Articles | Volume 20, issue 5
https://doi.org/10.5194/hess-20-1911-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-1911-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The use of semi-structured interviews for the characterisation of farmer irrigation practices
Jimmy O'Keeffe
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Wouter Buytaert
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Ana Mijic
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Nicholas Brozović
Robert B. Daugherty Water for Food Institute, University of Nebraska, Lincoln, Nebraska, USA
Rajiv Sinha
Department of Earth Sciences, Indian Institute of Technology Kanpur, Uttar Pradesh, India
Related authors
No articles found.
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024, https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863, https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Short summary
Glaciers in the tropics are poorly-observed, making it difficult to predict how they will retreat in the future. Most computer models neglect important processes that control tropical glacier retreat. We combine two existing models to remedy this limitation. Our model replicates observed changes in glacier retreat and shows us where our process understanding limits the accuracy of predictions and which processes are less important than we previously thought, helping to direct future research.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Saroj Kumar Dash and Rajiv Sinha
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-47, https://doi.org/10.5194/hess-2022-47, 2022
Manuscript not accepted for further review
Short summary
Short summary
Soil moisture and groundwater play a significant role in the hydrology of the critical zone in the Earth system, specifically in an agriculture-driven environment. We present here the space-time dynamics of both these components from a well-instrumented critical zone observatory in the Ganga basin, India. Influences on the spatiotemporal variability along with the optimal sampling strategies are explored in this study, providing an insight to the stakeholders for efficient water management.
N. A. Muhadi, A. F. Abdullah, S. K. Bejo, M. R. Mahadi, and A. Mijic
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W3-2021, 257–260, https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-257-2022, https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-257-2022, 2022
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Kumar Gaurav, François Métivier, A V Sreejith, Rajiv Sinha, Amit Kumar, and Sampat Kumar Tandon
Earth Surf. Dynam., 9, 47–70, https://doi.org/10.5194/esurf-9-47-2021, https://doi.org/10.5194/esurf-9-47-2021, 2021
Short summary
Short summary
This study demonstrates an innovative methodology to estimate the formative discharge of alluvial rivers from remote sensing images. We have developed an automated algorithm in Python 3 to extract the width of a river channel from satellite images. Finally, this channel width is translated into discharge using a semi-empirical regime equation developed from field measurements and threshold channel theory that explains the first-order geometry of alluvial channels.
Anoop Kumar Shukla, Shray Pathak, Lalit Pal, Chandra Shekhar Prasad Ojha, Ana Mijic, and Rahul Dev Garg
Hydrol. Earth Syst. Sci., 22, 5357–5371, https://doi.org/10.5194/hess-22-5357-2018, https://doi.org/10.5194/hess-22-5357-2018, 2018
Short summary
Short summary
In this study, we carried out a comparative evaluation of water yield using two approaches, the Lumped Zhang model and the pixel-based approach. Even in pixel-level computations, experiments are made with existing models of some of the involved parameters. The study indicates not only the suitability of pixel-based computations but also clarifies the suitable model of some of the parameters to be used with pixel-based computations to obtain better results.
Anoop Kumar Shukla, Chandra Shekhar Prasad Ojha, Ana Mijic, Wouter Buytaert, Shray Pathak, Rahul Dev Garg, and Satyavati Shukla
Hydrol. Earth Syst. Sci., 22, 4745–4770, https://doi.org/10.5194/hess-22-4745-2018, https://doi.org/10.5194/hess-22-4745-2018, 2018
Short summary
Short summary
Geospatial technologies and OIP are promising tools to study the effect of demographic changes and LULC transformations on the spatiotemporal variations in the water quality (WQ) across a large river basin. Therefore, this study could help to assess and solve local and regional WQ-related problems over a river basin. It may help the policy makers and planners to understand the status of water pollution so that suitable strategies could be planned for sustainable development in a river basin.
Somil Swarnkar, Anshu Malini, Shivam Tripathi, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 22, 2471–2485, https://doi.org/10.5194/hess-22-2471-2018, https://doi.org/10.5194/hess-22-2471-2018, 2018
Short summary
Short summary
Several rivers basins in the Ganga plains suffer from very high sediment production in their catchment and there are no good estimates of sediment yield from these basins due to a lack of gauge data. The RUSLE model offers an alternative approach and the same has been applied in a small basin in the Ganga plains. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in soil erosion and sediment yield estimates at ungauged basins.
