[
Cov(ŷ−i , ŷ

−

i )+Ri
]−1

, (2)

where Cov(x̂−k,i, ŷ
−

i ) is the (sample) error covariance (across
the ensemble) between the forecasted land surface state and
the forecasted Tb or SM. Similarly, Cov(ŷ−i , ŷ

−

i ) is the (sam-
ple) error covariance of the Tb or SM forecasts, and Ri is the
Tb or SM observation error covariance. The Kalman gain is
identical for all ensemble members.

In the case of SM retrieval assimilation, the observation
operator hi(.) performs the spatial aggregation of soil mois-
ture simulations from the 36 km grid cells to the satellite
footprint; in the case of Tb data assimilation, the observation
operator includes both the RTM and the spatial aggregation
of gridded Tb simulations to the footprint (Sect. 2.3). For
the Tb_7ang assimilation, one observation set at location κ
contains Tb observations at a maximum of seven angles and
bothH - and V -polarization, i.e., up to 14 individual observa-
tions yλ,κ,i ∈ yκ,i . The subscript λ refers to the polarization
and incidence angle of the individual Tb observations. In the
middle part of the swath, all 14 observations are typically
available, whereas slightly fewer observations are available
in the outer portions of the swath, where the observations
with lower incidence angles are missing.

For the Tb_fit assimilation, one observation set usually
contains two observations, i.e., both H - and V -polarization
Tb at a 40◦ incidence angle. For the SM retrieval assimi-
lation, each observation set contains only one observation.
In all cases, the observation vector y

j
i collects multiple per-

turbed observation sets that are spatially distributed within
an influence radius of 1.25◦ around the model grid cell k, and
each observation vector y

j
i has a forecasted counterpart ŷ

j−
i .

After removal of the persistent errors (Sect. 3.2) from the O–
F residuals (or innovations), the increments Kk,i[y

j
i − ŷ

j−
i ]

are calculated and applied to the state variables. Figure 1 il-
lustrates the forward simulation from 36 km gridded land sur-
face simulations to footprint-scale observation predictions of
Tb and the downscaling of the footprint-scale Tb innovations
to 36 km gridded land surface increments.

The subset of prognostic variables updated in Eq. (1) dif-
fers depending on the assimilation experiment. The state
vector for Tb assimilation (x = [catdef, srfexc, rzexc, tc1,
tc2, tc4, ght1]T ) includes prognostic variables related to soil
moisture and soil temperature (Sect. 2.3), because Tb obser-
vations are by definition sensitive to surface soil moisture and
temperature. In contrast, the state vector for SM retrieval as-
similation (x = [catdef, srfexc, rzexc]T ) contains only model
prognostic variables related to soil moisture, because the SM
retrievals do not carry direct information about the soil tem-
perature. The selected updates will be propagated to all other
variables within the land surface modeling system through
energy and water exchange between various soil layers and
land–vegetation–atmosphere compartments. For the discus-
sion of the soil moisture increments we will focus on the total
profile water increments (1wtot=1srfexc+1rzexc–1catdef)
in units of kg m−2 (that is, mm of water equivalent). This
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Innovations Increments
(a) O-F TbH [K] (b) O-F TbV [K] (c) Δwtot [mm] (d) Δtp1 [K]

-10 0 10 -10 0 10 -10 0 10 -2 0 2

Analysis
(e) sfmc [m3.m−3] (f) rzmc [m3.m−3 ] (g) tp1 [K]

0 0.2 0.4 0.6 0 0.2 0.4 0.6 270 280 290 300

Figure 2. Soil moisture and temperature analysis on 30 April 2015 at 12:00 UTC for the Tb_fit assimilation system. (a, b) Tb innovations
(O–F) at a 40◦ incidence angle for H - and V -polarization respectively; (c, d) increments in total profile water (1wtot) and first soil layer
temperature (1tp1), respectively; (e, f, g) assimilation analyses of surface soil moisture (sfmc), root-zone soil moisture (rzmc), and soil
temperature (tp1), respectively.

quantity is easily understandable and thus simplifies the dis-
cussion.

Figures 2 and 3 illustrate the concept for Tb assimila-
tion and SM retrieval assimilation, respectively. Figure 2a–b
show swaths of footprint-scale bias-corrected Tb_fit innova-
tions (mapped onto the 36 km EASEv2 grid), for H - and V -
polarization at a 40◦ incidence angle from the single-angle
Tb assimilation system. The Tb innovations are then trans-
formed into soil moisture and temperature increments using
Eq. (1). Where Tb innovations are warm, the soil water is re-
duced and the temperature is increased. Figure 2c shows the
total profile water increments1wtot and Fig. 2d shows incre-
ments to the first soil layer temperature 1tp1. Increments to
the surface temperature prognostic variables (Sect. 2.3;1tc1,
1tc2, 1tc4) are similar (not shown). Finally, the increments
are added to the forecasted fields to create spatially complete
analysis maps of surface and root-zone soil moisture, as well
as surface temperature and soil temperature (Fig. 2e–g).

