Articles | Volume 20, issue 1
https://doi.org/10.5194/hess-20-125-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-125-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru)
L. Mourre
CORRESPONDING AUTHOR
IRD/UGA/CNRS/G-INP, LTHE UMR 5564, Grenoble, France
T. Condom
IRD/UGA/CNRS/G-INP, LTHE UMR 5564, Grenoble, France
C. Junquas
IRD/UGA/CNRS/G-INP, LTHE UMR 5564, Grenoble, France
Instituto Geofísico del Perú (IGP), Lima, Peru
T. Lebel
IRD/UGA/CNRS/G-INP, LTHE UMR 5564, Grenoble, France
J. E. Sicart
IRD/UGA/CNRS/G-INP, LTHE UMR 5564, Grenoble, France
R. Figueroa
UNASAM, Huaraz, Peru
A. Cochachin
Glaciology and Water Resources Unit, National Water Authority (ANA-UGRH),
Huaraz, Peru
Related authors
No articles found.
Feras Abdulsamad, Josué Bock, Florence Magnin, Emmanuel Malet, André Revil, Matan Ben-Asher, Jessy Richard, Pierre-Allain Duvillard, Marios Karaoulis, Thomas Condom, Ludovic Ravanel, and Philip Deline
EGUsphere, https://doi.org/10.5194/egusphere-2025-637, https://doi.org/10.5194/egusphere-2025-637, 2025
Short summary
Short summary
Permafrost dynamics at Aiguille du Midi in the French Alps was investigated using Automated Electrical Resistivity Tomography (A-ERT) during four years. A-ERT reveals seasonal and multi-year permafrost changes. Temperatures estimated using resistivity measurements provide a good agreement with measured temperature in borehole in frozen zone. Variations in active layer thickness across different faces were observed, along with a slight decrease in permafrost resistivity suggesting warming.
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
Hydrol. Earth Syst. Sci., 29, 655–682, https://doi.org/10.5194/hess-29-655-2025, https://doi.org/10.5194/hess-29-655-2025, 2025
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly gauged regions.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Romina Llanos, Patricia Moreira-Turcq, Bruno Turcq, Raúl Espinoza Villar, Yizet Huaman, Thomas Condom, and Bram Willems
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-47, https://doi.org/10.5194/bg-2022-47, 2022
Manuscript not accepted for further review
Short summary
Short summary
Our results highlight a marked decrease of high carbon accumulation rates in Andean peatlands over the last decades due to the diminution in melt water inflow generated by the retreat of glaciers as a consequence of regional warming. These marked changes stress the high ecological sensitivity of these peatlands, endangering their outstanding role in the regional (and even global) C cycle as large C sinks that contribute to the mitigation of global climate change.
Cited articles
Aceituno, P.: On the functioning of the southern oscillation in the South
American sector. Part I I. Upper-air circulation, J. Climate, 116, 505–524,
https://doi.org/10.1175/1520-0442(1989)002<0341:OTFOTS>2.0.CO;2,
1987.
Amani, A. and Lebel, T.: Lagrangian kriging for the estimation of Sahelian
rainfall at small time steps. J. Hydrology., 192, 125–157,
https://doi.org/10.1016/S0022-1694(96)03104-6,
1997.
Baraer, M., Mark, B., McKenzie, J., Condom, T., Bury, J., Huh, K. I.,
Portocarrero, C., Gomez, J., and Rathay, S.: Glacier recession and water
resources in Peru's Cordillera Blanca, J. Glaciol., 58, 134–150,
https://doi.org/10.3189/2012JoG11J186,
2012.
Barros, A. P.: Orographic precipitation, freshwater resources, and climate
vulnerabilities in mountainous regions, in: Climate Vulnerability:
Understanding and Addressing Threats to Essential Resources, Elsevier Inc.,
Academic Press, Waltham, Massachusetts, 57–78, 2013.
Biasutti, M., Yuter, S. E., Burleyson, C. D., and Sobel, A. H.: Very high
resolution rainfall patterns measured by TRMM precipitation radar: seasonal
and diurnal cycles, Clim. Dynam., 39, 239–258,
https://doi.org/10.1007/s00382-011-1146-6,
2012.
Box, J. E. and Bromwich, D. H.: Greenland ice sheet surface mass balance
1991–2000: application of Polar MM5 mesoscale model and in situ data, J.