Gina Tsarouchi and Wouter Buytaert
Hydrol. Earth Syst. Sci., 22, 1411–1435, https://doi.org/10.5194/hess-22-1411-2018, https://doi.org/10.5194/hess-22-1411-2018, 2018
Short summary
Short summary
This work quantifies how future land-use and climate change may affect the hydrology of the Upper Ganges basin. Three sets of modelling experiments are run for the period 2000–2035, considering (1) only climate change, (2) only land-use change and (3) both climate and land-use change. Results point towards a severe increase in high flows. The changes are greater in the combined land-use and climate change experiment. We also show that future winter water demands in the region may not be met.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Himanshu Arora, Chandra Shekhar Prasad Ojha, Wouter Buytaert, Gujjunadu Suryaprakash Kaushika, and Chetan Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-388, https://doi.org/10.5194/hess-2017-388, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In many agrarian countries (like India), the agricultural practices are usually rainfall dependent. Therefore keeping the water budget into account, precipitation being an important component must be analysed thoroughly for its occurrence and amount. The analysis of trends can provide an insight in understanding the possible impacts in future, which can assist living beings to adapt and cope up with changing climate and hydrological cycle.
Susana Almeida, Nataliya Le Vine, Neil McIntyre, Thorsten Wagener, and Wouter Buytaert
Hydrol. Earth Syst. Sci., 20, 887–901, https://doi.org/10.5194/hess-20-887-2016, https://doi.org/10.5194/hess-20-887-2016, 2016
Short summary
Short summary
The absence of flow data to calibrate hydrologic models may reduce the ability of such models to reliably inform water resources management. To address this limitation, it is common to condition hydrological model parameters on regionalized signatures. In this study, we justify the inclusion of larger sets of signatures in the regionalization procedure if their error correlations are formally accounted for and thus enable a more complete use of all available information.
P. Blair and W. Buytaert
Hydrol. Earth Syst. Sci., 20, 443–478, https://doi.org/10.5194/hess-20-443-2016, https://doi.org/10.5194/hess-20-443-2016, 2016
Short summary
Short summary
This paper reviews literature surrounding many aspects of socio-hydrological modelling; this includes a background to the subject of socio-hydrology, reasons why socio-hydrological modelling would be used, what is to be modelled in socio-hydrology and concepts that underpin this, as well as several modelling techniques and how they may be applied in socio-hydrology.
S. Moulds, W. Buytaert, and A. Mijic
Geosci. Model Dev., 8, 3215–3229, https://doi.org/10.5194/gmd-8-3215-2015, https://doi.org/10.5194/gmd-8-3215-2015, 2015
Short summary
Short summary
The contribution of lulcc is to provide a free and open-source framework for land use change modelling. The software, which is provided as an R package, addresses problems associated with the current paradigm of closed-source, specialised land use change modelling software which disrupt the scientific process. It is an attempt to move the discipline towards open and transparent science and to ensure land use change models are accessible to scientists working across the geosciences.
K. Gaurav, F. Métivier, O. Devauchelle, R. Sinha, H. Chauvet, M. Houssais, and H. Bouquerel
Earth Surf. Dynam., 3, 321–331, https://doi.org/10.5194/esurf-3-321-2015, https://doi.org/10.5194/esurf-3-321-2015, 2015
Short summary
Short summary
This study mainly focused on the comparison between braided river channels and meandering river channels. We show that the morphology of braided and meandering channels are comparable and their width, depth and slope scale in same way against water discharge. This is the key finding of our study and it has never been tested before.
G. M. Tsarouchi, W. Buytaert, and A. Mijic
Hydrol. Earth Syst. Sci., 18, 4223–4238, https://doi.org/10.5194/hess-18-4223-2014, https://doi.org/10.5194/hess-18-4223-2014, 2014
H. M. Holländer, H. Bormann, T. Blume, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, T. Krauße, P. Kraft, S. Stoll, G. Blöschl, and H. Flühler
Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014, https://doi.org/10.5194/hess-18-2065-2014, 2014
Z. Zulkafli, W. Buytaert, C. Onof, W. Lavado, and J. L. Guyot
Hydrol. Earth Syst. Sci., 17, 1113–1132, https://doi.org/10.5194/hess-17-1113-2013, https://doi.org/10.5194/hess-17-1113-2013, 2013
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Instruments and observation techniques
Phosphorus supply and floodplain design govern phosphorus reduction capacity in remediated agricultural streams
Transpiration rates from mature Eucalyptus grandis × E. nitens clonal hybrid and Pinus elliottii plantations near the Two Streams Research Catchment, South Africa
Phenophase-based comparison of field observations to satellite-based actual evaporation estimates of a natural woodland: miombo woodland, southern Africa
Patterns and drivers of water quality changes associated with dams in the Tropical Andes
δ13C, CO2 ∕ 3He and 3He ∕ 4He ratios reveal the presence of mantle gas in the CO2-rich groundwaters of the Ardennes massif (Spa, Belgium)
Advances in the hydraulic interpretation of water wells using flowmeter logs
Continuous monitoring of a soil aquifer treatment system's physico-chemical conditions to optimize operational performance
Building a methodological framework and toolkit for news media dataset tracking of conflict and cooperation dynamics on transboundary rivers
Investigating the environmental response to water harvesting structures: a field study in Tanzania
The importance of city trees for reducing net rainfall: comparing measurements and simulations
Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method
Hydrogeological controls on spatial patterns of groundwater discharge in peatlands
Monitoring surface water quality using social media in the context of citizen science
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
Learning about water resource sharing through game play
High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications
Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning
High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport
Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring
Vulnerability of groundwater resources to interaction with river water in a boreal catchment
Drivers of spatial and temporal variability of streamflow in the Incomati River basin
Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments
Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation
Geophysical methods to support correct water sampling locations for salt dilution gauging
Water management simulation games and the construction of knowledge
Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium
Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise
Potentials and limits of urban rainwater harvesting in the Middle East
Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China
Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring
Modern comprehensive approach to monitor the morphodynamic evolution of a restored river corridor
The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia
Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets
Relative impacts of key drivers on the response of the water table to a major alley farming experiment
Lukas Hallberg, Faruk Djodjic, and Magdalena Bieroza
Hydrol. Earth Syst. Sci., 28, 341–355, https://doi.org/10.5194/hess-28-341-2024, https://doi.org/10.5194/hess-28-341-2024, 2024
Short summary
Short summary
Floodplains can be constructed along agricultural streams with the purpose of increasing water residence time, thereby reducing instream erosion and intercepting nutrient export. In this paper we show how this remediation measure can reduce phosphorus concentrations by up to 30 % through optimized floodplain designs and placement. These reductions were primarily facilitated by protection against erosion rather than by the promotion of deposition on floodplains.