Similarly, Fig. 3a shows the SM innovations from the SM
retrieval assimilation at the same time as in Fig. 2. Areas with
positive (wet) SM innovations in the SM retrieval assimila-
tion roughly correspond to negative (cold) Tb innovations in
the Tb assimilation system (Fig. 2a–b). Note that the color
bars for Tb and SM throughout the paper are chosen accord-
ing to the rule of thumb that a 2–3 K change in Tb corre-
sponds to a 0.01 m3 m−3 change in soil moisture, but keep
in mind that the relationship between Tb and SM is nonlin-
ear and varies with time, location, and incidence angle. Next,
the SM innovations are converted to soil moisture increments

Innovations Increments
(a) O-F SM [m3.m−3] (b) Δwtot [mm]

-0.02 0 0.02 -10 0 10

Analysis
(c) sfmc [m3.m−3] (d) rzmc [m3.m−3 ]

0 0.2 0.4 0.6 0 0.2 0.4 0.6

Figure 3. Soil moisture analysis on 30 April 2015 at 12:00 UTC
for the SM retrieval assimilation system. (a) SM innovations (O–
F); (b) increments in total profile water (1wtot); (c, d) assimilation
analyses of surface soil moisture (sfmc) and root-zone soil moisture
(rzmc).
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(1wtot; Fig. 3b); no increment to surface or soil temperature
is calculated. Figures 2c and 3b show that the Tb and SM
retrieval assimilation systems produce wtot increments with
somewhat different large-scale patterns, which is further dis-
cussed in Sect. 4.2. Finally, Fig. 3c–d show the resulting sur-
face and root-zone soil moisture analysis fields obtained by
adding the increments to the model forecast fields. For both
the Tb and SM retrieval assimilation systems, the analysis in-
crements blend smoothly into the forecast fields; that is, the
analysis maps do not reveal sharp spatial edges that would re-
veal the geometry of the assimilated satellite swaths. Further
details about this figure are discussed in Sect. 4.1.

3.2 Tb and SM innovation bias

To limit the long-term biases between Tb observations and
simulations, the RTM was calibrated (Sect. 2.3). The 5-year
average absolute bias between SMOS Tb and forecasted Tb
is about 2 K across the domain. In general, slightly warm
model biases are found in the boreal zones and cold model
biases over the central part of the US (not shown), but larger
seasonal Tb biases remain, primarily due to systematic er-
rors in the modeled temperature and vegetation. The season-
ally varying climatological Tb bias is removed prior to data
assimilation for each angle, polarization, and overpass time
separately, as described in De Lannoy and Reichle (2016).
The Tb innovation biases are calculated over the period 1
July 2010–1 May 2015 for each individual 36 km grid cell
without spatial sampling.

The CLSM soil moisture was not calibrated for lack of
global observations that would support such an effort and
because modeled soil moisture does not necessarily repre-
sent soil moisture as observed in the field anyway (Koster
et al., 2009). Unlike biases in Tb innovations, the biases in
the SM innovations are more stationary and do not depend
on seasonal temperature variations. Therefore, the SM inno-
vation biases are not corrected seasonally, but instead cumu-
lative distribution function (CDF) matching between the ob-
servations and simulations is performed (Reichle and Koster,
2004) to reconcile the differences in long-term mean, vari-
ance, and higher moments, as in earlier retrieval assimilation
studies (Liu et al., 2011; Draper et al., 2012). The observed
and simulated SM CDFs are computed for the entire study
period, i.e., for 1 July 2010–1 May 2015, at each 36 km grid
cell individually.

3.3 Random forecast and observation error

The imposed ensemble forecast perturbations for Tb and SM
retrieval assimilation are identical to those of De Lannoy
and Reichle (2016) and not repeated here. The total obser-
vation error standard deviation for SMOS Tb_7ang is set to
6 K, which yields near-optimal assimilation diagnostics on
average across the globe. However, the diagnostics are not
necessarily near-optimal in individual regions (De Lannoy

and Reichle, 2016). The input observation error standard de-
viation for SM retrievals is 0.04 m3 m−3, in line with the
soil moisture accuracy requirement for the recent SMOS and
SMAP missions. The SM retrieval error standard deviation
is rescaled following the CDF matching of the SM observa-
tions and results in an effective mean error standard deviation
of 0.02 m3 m−3, with larger values in the wetter eastern part,
which exhibits a higher temporal variability in soil moisture
simulations, and lower values in the drier, western part of the
study domain (not shown). In all cases, the spatial observa-
tion error correlation length is 0.25◦. In the case of multi-
angle Tb_7ang assimilation, interangular error correlations
are imposed as in De Lannoy and Reichle (2016).

Observation errors in Tb data or SM retrievals are a com-
bination of instrument error and representation error (Cohn,
1997; van Leeuwen, 2015). The 6 K Tb error consists of a ra-
diometric error of about 4 K for individual incidence angles
(instrument error) plus 4.5 K representation inaccuracies (in
our system, i.e., based on the near-optimal 6 K observation
error) due to errors in the RTM, the spatial aggregation, or
other discrepancies between Tb observations and forecasts
(6=

√
42+ 4.52). For Tb_fit observations, the instrument er-

ror may be slightly reduced compared to that for Tb_7ang
after the angular smoothing, but the representation error re-
mains similar. SM observations contain retrieval errors due
to errors in the RTM and in the input L1 Tb observations, as
well as representation error due to, e.g., the inherently differ-
ent nature of simulated and observed soil moisture (Koster
et al., 2009). In either case, the representation error depends
on the soil moisture and temperature dynamics and should
ideally be modeled as a function of time and location, but we
chose a constant input observation error standard deviation in
this paper for simplicity. For SM retrieval assimilation, some
spatial error variability is introduced after rescaling in line
with the CDF matching.