Geophys. Res., 109, 1–21,
https://doi.org/10.1029/2003JD004451,
2004.
Bury, J. T., Mark, B. G., McKenzie, J. M., French, A., Baraer, M.,
Huh, K. I., Zapata Luyo, M. A., and Gómez López, R. J.: Glacier
recession and human vulnerability in the Yanamarey watershed of the
Cordillera Blanca, Peru, Climatic Change, 105, 179–206,
https://doi.org/10.1007/s10584-010-9870-1,
2011.
Condom, T., Rau, P., and Espinoza, J. C.: Correction of TRMM 3B43 monthly
precipitation data over the mountainous areas of Peru during the period
1998–2007, Hydrol. Process., 25, 1924–1933,
https://doi.org/10.1002/hyp.7949, 2011.
Condom, T. Escobar, M., Purkey, D., Pouget, J. C. Suarez, W., Ramos, C.,
Apaestegui, J., Tacsi, A., and Gomez, J.: Simulating the implications of
glaciers' retreat for water management: a case study in the Rio Santa Basin,
Peru, Water Int., 37, 442–459,
https://doi.org/10.1080/02508060.2012.706773,
2012.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale twodimensional model, J. Atmos. Sci., 46,
3077–3107,
https://doi.org/10.1175/1520-0469(1989)046%3C3077:NSOCOD%3E2.0.CO;2,
1989.
Espinoza, J. C., Chavez, S. P., Ronchail, J., Junquas, C., Takahashi, K., and
Lavado, W.: Rainfall hotspots over the southern tropical Andes: spatial
distribution, rainfall intensity and relations with large-scale atmospheric
circulation, Water Resour. Res., 51, 3459–3475, https://doi.org/10.1002/2014WR016273,
2015.
Espinoza Villar, J. C., Ronchail, J., Guyot, J. L., Cochonneau, G.,
Naziano, F., Lavado, W., De Oliveira, E., Pombosa, R., and Vauchel, P.:
Spatio-temporal rainfall variability in the Amazon basin countries (Brazil,
Peru, Bolivia, Colombia, and Ecuador), Int. J. Climatol., 29, 1574–1594,
https://doi.org/10.1002/joc.1791, 2009.
Garreaud, R., Vuille, M., and Clement, A. C.: The climate of the Altiplano:
observed current conditions and mechanisms of past changes, Palaeogeogr.
Palaeocl., 194, 5–22,
https://doi.org/10.1016/S0031-0182(03)00269-4,
2003.
Garreaud, R. D.: The Andes climate and weather, Adv. Geosci., 22, 3–11,
https://doi.org/10.5194/adgeo-22-3-2009,
2009.
Georges, C.: 20th century glacier fluctuations in the tropical Cordillera
Blanca, Peru, Arct. Antarct. Alp. Res., 36, 100–107,
https://doi.org/10.1657/1523-0430(2004)036[0100:TGFITT]2.0.CO;2,
2004.
Giovannettone, J. P. and Barros, A. P.: Probing regional orographic controls
of precipitation and cloudiness in the Central Andes using satellite data, J.
Hydrometeorol., 10, 167–182,
https://doi.org/10.1175/2008JHM973.1,
2009.
Gräler, B., Rehr, M., Gerharz, L., and Pebesma, E.: Spatio-temporal
analysis and interpolation of PM10 measurements in Europe for 2009,
ETC/ACM Technical Paper 2012/8, 1–29, 2012.
Grell, G. A. and Devenyi, D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys. Res.
Lett., 29, 38-1–38-4,
https://doi.org/10.1029/2002GL015311,
2002.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341,
https://doi.org/10.1175/MWR3199.1, 2006.
Huffman, G. J. and Bolvin, D. T.: TRMM and other data precipitation data set
documentation, available at:
ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf, last access:
25 May 2014, 2012.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.
Jimenez, P. A. and Dudhia, J.: Improving the representation of resolved and
unresolved topographic effects on surface wind in the WRF model, J. Appl.
Meteorol. Clim., 51, 300–316,
https://doi.org/10.1175/JAMC-D-11-084.1,
2012.