Nkosinathi David Kaptein, Colin S. Everson, Alistair David Clulow, Michele Lynn Toucher, and Ilaria Germishuizen
Hydrol. Earth Syst. Sci., 27, 4467–4484, https://doi.org/10.5194/hess-27-4467-2023, https://doi.org/10.5194/hess-27-4467-2023, 2023
Short summary
Short summary
Water-use studies comparing pine and Eucalyptus are limited. This study used internationally recognized methods to measure water use by Eucalyptus and pine over two seasons. Results showed that, over one season, pine used more water than Eucalyptus, which was contrary to previous long-term studies. However, the Eucalyptus site was found to be water stressed. This study concluded that the observed water stress and reduced transpiration rates must be included in hydrological models.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
R. Scott Winton, Silvia López-Casas, Daniel Valencia-Rodríguez, Camilo Bernal-Forero, Juliana Delgado, Bernhard Wehrli, and Luz Jiménez-Segura
Hydrol. Earth Syst. Sci., 27, 1493–1505, https://doi.org/10.5194/hess-27-1493-2023, https://doi.org/10.5194/hess-27-1493-2023, 2023
Short summary
Short summary
Dams are an important and rapidly growing means of energy generation in the Tropical Andes of South America. To assess the impacts of dams in the region, we assessed differences in the upstream and downstream water quality of all hydropower dams in Colombia. We found evidence of substantial dam-induced changes in water temperature, dissolved oxygen concentration and suspended sediments. Dam-induced changes in Colombian waters violate regulations and are likely impacting aquatic life.
Agathe Defourny, Pierre-Henri Blard, Laurent Zimmermann, Patrick Jobé, Arnaud Collignon, Frédéric Nguyen, and Alain Dassargues
Hydrol. Earth Syst. Sci., 26, 2637–2648, https://doi.org/10.5194/hess-26-2637-2022, https://doi.org/10.5194/hess-26-2637-2022, 2022
Short summary
Short summary
The Belgian city of Spa is known worldwide for its ferruginous and naturally sparkling groundwater springs that gave their name to the bathing tradition commonly called
spa. However, the origin of the dissolved CO2 they contain was still a matter of debate. Thanks to new analysis on groundwater samples, particularly carbon and helium isotopes together with dissolved gases, this study has demonstrated that the volcanic origin of the CO2 is presumably from the neighboring Eifel volcanic fields.
Jesús Díaz-Curiel, Bárbara Biosca, Lucía Arévalo-Lomas, María Jesús Miguel, and Natalia Caparrini
Hydrol. Earth Syst. Sci., 26, 2617–2636, https://doi.org/10.5194/hess-26-2617-2022, https://doi.org/10.5194/hess-26-2617-2022, 2022
Short summary
Short summary
A methodology is developed for a new hydraulic characterization of continental hydrological basins. For this purpose, the division of wells into flow stretches with different hydraulic behaviour is made according to the results of the flowmeter, supposing that the hypothesis hydraulic heads of the deepest flow stretches of the well do not necessarily match the head shown by the overall well.
Tuvia Turkeltaub, Alex Furman, Ron Mannheim, and Noam Weisbrod
Hydrol. Earth Syst. Sci., 26, 1565–1578, https://doi.org/10.5194/hess-26-1565-2022, https://doi.org/10.5194/hess-26-1565-2022, 2022
Short summary
Short summary
The quality control and optimization of soil aquifer treatment (SAT) performance is challenging due to the multiple factors and costs involved. We installed in situ subsurface monitoring sensors that provided continuous high-resolution monitoring of the biochemical and physical conditions of an active SAT system. Data analysis facilitated the determination of the optimal drying and wetting stages, which are critical for suitable SAT management.