3.4 Tb or SM retrieval assimilation

In our experiments, we do not expect the SMOS Tb and SM
retrieval assimilation systems to yield the same results. Dur-
ing the SMOS L2 SM retrieval optimization, the Tb data are
used to estimate surface soil moisture and vegetation opac-
ity, given soil temperature background fields provided by
the European Center for Medium-Range Weather Forecasts
(ECMWF) and look-up parameter information that differs
significantly from the NASA GEOS-5 land data assimilation
system. In contrast, our SMOS Tb assimilation scheme esti-
mates soil moisture and temperature, given vegetation infor-
mation. Furthermore, the data screening is necessarily differ-
ent for Tb data and SM retrievals, and the approach for bias
correction is intentionally different. The soil moisture infor-
mation extracted during the L2 retrieval process or Tb as-
similation is thus by design expected to be different. Finally,
differences in the Tb and SM retrieval assimilation results
could also be due to differences in how close each of the sys-
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tems is to an optimal calibration of its model and observation
error parameters.

4 Results

4.1 Observation and forecast diagnostics

4.1.1 Number of assimilated observations

Let us revisit Figs. 2a–b and 3a to further highlight some
differences between the various assimilated SMOS obser-
vations. First, the swath width for Tb innovations is much
narrower than that of the SM innovations because the as-
similated Tb observations are strictly limited to the alias-
free zone within the full swath, while the assimilated SM
retrievals are retained in the extended alias-free zone. Fur-
thermore, the swath width of the Tb_fit innovations is nar-
rower than that of the multi-angle assimilation (not shown)
because the fitting requires sufficient data at a range of in-
cidence angles and lower angle data are not available at the
outer edges of the swaths. Note that SMAP provides useable
Tb measurements over a much wider swath (not shown).

The different swath widths result in different numbers of
observation sets assimilated in each of the three experiments.
Figure 4a–c show the average number of assimilated obser-
vation sets (defined in Sect. 3.1) over the study period 1 July
2010–1 May 2015. The number of observation sets is small-
est (one every 4 days) for Tb_fit and largest for SM retrievals
(one every 2 days), because the swath width is narrowest for
Tb_fit and widest for SM retrievals. The northern areas and
the western mountain ranges have the fewest observations,
because data are not used when the soil is frozen or snow cov-
ered. Tb observations are not assimilated in many small areas
scattered around the study domain, where more than 5 % of
open water is found in the footprint, based on the underlying
GEOS-5 land mask. For the SM retrievals, the screening for
an excessive (> 5 %) water fraction is only based on the prod-
uct science flags, not on GEOS-5 information. Data gaps in
the SM retrievals are found in the western mountain ranges
and in the vegetated southeastern part of the US. The data
coverage is also different for Tb and SM retrieval assimila-
tion because the availability of the climatological informa-
tion needed for the innovation bias correction (Sect. 3.2) is
different for the Tb and SM retrieval observations.

4.1.2 Actual observation and forecast errors

The long-term mean observation-minus-forecast differences
(O–F, or innovations) are unbiased by design (Sect. 3.2). The
Hovmüller plots for two data assimilation cases in Fig. 5 re-
veal that the temporal pattern in area-averaged biases is fairly
random for the Tb_7ang assimilation case (very similar for
Tb_fit assimilation, not shown), whereas it shows a slight
seasonal pattern in the SM retrieval assimilation case. This
small difference is not surprising, given that the Tb innova-

tion bias is seasonally corrected, whereas the SM innovation
bias is not.

The time series standard deviation of the innovations, that
is, the root-mean-square difference (RMSD) between SMOS
observations and simulations, represents the total observation
and forecast error that is present in the assimilation system
(Desroziers et al., 2005). The spatial patterns of this diag-
nostic are very different for Tb and SM retrieval assimila-
tion. Figure 4d–e show values of about 7.4 K for Tb_7ang
and Tb_fit, with larger values (exceeding 10 K) in the cen-
tral plains and along the Mississippi, where agricultural prac-
tices, such as altering crop rotation and irrigation, are ob-
served by SMOS, whereas interannual variations in vege-
tation are not simulated by the model or provided as input
to the model. Along the eastern coast and in the southeast,
the temporal standard deviation in the innovations is low (2–
3 K): forests show a limited interannual variability, and under
dense vegetation Tb is only marginally sensitive to soil mois-
ture and depends primarily on vegetation characteristics and
(physical) temperature.