Liying Guo, Jing Wei, Keer Zhang, Jiale Wang, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 1165–1185, https://doi.org/10.5194/hess-26-1165-2022, https://doi.org/10.5194/hess-26-1165-2022, 2022
Short summary
Short summary
Data support is crucial for the research of conflict and cooperation on transboundary rivers. Conventional, manual constructions of datasets cannot meet the requirements for fast updates in the big data era. This study brings up a revised methodological framework, based on the conventional method, and a toolkit for the news media dataset tracking of conflict and cooperation dynamics on transboundary rivers. A dataset with good tradeoffs between data relevance and coverage is generated.
Jessica A. Eisma and Venkatesh M. Merwade
Hydrol. Earth Syst. Sci., 24, 1891–1906, https://doi.org/10.5194/hess-24-1891-2020, https://doi.org/10.5194/hess-24-1891-2020, 2020
Short summary
Short summary
Sand dams capture and store water for use during the dry season in rural communities. A year long field study of three sand dams in Tanzania showed that sand dams are not a suitable habitat for aquatic insects. They capture plenty of water, but most is evaporated during the first few months of the dry season. Sand dams positively impact vegetation and minimally impact erosion. Community water security can be increased by sand dams, but site characteristics and construction are important factors.
Vincent Smets, Charlotte Wirion, Willy Bauwens, Martin Hermy, Ben Somers, and Boud Verbeiren
Hydrol. Earth Syst. Sci., 23, 3865–3884, https://doi.org/10.5194/hess-23-3865-2019, https://doi.org/10.5194/hess-23-3865-2019, 2019
Short summary
Short summary
The impact of city trees for intercepting rainfall is quantified using measurements and modeling tools. The measurements show that an important amount of rainfall is intercepted, limiting the amount of water reaching the ground. Models are used to extrapolate the measurement results. The performance of two specialized interception models and one water balance model is evaluated. Our results show that the performance of the water balance model is similar to the specialized interception models.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, https://doi.org/10.5194/hess-22-5427-2018, 2018
Danielle K. Hare, David F. Boutt, William P. Clement, Christine E. Hatch, Glorianna Davenport, and Alex Hackman
Hydrol. Earth Syst. Sci., 21, 6031–6048, https://doi.org/10.5194/hess-21-6031-2017, https://doi.org/10.5194/hess-21-6031-2017, 2017
Short summary
Short summary
This research examines what processes drive the location and strength of groundwater springs within a peatland environment. Using temperature and geophysical methods, we demonstrate that the relationship between regional groundwater flow gradients and the basin shape below the peatland surface control where groundwater springs occur. Understanding this relationship will support effective restoration efforts, as groundwater spring locations are important to overall peatland function and ecology.
Hang Zheng, Yang Hong, Di Long, and Hua Jing
Hydrol. Earth Syst. Sci., 21, 949–961, https://doi.org/10.5194/hess-21-949-2017, https://doi.org/10.5194/hess-21-949-2017, 2017
Short summary
Short summary
Do you feel angry if the river in your living place is polluted by industries? Do you want to do something to save your environment? Just log in to http://www.thuhjjc.com and use the Tsinghua Environment Monitoring Platform (TEMP) to photograph the water pollution actives and make your report. This study established a social media platform to monitor and report surface water quality. The effectiveness of the platform was demonstrated by the 324 water quality reports across 30 provinces in China.
Matteo Giuliani, Andrea Castelletti, Roman Fedorov, and Piero Fraternali
Hydrol. Earth Syst. Sci., 20, 5049–5062, https://doi.org/10.5194/hess-20-5049-2016, https://doi.org/10.5194/hess-20-5049-2016, 2016
Short summary
Short summary
The unprecedented availability of user-generated data on the Web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images. The value of the obtained virtual snow indexes is assessed for a real-world water management problem.
Tracy Ewen and Jan Seibert
Hydrol. Earth Syst. Sci., 20, 4079–4091, https://doi.org/10.5194/hess-20-4079-2016, https://doi.org/10.5194/hess-20-4079-2016, 2016
Short summary
Short summary
Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be explored. We look at how games can be used to teach about water resource sharing, by both playing and developing water games. An evaluation of the web-based game Irrigania found Irrigania to be an effective and easy tool to incorporate into curriculum, and a course on developing water games encouraged students to think about water resource sharing in a more critical and insightful way.
Frans C. van Geer, Brian Kronvang, and Hans Peter Broers
Hydrol. Earth Syst. Sci., 20, 3619–3629, https://doi.org/10.5194/hess-20-3619-2016, https://doi.org/10.5194/hess-20-3619-2016, 2016
Short summary
Short summary
The paper includes a review of the current state of high-frequency monitoring in groundwater and surface waters as an outcome of a special issue of HESS and four sessions at EGU on this topic. The focus of the paper is to look at how high-frequency monitoring can be used as a valuable support to assess the management efforts under various EU directives. We conclude that we in future will see a transition from research to implementation in operational monitoring use of high-frequency sensors.