The standard deviation in the SM innovations in the SM re-
trieval assimilation (Fig. 4f) is 0.03 m3 m−3, showing larger
values in the wetter vegetated east and smaller values in the
drier west, with the exception of the western coast. Surpris-
ingly, even though altering crop rotation and irrigation are not
simulated, the values over the central agricultural area are not
higher than elsewhere in the domain. This good agreement
between SMOS SM retrievals and our simulations is partly
due to the bounded nature of SM (unlike Tb) and the CDF
matching between both.

Our current system has a Tb sensitivity to soil moisture of
about 1.3 K/0.01 m3 m−3 across the domain, averaged over
all incidence angles and polarizations. A standard deviation
in SM innovations of 0.03 m3 m−3 would thus roughly corre-
spond to a standard deviation in Tb innovations of about 4 K,
but instead we find 7.4 K across the study domain in the Tb
assimilation systems. The Tb observations thus either have a
comparably higher observation (including representation) er-
ror or they contain more information than the SM retrievals.
At this point, we anticipate that the larger Tb innovations in
the central plains may indicate that the Tb observations con-
tain more unfiltered information about soil moisture (e.g., ir-
rigation) and that the Tb observation error is higher due to
shortcomings, e.g., in the vegetation modeling (representa-
tion error).

4.1.3 Actual vs. simulated observation and forecast
errors

In a near-optimal filtering system, that is, a system that cor-
rectly simulates the actual model and observation errors,
the standard deviation of the normalized innovations [yκ,i −

ŷ−κ,i]λ/
√
[Rκ,i +Cov(ŷ−κ,i, ŷ

−

κ,i)]λλ is close to unity (Reichle
et al., 2002). Figure 4g–i show that, averaged across the do-
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Figure 4. Observation-space assimilation diagnostics for the period from 1 July 2010 to 1 May 2015. Number of assimilated observation sets
for (a) Tb_7ang assimilation, (b) Tb_fit assimilation, and (c) SM retrieval assimilation. Standard deviation of the (d) Tb innovations from
Tb_7ang assimilation, (e) Tb innovations from Tb_fit assimilation, and (f) SM innovations from SM retrieval assimilation. (g, h, i) Same
as (d, e, f), but for normalized innovations (normO–F). Ensemble standard deviation of the (j) Tb forecast error for Tb_7ang assimilation,
(k) Tb forecast error for Tb_fit assimilation, and (l) surface soil moisture forecast error for SM retrieval assimilation. The titles show the
spatial mean (m) and standard deviation (s) across each map.

main (and across all angles and polarizations for Tb assim-
ilation), this metric is 1.14, 1.11, and 1.23 (–) for Tb_7ang,
Tb_fit, and SM retrieval assimilation, respectively. The fig-
ure thus suggests that, on average, the simulated errors in
the assimilation system only slightly underestimate the ac-
tual errors. But the figures also show that the metric varies
strongly across the domain and exhibits very different spatial
patterns for Tb and SM retrieval assimilation. For Tb_7ang

and Tb_fit assimilation, values are much larger than 1 in the
central area and much smaller than 1 in the eastern forested
area. This indicates that the assigned observation and fore-
cast errors are severely underestimated in the central area and
overestimated in the eastern forested area. Over forests, it can
be assumed that the assigned representation error (part of the
observation error) should be smaller. The Tb forecast error is
already very small (see below), because the Tb uncertainty is
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Figure 5. Hovmüller plots showing the temporal evolution of lon-
gitudinally averaged innovations (O–F) for the period from 1 July
2010 to 1 May 2015. (a) Tb_7ang innovations, averaged over H -
and V -polarization, ascending and descending swaths, and over
seven incidence angles. (b) SM innovations, averaged over ascend-
ing and descending swaths.

only marginally sensitive to soil moisture uncertainties under
dense vegetation. For SM retrieval assimilation, the pattern is
reversed, with the largest values in the eastern half of the do-
main, suggesting that here the simulated errors underestimate
the actual errors. Values less than 1 are found in most of the
western half of the domain, where the SM retrieval assimila-
tion seems to overestimate the actual errors.

To further interpret the actual and simulated error magni-
tudes, Fig. 4j–k show the ensemble spread in the Tb fore-
casts (that is, the simulated forecast error standard deviation)√
[Cov(ŷ−κ,i, ŷ

−

κ,i)]λλ. Averaged across all angles and polar-
izations λ, the values are around 2 K when averaged across
the entire domain. Larger values (3 K) are found in the cen-
tral and dry western part, and smaller values (1 K) in the wet-
ter eastern part. This pattern is similar for the SM ensemble
spread in the SM retrieval assimilation system (Fig. 4l). In
dry climates, the root-zone soil moisture often drops to the

wilting point, remains stagnant and no longer replenishes the
surface. This results in increased sensitivity of the surface
soil moisture to perturbations in meteorological conditions,
and thus in higher uncertainty estimates for surface soil mois-
ture in dry climates.

Given that the Tb observation error
√
[Rκ,i]λλ is set to 6 K

for each individual angle, polarization, and overpass time
in the Tb assimilation, the approximate total assigned ob-
servation and forecast error is 6.1 K (

√
62+ 22) across the

study domain, 6.7 K (
√

62+ 32) in the central area, and 6 K
(
√

62+ 12) in the eastern Appalachian area. Because the as-
signed observation error is uniformly set to 6 K, the spatial
variability in the total simulated errors is thus too small com-
pared to the actual errors (Fig. 4d–e), which ranges from
more than 10 K in the central area to around 2–3 K in the
eastern Appalachian area.

The SM observation error (after rescaling) is 0.02 m3 m−3

on average across the domain, with higher values in the east-
ern part and lower values in the western part, with the ex-
ception of Mexico, California, and western Oregon, where
higher observation errors are found (Sect. 3.3). This general
pattern is reversed in the SM forecast errors. Combined, the
spatial variability in the SM observation and forecast errors
does not capture the spatial variability in the actual errors
(Fig. 4f), which leads to an overestimation of the errors in
the west and an underestimation in the east.

4.2 Analysis increments

4.2.1 Spatio-temporal patterns

The Kalman filter translates footprint-scale innovations into
36 km increments. Because of the spatially distributed (3-D)
filtering (Sect. 3.1), the number of increments in Fig. 6a–
c is about 1.4 times the number of assimilated observation
sets (Fig. 4a–c). Many areas with missing observations (or
observation predictions) are filled through interpolation and
extrapolation. With SM retrieval assimilation, there is almost
one increment per day.

Figure 6d–f show the temporal standard devia-
tions in the increments for the total soil profile water
(1wtot=1srfexc+1rzexc–1catdef). The area average
(±standard deviation) values are 6.9± 3.7 mm for Tb_7ang
assimilation, 5.9± 3.5 mm for Tb_fit assimilation, and
4.2± 1.9 for SM retrieval assimilation. After scaling for the
(variable) profile depth, the area-average values in volumet-
ric soil moisture units are 3.4± 1.7× 10−3 for Tb_7ang
assimilation, 2.9± 1.7× 10−3 for Tb_fit assimilation, and
2.3± 1.9× 10−3 m3 m−3 for SM retrieval assimilation.

The individual components of the wtot increments are
shown in Fig. 6g–i for the surface excess increments, Fig. 6j–
l for the root-zone excess increments, and Fig. 6m–o for
the catchment deficit increments. The patterns in wtot incre-
ments are dominated by catdef increments, and they gener-
ally reflect the patterns in the respective innovations’ stan-
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Figure 6. Statistics of the increments, calculated for the period from 1 July 2010 to 1 May 2015. Number of increments per day for
(a) Tb_7ang assimilation, (b) Tb_fit assimilation, and (c) SM assimilation. Temporal standard deviation of total profile water (wtot) in-
crements for (d) Tb_7ang assimilation, (e) Tb_fit assimilation, and (f) SM assimilation. (g, h, i) Same as (d, e, f) but for srfexc increments.
(j, k, l) Same as (d, e, f) but for rzexc increments. (m, n, o) Same as (d, e, f) but for catdef increments. The titles show the spatial mean (m)
and standard deviation (s) across each map.
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dard deviations (Fig. 4d–f), which are very different for Tb
and SM retrieval assimilation. The catdef increments pertain
to the entire profile depth (which typically ranges between 2
and 3 m) and they presumably have a relatively small im-
pact on the upper 5 cm soil layer (surface soil moisture):
the domain-averaged magnitude of 5.4, 4.9, and 3.5 mm for
catdef increments due to Tb_7ang, Tb_fit or SM retrieval
assimilation, respectively (Fig. 6m–o), would linearly scale
to about 0.1 mm for a 5 cm soil layer. This is a rough ap-
proximation: in reality the part of catdef that contributes to
the 5 cm soil moisture cannot be calculated without com-
puting the entire balanced profile. However, the approximate
0.1 mm is considerably less than the 0.6, 0.4, and 0.4 mm for
the corresponding srfexc increments (Fig. 6g–i), which are
directly applied to the upper 5 cm soil layer. The increments
in rzexc (Fig. 6j–l) are relatively the smallest, because this
variable is not perturbed by design.

Both Tb and SM retrieval assimilation show similar spa-
tial patterns in the standard deviations of srfexc increments
(Fig. 6g–i): the largest increments are found in the dry west
and the smallest in the wetter east. The patterns in srfexc in-
crements agree with the patterns in the ensemble forecast un-
certainty for this variable (not shown, but implied by the Tb
and soil moisture uncertainty in Fig. 4j–l). The srfexc val-
ues are small with small uncertainties, and the increments
are thus similarly bounded in both Tb and SM retrieval as-
similation, yielding comparable spatial increment patterns.

Finally, Fig. 7 compares spatially and temporally col-
located wtot, srfexc, and rzexc increments obtained with
Tb_7ang assimilation, Tb_fit assimilation, and SM retrieval
assimilation; i.e., the figure shows all pairs of increments
available from two assimilation cases. The scatter plots show
that the increments are usually small and unbiased. The cor-
relation between the wtot increments (Fig. 7a) obtained by
Tb_7ang and Tb_fit assimilation is 0.7, and aligns with the
expectation that either Tb assimilation experiment roughly
corrects for the same events. In contrast, the correlation
between the increments obtained by Tb_7ang and SM re-
trieval assimilation is only 0.3 (Fig. 7b). The figure is sim-
ilar when comparing the Tb_fit and SM retrieval assimila-
tion (not shown). For srfexc and rzexc (Fig. 7c–f), the incre-
ments are again similar for Tb_7ang and Tb_fit assimilation,
but different for Tb and SM retrieval assimilation. For all soil
moisture prognostic variables, Tb assimilation leads to larger
increments than SM retrieval assimilation. The different as-
similation systems thus introduce distinct corrections to the
modeled soil moisture trajectories.