Matthew D. Berg, Franco Marcantonio, Mead A. Allison, Jason McAlister, Bradford P. Wilcox, and William E. Fox
Hydrol. Earth Syst. Sci., 20, 2295–2307, https://doi.org/10.5194/hess-20-2295-2016, https://doi.org/10.5194/hess-20-2295-2016, 2016
Short summary
Short summary
Rangelands, from grasslands to woodlands, cover much of the earth. These areas face great pressure to meet growing water needs. Data on large-scale dynamics that drive water planning remain rare. Our watershed-scale results challenge simplistic hydrological assumptions. Streamflow was resilient to dramatic landscape changes. These changes did shape sediment yield, affecting water storage. Understanding these processes is vital to projections of rangeland water resources in a changing world.
J. C. Rozemeijer, A. Visser, W. Borren, M. Winegram, Y. van der Velde, J. Klein, and H. P. Broers
Hydrol. Earth Syst. Sci., 20, 347–358, https://doi.org/10.5194/hess-20-347-2016, https://doi.org/10.5194/hess-20-347-2016, 2016
Short summary
Short summary
Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. For a grassland field in the Netherlands, we measured the changes in the field water and solute balance after introducing controlled drainage. We concluded that controlled drainage reduced the drain discharge and increased the groundwater storage in the field, but did not have clear positive effects for water quality.
S. C. Sherriff, J. S. Rowan, A. R. Melland, P. Jordan, O. Fenton, and D. Ó hUallacháin
Hydrol. Earth Syst. Sci., 19, 3349–3363, https://doi.org/10.5194/hess-19-3349-2015, https://doi.org/10.5194/hess-19-3349-2015, 2015
A. Rautio, A.-L. Kivimäki, K. Korkka-Niemi, M. Nygård, V.-P. Salonen, K. Lahti, and H. Vahtera
Hydrol. Earth Syst. Sci., 19, 3015–3032, https://doi.org/10.5194/hess-19-3015-2015, https://doi.org/10.5194/hess-19-3015-2015, 2015
Short summary
Short summary
Based on low-altitude aerial infrared surveys, around 370 groundwater–surface water interaction sites were located. Longitudinal temperature patterns, stable isotopes and dissolved silica composition of the studied rivers differed. Interaction sites identified in the proximity of 12 municipal water plants during low-flow seasons should be considered as potential risk areas during flood periods and should be taken under consideration in river basin management under changing climatic situations.
A. M. L. Saraiva Okello, I. Masih, S. Uhlenbrook, G. P. W. Jewitt, P. van der Zaag, and E. Riddell
Hydrol. Earth Syst. Sci., 19, 657–673, https://doi.org/10.5194/hess-19-657-2015, https://doi.org/10.5194/hess-19-657-2015, 2015
Short summary
Short summary
We studied long-term daily records of rainfall and streamflow of the Incomati River basin in southern Africa. We used statistical analysis and the Indicators of Hydrologic Alteration tool to describe the spatial and temporal variability flow regime. We found significant declining trends in October flows, and low flow indicators; however, no significant trend was found in rainfall. Land use and flow regulation are larger drivers of temporal changes in streamflow than climatic forces in the basin.
J. M. Campbell, P. Jordan, and J. Arnscheidt
Hydrol. Earth Syst. Sci., 19, 453–464, https://doi.org/10.5194/hess-19-453-2015, https://doi.org/10.5194/hess-19-453-2015, 2015
Short summary
Short summary
High-resolution phosphorus and flow data were used to gauge the effects of diffuse (soil P) and point source (septic tank system) mitigation measures in two flashy headwater river catchments. Over 4 years the data indicated an overall increase in P concentration in defined high flow ranges and low flow P concentration showed little change. The work indicates fractured responses to catchment management advice and mitigation which were also affected by variations in seasonal hydrometeorology.
J. Audet, L. Martinsen, B. Hasler, H. de Jonge, E. Karydi, N. B. Ovesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 18, 4721–4731, https://doi.org/10.5194/hess-18-4721-2014, https://doi.org/10.5194/hess-18-4721-2014, 2014
Short summary
Short summary
The mitigation of excess nitrogen and phosphorus in river waters requires costly measures. Therefore it is essential to use reliable monitoring methods to select adequate mitigation strategies. Here we show that more development is needed before passive samplers can be considered as reliable alternative for sampling nutrients in stream. We also showed that although continuous sampling is expensive, its reliability precludes unnecessarily high implementation costs of mitigation measures.