4.2.2 Discussion

In a nutshell, Eq. (1) states that the increments are given by
the product of the Kalman gain and the innovations. To ex-
plain the differences in increment patterns between Tb and
SM retrieval assimilation, we must therefore consider each
system’s innovations and Kalman gains. The relatively larger
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Figure 7. Spatially and temporally collocated analysis increments
from (a, c, e) Tb_fit assimilation and (b, d, f) SM retrieval assim-
ilation vs. the same from Tb_7ang assimilation for (a, b) profile-
integrated wtot increments, (c, d) srfexc increments, and (e–f) rzexc
increments. Increments are from the period 1 July 2010 to 1 May
2015. The plot range is limited to the maximum value of 10 times
the standard deviation in either experiment, and divided into 100
even sample bins. Colors indicate the number of sample points
within each 1.5, 0.13, or 0.44 mm bin for 1wtot, 1srfexc, and
1rzexc, respectively. R is the spatio-temporal Pearson correlation
coefficient between the individual increments from two assimilation
experiments.

magnitude of the Tb innovations compared to the SM inno-
vations (Sect. 4.1.2) contributes to the fact that the Tb assim-
ilation results in larger soil moisture increments. This is the
case even though the SM retrieval assimilation (unlike Tb as-
similation) applies increments only to moisture variables and
does not adjust modeled temperatures.

Furthermore, the Kalman gain matrices Kk,i (Eq. 2) for
Tb and SM retrieval assimilation are different because the
two systems employ different observation operators hi(.) and
different observation error covariances Ri . First, we note that
the nonlinear inversion of Tb innovations to soil moisture in-
crements, driven by the RTM in the observation operator, is
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not responsible for the larger wtot increments in the central
grass and crop areas, because these areas exhibit low values
for the microwave roughness parameter (h < 0.2, not shown)
and a high sensitivity of Tb to soil moisture (as confirmed by
the high forecast Tb errors in Fig. 4j–k). That is, in these ar-
eas commensurately large Tb innovations (O–F) values result
in only small updates to soil moisture.

Second, the choice of a spatially uniform observation er-
ror covariance in the Tb assimilation experiment creates an
imprint of the innovation pattern in the increment pattern.
Higher increments are found in the agricultural areas with
large Tb innovation standard deviations (Fig. 4d–e), because
irrigation is not modeled and vegetation is not accurately pa-
rameterized. Since the filter is not set up to correct the latter,
occasional excessive increments to soil moisture and temper-
ature may be introduced. Such shortcomings could be miti-
gated by a more sophisticated assignment of Tb observation
(representation) errors.

For SM retrieval assimilation, the pattern of the SM in-
novation standard deviation (RMSD) is similarly visible in
the increments, with smaller values in the west and higher
values in the east. Here again, the true spatio-temporal na-
ture of the observation errors is not captured in the assigned
observation error covariance and therefore propagated into
the increments. Note also that the 0.03 m3 m−3 SM inno-
vation standard deviation (top 5 cm, Fig. 4f) is translated
into a standard deviation of profile moisture increments of
0.002 m3 m−3 (Fig. 6f rescaled by profile depth), but these
increments are not equally distributed; i.e., larger increments
are found for surface soil moisture and smaller increments
for the deeper profile.

4.3 In situ validation

The above discussion highlights similarities and stark con-
trasts in how the Tb and SM retrieval assimilation systems
operate. In this section, we look at the effect of these dif-
ferences on the skill of the assimilation estimates vs. in situ
observations. Figure 8 shows the RMSDub (Sect. 2.4) for the
model-only open-loop (OL) simulation, and the change in
RMSDub (Sect. 2.4) between the OL simulation and either
the Tb_7ang or SM retrieval data assimilation (DA) experi-
ment (1RMSDub=RMSDub(DA) – RMSDub(OL)) at indi-
vidual SCAN and USCRN sites, for the period 1 July 2010–
1 May 2015. The gray background shading indicates areas
with modest topographic complexity and vegetation cover
and where the satellite observations are most sensitive to
surface soil moisture (details in De Lannoy and Reichle,
2016). The OL simulation has an average RMSDub value of
0.054 m3 m−3 for surface soil moisture and 0.039 m3 m−3 for
root-zone soil moisture. Looking more closely, the RMSDub
values are generally higher in the central and wetter eastern
regions. In dry areas, the RMSDub is limited, because the
time series show a limited variability for lack of much precip-
itation. On average, both assimilation experiments introduce

improvements at about 80 % of the sites for surface soil mois-
ture, with spatially averaged 1RMSDub values of −0.004
and −0.003 m3 m−3 for Tb_7ang and SM retrieval assimila-
tion, respectively. (Spatial average metrics are computed us-
ing a cluster-based algorithm, Sect. 2.4.) The improvements
are also propagated to the root-zone soil moisture (65 % of
sites improved) with smaller average 1RMSDub values of
−0.002 and −0.001 m3 m−3, respectively.