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci., 18, 3195–3203, https://doi.org/10.5194/hess-18-3195-2014, https://doi.org/10.5194/hess-18-3195-2014, 2014
M. Rusca, J. Heun, and K. Schwartz
Hydrol. Earth Syst. Sci., 16, 2749–2757, https://doi.org/10.5194/hess-16-2749-2012, https://doi.org/10.5194/hess-16-2749-2012, 2012
J. Rozemeijer, C. Siderius, M. Verheul, and H. Pomarius
Hydrol. Earth Syst. Sci., 16, 2405–2415, https://doi.org/10.5194/hess-16-2405-2012, https://doi.org/10.5194/hess-16-2405-2012, 2012
F. Jørgensen, W. Scheer, S. Thomsen, T. O. Sonnenborg, K. Hinsby, H. Wiederhold, C. Schamper, T. Burschil, B. Roth, R. Kirsch, and E. Auken
Hydrol. Earth Syst. Sci., 16, 1845–1862, https://doi.org/10.5194/hess-16-1845-2012, https://doi.org/10.5194/hess-16-1845-2012, 2012
J. Lange, S. Husary, A. Gunkel, D. Bastian, and T. Grodek
Hydrol. Earth Syst. Sci., 16, 715–724, https://doi.org/10.5194/hess-16-715-2012, https://doi.org/10.5194/hess-16-715-2012, 2012
T. T. Jin, B. J. Fu, G. H. Liu, and Z. Wang
Hydrol. Earth Syst. Sci., 15, 2519–2530, https://doi.org/10.5194/hess-15-2519-2011, https://doi.org/10.5194/hess-15-2519-2011, 2011
T. A. Endreny and M. M. Soulman
Hydrol. Earth Syst. Sci., 15, 2119–2126, https://doi.org/10.5194/hess-15-2119-2011, https://doi.org/10.5194/hess-15-2119-2011, 2011
N. Pasquale, P. Perona, P. Schneider, J. Shrestha, A. Wombacher, and P. Burlando
Hydrol. Earth Syst. Sci., 15, 1197–1212, https://doi.org/10.5194/hess-15-1197-2011, https://doi.org/10.5194/hess-15-1197-2011, 2011
B. M. Teklu, H. Tekie, M. McCartney, and S. Kibret
Hydrol. Earth Syst. Sci., 14, 2595–2603, https://doi.org/10.5194/hess-14-2595-2010, https://doi.org/10.5194/hess-14-2595-2010, 2010
T. Raziei, I. Bordi, L. S. Pereira, and A. Sutera
Hydrol. Earth Syst. Sci., 14, 1919–1930, https://doi.org/10.5194/hess-14-1919-2010, https://doi.org/10.5194/hess-14-1919-2010, 2010
S. L. Noorduijn, K. R. J. Smettem, R. Vogwill, and A. Ghadouani
Hydrol. Earth Syst. Sci., 13, 2095–2104, https://doi.org/10.5194/hess-13-2095-2009, https://doi.org/10.5194/hess-13-2095-2009, 2009
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and Drainage Paper 56, Tech. rep., Food and Agriculture Organization of the United Nations, 1998.
Allen, R. G., I.Elliott, W. R. L., Howell, T. A., Itensfisu, D., Jensen, M. E., and Snyder L., R.: The ASCE Standardized Reference Evapotranspiration Equation, Tech. rep., The Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute, Reston, VA, USA, 2005.
Amarasinghe, U. A., Mccornick, P., and Shah, T.: Projections of irrigation water demand in India: What do recent trends suggest?, International Journal of River Basin Management, 7, 157–166, https://doi.org/10.1080/15715124.2009.9635378, 2009.
Avtar, R., Kumar, P., Singh, C. K., and Mukherjee, S.: A Comparative Study on Hydrogeochemistry of Ken and Betwa Rivers of Bundelkhand Using Statistical Approach, Water Quality, Exposure and Health, 2, 169–179, https://doi.org/10.1007/s12403-010-0035-2, 2011.
Barnes, A. P., McCalman, H., Buckingham, S., and Thomson, S.: Farmer decision-making and risk perceptions towards outwintering cattle, J. Environ. Manage., 129, 9–17, https://doi.org/10.1016/j.jenvman.2013.05.026, 2013.
Barriball, K. L. and While, A.: Collecting data using a semi-structured interview: a discussion paper, J. Adv. Nurs., 19, 328–335, https://doi.org/10.1111/j.1365-2648.1994.tb01088.x, 1994.
Burnard, P., Gill, P., Stewart, K., Treasure, E., and Chadwick, B.: Analysing and presenting qualitative data, Brit. Dent. J., 204, 429–432, https://doi.org/10.1038/sj.bdj.2008.292, 2008.
Calheiros, D., Seidl, A., and Ferreira, C.: Participatory research methods in environmental science : local and scientific knowledge of a limnological phenomenon in the Pantanal wetland of Brazil, J. Appl. Ecol., 37, 684–696, https://doi.org/10.1046/j.1365-2664.2000.00524.x, 2000.
Chauhan, P.: Ground Water Brochure of Sultanpur District, Uttar Pradesh, Tech. Rep. May 2007, 2007.
Chowdhury, N. T.: Irrigation Institutions of Bangladesh: Some Lessons. Problems, Perspectives and Challenges of Agricultural Water Managment, http://www.intechopen.com/books/problems-perspectives-and-challenges-ofagricultural-water-management/irrigation-institutions-of-bangladesh-some-lessons (last access: 19 November 2015), 2012.
Collins, M., Shattell, M., and Thomas, S. P.: Problematic interviewee behaviors in qualitative research, Western J. Nurs. Res., 27, 188–99; discussion 200–9, https://doi.org/10.1177/0193945904268068, 2005.
Creswell, J. W.: Research Design. Qualitative, Quantitative, and Mixed Methods Approaches, SAGE Publications Ltd, 3rd edn., https://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C, 2009.
Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, Water Resour. Res., 38, 1–10, https://doi.org/10.1029/2001WR000355, 2002.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker, A.: Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites, Water Resour. Res., 50, 5698–5720, https://doi.org/10.1002/2014WR015595, 2014.
Ellis, L. M. and Chen, E. C.: Negotiating identity development among undocumented immigrant college students: a grounded theory study, J. Couns. Psychol., 60, 251–64, https://doi.org/10.1037/a0031350, 2013.
Fallon, P.: Life events; Their role in onset and relapse in psychosis, research utilizing semi-structured interview methods, J. Psychiatr. Ment. Hlt., 15, 386–392, https://doi.org/10.1111/j.1365-2850.2007.01244.x, 2008.
Famiglietti, J. S.: The global groundwater crisis, Nature Climate Change, 4, 945–948, https://doi.org/10.1038/nclimate2425, 2014.
Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resour. Res., 47, https://doi.org/10.1029/2010WR010174, 2011.
Flick, U.: An introduction to qualitative research, vol. 9781446267, London, Sage Publications, London, 5 edn., 2014.
Gao, H., Birkett, C., and Lettenmaier, D. P.: Global monitoring of large reservoir storage from satellite remote sensing, Water Resour. Res., 48, 1–12, https://doi.org/10.1029/2012WR012063, 2012.
GEWEX: GEWEX Plans for 2013 and Beyond – GEWEX Science Questions (Version 1), Tech. Rep. GEWEX Document Series No. 2012-2, GEWEX, http://www.gewex.org/gewex-content/uploads/2015/02/GEWEX_Science_Questions_final.pdf (last access: 19 November 2015), 2012.
Gibson, C.: Semi-structured and unstructured interviewing – a comparison of methodologies in research with patients following discharge from an acute psychiatric hospital, J. Psychiatr. Ment. Hlt., 5, 469–477, https://doi.org/10.1046/j.1365-2850.1998.560469.x, 1998.
Government of India: Census 2011 – Provisional Population Totals, Tech. rep., Ministry of Home Affairs, 2011.
Guarte, J. M. and Barrios, E. B.: Computation Estimation Under Purposive Sampling, Communications in Statistics – Simulation and Computation, 0918, 277–284, https://doi.org/10.1080/03610910600591610, 2006.
Hagirath, B., Kumar, C., Nauriyal, D. K., Nayak, N. C., Prasad, P. M., Rajgopalan, P., Mishra, P., Trivedi, P. L., Agrawal, A., Singh, S. P., Sharma, S., Mazumder, T. N., Upadhyay, V. B., Sharma, V., and Tare, V.: Trends in Agriculture and Agricultural Practices in Ganga Basin. An Overview, Tech. rep., Ganga River Basin Managment Plan, 2011.
Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration From Ambient Air Temperature, Paper – American Society of Agricultural Engineers, 96–99, http://www.scopus.com/inward/record.url?eid=2-s2.0-0022284023&partnerID=40&md5=8dbbb2b21fcf0b47f0fb6d1e5dcefa02 (last access: 19 November 2015), 1985.
Harou, J. J. and Lund, J. R.: Ending groundwater overdraft in hydrologic-economic systems, Hydrogeol. J., 16, 1039–1055, https://doi.org/10.1007/s10040-008-0300-7, 2008.
Hebert, J. R., Gupta, P. C., Bhonsle, R. B., Sinor, P. N., Mehta, H., and Mehta, F. S.: Development and testing of a quantitative food frequency questionnaire for use in Gujarat, India, Public Health Nutr., 2, 39–50, https://doi.org/10.1017/S1368980099000051, 1998.
Huang, R.: RQDA: R-based Qualitative Data Analysis, http://rqda.r-forge.r-project.org/ (last access: 8 September 2015), 2014.
ICRISAT-ICAR-IRRI: Village Dynamics in South Asia (VDSA), District Level Database Documentation, Tech. rep., ICRISAT-ICAR-IRRI Collaborative Research Project, 2012.