The domain-average 1RMSDub values caused by assim-
ilation are only barely statistically significant for surface
soil moisture in “favorable” areas, i.e., where the satellite
observations are most sensitive to soil moisture (indicated
with green background shading in Fig. 8). The differences
between Tb_7ang, Tb_fit, or SM retrieval assimilation are
not significant. The assimilation contributes an average rela-
tive improvement in surface soil moisture of 7 % of the OL
RMSDub in favorable locations and 4 % in non-favorable ar-
eas. Both Tb and SM retrieval assimilation show improve-
ments in the central and eastern parts of the US, but per-
form poorly in the western dry mountain areas, where the
RMSDub for the OL was small and the assimilation may have
introduced some additional noise. The Tb_7ang assimilation
shows the largest improvements in the central US, whereas
the SM retrieval assimilation shows the largest improvements
in the southeastern part, for both surface and root-zone soil
moisture. It is possible that the Tb assimilation has a larger
impact in the central US than the SM retrieval assimilation,
because irrigation events may be filtered in the SM retrievals
(and perhaps partly assigned to vegetation opacity retrievals).

The bar plots in Fig. 9 summarize the average anomR val-
ues for the open-loop and data assimilation experiments, af-
ter stratifying all SCAN and USCRN sites into “favorable”
and “non-favorable” categories (gray vs. white background
in Fig. 8). The figures show that the open-loop anomR val-
ues for surface soil moisture are similar for both the favor-
able and non-favorable areas (0.51 and 0.50, respectively).
However, data assimilation has a larger impact in favor-
able areas, where all assimilation schemes introduce sig-
nificant improvements (anomR= 0.63, 0.61, and 0.59 for
Tb_7ang, Tb_fit, and SM retrieval assimilation). In non-
favorable areas, the improvements are smaller but still sig-
nificant (anomR= 0.57, 0.56, and 0.54, for Tb_7ang, Tb_fit,
and SM retrieval assimilation).

In the root zone, data assimilation also improves the skill
over the open-loop simulations, but without statistical sig-
nificance. The open-loop simulations yield anomR values
of 0.56 and 0.50 in favorable and non-favorable areas, re-
spectively. In favorable areas, the assimilation increases the
anomR to 0.64, 0.64, and 0.62, for Tb_7ang, Tb_fit, and SM
retrieval assimilation. In non-favorable areas, the skill im-
provement is limited and the anomR values are 0.54, 0.54,
and 0.52, for Tb_7ang, Tb_fit, and SM retrieval assimilation.
In any case, with assimilation, all anomR values exceed 0.5,
meaning that the skill becomes better than a climatological
forecast (Brier skill score larger than 0).
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Figure 8. Unbiased RMSD (RMSDub) for the model-only open-loop (OL) simulation, and change in unbiased RMSD (1RMSDub) due to
data assimilation at (circles) SCAN and (triangles) USCRN sites for (a, b, c) surface and (d, e, f) root-zone soil moisture. The skill of (a, d)
the open-loop simulation is the reference value for the changes in skill due to (b, e) Tb_7ang and (c, f) SM retrieval assimilation. Statistically
significant changes are marked by larger symbols (e.g., the southeastern US for SM retrieval assimilation). Metrics are calculated across 3 h
time steps during the period from 1 July 2010 to 1 May 2015. The titles indicate the spatial mean (1)RMSDub across all sites with clustering
(31 clusters). The gray background shading marks areas with limited vegetation and topographic complexity based on model parameters.

Overall, the skill metrics are comparable for the Tb_7ang
and Tb_fit assimilation (Fig. 9). The results from SM re-
trieval assimilation are slightly worse than those from Tb as-
similation, which may indicate that Tb observations indeed
still contain more information (Sect. 4.2) than the SM re-
trievals, which are implicitly filtered during the retrieval pro-
cess. However, the differences between the domain-averaged
skill values of the various assimilation schemes are minimal.
Furthermore, when running the assimilation scheme with dif-
ferent spatially constant Tb observation error parameters, the
skill metrics only changed marginally. This shows that our
skill metrics are relatively insensitive to uniform changes in
the data assimilation parameters. One reason for this is that
the skill metrics are presented as (clustered) spatial averages,
which compensate for large local differences. It is expected
that the skill of our data assimilation systems can only be fur-
ther improved by using a more localized (in space and time)
approach to optimizing the assimilated observations (e.g., L2
SM retrievals) and the forecast and observation error param-
eters in the EnKF.

Finally, unlike Liu et al. (2011), the skill improvements
in this study are smaller when we correct the re-analysis
precipitation input with gauge-based precipitation data (Re-
ichle and Liu, 2014). This and other recent improvements
in the GEOS-5 modeling system make it increasingly chal-

lenging to obtain significant skill improvements from the as-
similation of microwave observations over areas for which
high-quality forcing data are available, such as the domain
studied here. The benefits of the microwave-based soil mois-
ture assimilation system are expected to be greater in areas
with poorer ancillary inputs to the modeling system. This as-
pect will be further investigated through the validation of the
global SMAP L4_SM data product.