Indian Council of Agricultural Research: District Profile: Uttar Pradesh, Tech. rep., Indian Council of Agricultural Reseasrch – Zonal Project Directorate Kanpur, http://zpdk.org.in/sites/default/files/districtprofile(2-2-10).pdf (last access: 14 March 2016), 2010.
Jewitt, S. and Baker, K.: The Green Revolution re-assessed: Insider perspectives on agrarian change in Bulandshahr District, Western Uttar Pradesh, India, Geoforum, 38, 73–89, https://doi.org/10.1016/j.geoforum.2006.06.002, 2007.
Kapborga, I. and Berterö, C.: Using an interpreter in qualitative interviews: does it threaten validity?, Nurs. Inq., 9, 52–6, http://www.ncbi.nlm.nih.gov/pubmed/12164715, 2002.
Mason, J.: Qualitative Researching, SAGE Publications Ltd, London, second edn., https://doi.org/10.1016/S0143-6228(97)90005-9, 2002.
McKenney, M. S. and Rosenberg, N. J.: Sensitivity of some potential evapotranspiration estimation methods to climate change, Agr. Forest Meteorol., 64, 81–110, https://doi.org/10.1016/0168-1923(95)02240-X, 1993.
Ministry of Panchayati Raj: Backward Regions Grant Fund Programme, http://www.panchayat.gov.in/details-of-brgf-districts (last access: 29 October 2015), 2014.
Montanari, A.: Debates – Perspectives on sociohydrology: Introduction, Water Resour. Res., 51, 2–31, https://doi.org/10.1002/2015WR017430, 2015.
Mottram, A.: “They are marvellous with you whilst you are in but the aftercare is rubbish”: a grounded theory study of patients' and their carers' experiences after discharge following day surgery, J. Clin. Nurs., 20, 3143–51, https://doi.org/10.1111/j.1365-2702.2011.03763.x, 2011.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A.: Closing yield gaps through nutrient and water management, Nature, 490, 254–257, https://doi.org/10.1038/nature11420, 2012.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand, Hydrol. Earth Syst. Sci., 19, 33–61, https://doi.org/10.5194/hess-19-33-2015, 2015a.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling, Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015, 2015b.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochem. Cy., 24, 1–24, https://doi.org/10.1029/2008GB003435, 2010.
Rabionet, S. E.: How I Learned to Design and Conduct Semi-structured Interviews : An Ongoing and Continuous Journey, The Qualitative Report, 16, 563–566, http://www.nova.edu/ssss/QR/QR16-2/rabionet.pdf (last access: 16 January 2015), 2011.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of groundwater depletion in India., Nature, 460, 999–1002, https://doi.org/10.1038/nature08238, 2009.
Shah, T., Bhatt, S., Shah, R., and Talati, J.: Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India, Agr. Water Manage., 95, 1233–1242, https://doi.org/10.1016/j.agwat.2008.04.006, 2008.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Siebert, S. and Döll, P.: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation, J. Hydrol., 384, 198–217, https://doi.org/10.1016/j.jhydrol.2009.07.031, 2010.
Singh, N. J., Kudrat, M., Jain, K., and Pandey, K.: Cropping pattern of Uttar Pradesh using IRS-P6 (AWiFS) data, Int. J. Remote Sens., 32, 4511–4526, https://doi.org/10.1080/01431161.2010.489061, 2011.
Singh, R.: Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India, Agr. Ecosyst. Environ., 82, 97–103, https://doi.org/10.1016/S0167-8809(00)00219-X, 2000.
Tiwari, V. M., Wahr, J., and Swenson, S.: Dwindling groundwater resources in northern India, from satellite gravity observations, Geophys. Res. Lett., 36, L18401, https://doi.org/10.1029/2009GL039401, 2009.
Uttar Pradesh State Planning Institute: Statistical Abstract of Uttar Pradesh 2012, http://updes.up.nic.in, Tech. rep., Economics and Statistics Division, State Planning Institute, Uttar Pradesh, 2012.
Voss, K. A., Famiglietti, J. S., Lo, M., De Linage, C., Rodell, M., and Swenson, S. C.: Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region, Water Resour. Res., 49, 904–914, https://doi.org/10.1002/wrcr.20078, 2013.
Wada, Y., Van Beek, L. P. H., Van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL044571, 2010.
Winsemius, H. C., Schaefli, B., Montanari, A., and Savenije, H. H. G.: On the calibration of hydrological models in ungauged basins: A framework for integrating hard and soft hydrological information, Water Resour. Res., 45, W12422, https://doi.org/10.1029/2009wr007706, 2009.
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL035296, 2008.
Short summary
Semi-structured interviews provide an effective and efficient way of collecting qualitative and quantitative data on water use practices. Interviews are organised around a topic guide, which helps lead the conversation while allowing sufficient opportunity to identify issues previously unknown to the researcher. The use of semi-structured interviews could significantly and quickly improve insight on water resources, leading to more realistic future management options and increased water security.
Semi-structured interviews provide an effective and efficient way of collecting qualitative and...