5 Conclusions

The SMOS and SMAP satellite missions currently provide a
wealth of L-band data to monitor large-scale soil moisture.
A key question is how to make the best use of these data in
current land surface data assimilation systems. The L1 Tb
data from these missions are often complex, because of their
multi-polarization and possibly multi-angle nature and their
indirect connection with soil moisture. In theory, the best ap-
proach is to directly assimilate Tb observations using a con-
sistent data assimilation system, but a correct global charac-
terization of the Tb forecast and observation errors remains
difficult. The L2 SM retrievals are easily handled products,
but their assimilation is impacted by errors introduced by in-
consistent ancillary information in the SM retrieval algorithm
and the assimilation system. With further improvements in
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Figure 9. Performance of open-loop and data assimilation experi-
ments in terms of anomaly correlations (anomR) calculated across
3 h analyses and forecast time steps from 1 July 2010 to 1 May 2015
for (a) surface and (b) root-zone soil moisture. The bars show skill
metrics averaged over sites in either favorable or non-favorable ar-
eas, where favorable areas refer to the areas indicated by the gray
background shading in Fig. 8. The variable N is the total number
of SCAN and USCRN sites considered for each category, with the
number of clusters in parentheses. The error bars reflect cluster-
averaged 95 % confidence intervals.

the assimilated retrievals and careful selection of the ancil-
lary data, SM retrieval assimilation may become a coequal
alternative.

Three different data products from the SMOS mission are
assimilated separately into the GEOS-5 land surface model
to improve estimates of surface and root-zone soil moisture
and to study the workings of each assimilation system. The
first product consists of L1-based data of multi-angle, dual-
polarization Tb observations at the bottom of the atmosphere.
The second product is a derived 40◦ Tb product that mim-
ics SMAP data. The third product is the operational L2 SM
dataset. Special care is taken during quality control and pro-
cessing of the satellite observations prior to assimilation and
within the assimilation system. The Tb assimilation uses a
distributed EnKF with a temporally variable Tb bias mitiga-
tion, a system that is also used for the SMAP L4_SM product
(Reichle et al., 2016). The SM retrieval assimilation uses a
similar system, but with CDF matching instead to eliminate
the more stationary SM innovation biases. The study covers
most of North America for the period of 1 July 2010–1 May
2015.

The Tb and SM innovations show very different spatial
patterns and the number of assimilated observations differs
because of different needs for data screening and bias mitiga-
tion. Based on the average sensitivity of Tb to soil moisture,
the magnitude of the Tb innovations is comparably larger
than that of the SM innovations, which may either intro-

duce more information or more error into the Tb assimilation
system. The Tb and SM retrieval assimilation schemes also
yield surprisingly different spatio-temporal increment pat-
terns, leading to very different adjustments to the modeled
soil moisture trajectories. Despite these stark differences, the
various assimilation schemes yield soil moisture estimates
with similar average skill metrics, computed from a set of
187 SCAN and USCRN sites across the US. Compared to
in situ observations, both Tb and SM retrieval assimilations
yield anomaly correlations around or larger than 0.6 for both
the surface and root-zone soil moisture in “favorable” ar-
eas, where the satellite data are expected to better represent
the soil moisture conditions, i.e., in areas with limited topo-
graphic complexity and limited vegetation. The anomaly cor-
relation with data assimilation is between 0.5 and 0.6 in non-
favorable areas. The data assimilation introduces significant
improvements over the model-only simulations for surface
soil moisture everywhere, but the improvements are much
larger in favorable areas. For the root zone, improvements are
also found, but without statistical significance. While no sig-
nificant differences in domain-averaged skills can be found
between the various assimilation systems, there are large lo-
cal differences in performance between the Tb and SM re-
trieval assimilation which may be due to differences in infor-
mation content and screening of the observations, and differ-
ences in how close each of the systems is to an optimal cali-
bration of its model and observation error parameters. There-
fore, we expect that soil moisture data assimilation systems
can be further improved only if the systems manage to bet-
ter simulate the spatial and temporal variations of the actual
errors in the model and the observations. Furthermore, the
SM retrieval assimilation results will benefit from any future
improvement in the SM retrievals.

In line with our findings for the SMOS data assimilation,
we anticipate that future versions of the Tb assimilation sys-
tem for the SMAP L4_SM product may benefit from an im-
proved characterization of spatial model and observation er-
ror structures, and from a better representation of some mod-
eling components, such as, e.g., vegetation. In addition, given
that SMOS and SMAP both provide L-band Tb observations,
future assimilation systems should consider a joint assimila-
tion of SMOS and SMAP Tb data. In such a system, it is
important to consider the different instrument, Tb process-
ing, and Tb error characteristics of the two L-band missions
(De Lannoy et al., 2015).

6 Data availability

The SMOS data are distributed by ESA. The model and as-
similation results can be obtained from the authors upon re-
quest.
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