Jimenez, P. A., Dudhia, J., Gonzalez-Rouco, J. F., Montavez, J. P.,
Garcia-Bustamante, E., Navarro, J., Vila-Guerau de Arellano, J. and
Muñoz-Roldan, A.: An evaluation of WRF’s ability to reproduce the Surface
wind over complex terrain based on typical circulation patterns, J. Geophys.
Res., 118, 7651–7669,
https://doi.org/10.1002/jgrd.50585, 2013.
Juen, I., Kaser, G., and Georges, C.: Modelling observed and future runoff
from a glacierized tropical catchment (Cordillera Blanca, Perú), Global
Planet. Change, 59, 37–48,
https://doi.org/10.1016/j.gloplacha.2006.11.038,
2007.
Kaser, G.: A review of the modern fluctuations of tropical Glaciers, Global
Planet. Change, 22, 93–103,
https://doi.org/10.1016/S0921-8181(99)00028-4,
1999.
Lavado Casimiro, W. S. and Espinoza, J. C.: Impactos de El Niño y La
Niña en las lluvias del Peru (1965–2007), Revista Brasileira de
Meteorologia, 29, 171–182,
https://doi.org/10.1590/S0102-77862014000200003, 2014.
Lavado Casimiro, W. S., Labat, D., Guyot, J. L., Ronchail, J., and Ordonez,
J. J.: TRMM Rainfall Data Estimation over the Peruvian Amazon-Andes Basin and
Its Assimilation into a Monthly Water Balance Model. New Approaches to
Hydrological Prediction in Data-Sparse Regions, in: Proceedings of Symposium
HS.2 at the Joint IAHS&IAH Convention, September 2009, Hyderabad, India,
245–252, 2009.
Lavado Casimiro, W. S., Ronchail, J., Labat, D., Espinoza, J. C., and
Guyot, J. L.: Basin-scale analysis of rainfall and runoff in Peru
(1969–2004): Pacific, Titicaca and Amazonas drainages, Hydrol. Sci. J., 57,
625–642,
https://doi.org/10.1080/02626667.2012.672985,
2012.
Li, J. and Heap, A. D.: A Review of Spatial Interpolation Methods for
Environmental Scientists, Geoscience Australia, Canberra, 42–46,
2008.
Mantas, V. M., Liu, Z., Caro, C., and Pereira, A. J. S. C.: Validation of
TRMM multisatellite precipitation analysis (TMPA) products in the Peruvian
Andes, Atmos. Res., 163, 132–145, https://doi.org/10.1016/j.atmosres.2014.11.012,
2014.
Marengo, J. A., Liebmann, B., Grimm, A. M., Misra, V., Silva Dias, P. L.,
Cavalcanti, I. F. A., Carvalho, L. M. V., Berbery, E. H., Ambrizzi, T.,
Vera, C. S., Saulo, A. C., Nogues-Paegle, J., Zipser, E., Seth, A., and
Alves, L. M.: Recent developments on the South American monsoon system, Int.
J. Climatol., 32, 1–21,
https://doi.org/10.1002/joc.2254, 2012.
Mark, B. G. and Seltzer, G. O.: Tropical glacier meltwater contribution to
stream discharge: a case study in the Cordillera Blanca, Peru, J. Glaciol.,
49, 271–281,
https://doi.org/10.3189/172756503781830746,
2003.
Masson, D. and Frei, C.: Spatial analysis of precipitation in a high-mountain
region: exploring methods with multi-scale topographic predictors and
circulation types, Hydrol. Earth Syst. Sci., 18, 4543–4563,
https://doi.org/10.5194/hess-18-4543-2014,
2014.
Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and
Finkelnburg, R.: Precipitation seasonality and variability over the Tibetan
Plateau as resolved by the high asia reanalysis, J. Climate, 27, 1910–1927,
https://doi.org/10.1175/JCLI-D-13-00282.1,
2014.
Mearns, L. O., Giorgi, F., McDaniel, L. and Shields, C.: Analysis of daily
variability of precipitation in a nested regional climate model: comparison
with observations and doubled CO 2 results, Global Planet. Change, 10,
55–78, https://doi.org/10.1007/BF00215007,
1995.
Mlawer, E. J., Taubnam, S. J., Brown, P. D., Iacono, M. J., and
Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM,
a validated correlated-k model for the longwave, J. Geophys. Res., 102,
663–682, https://doi.org/10.1029/97JD00237,
1997.
Murthi, A., Bowman, K. P., and Leung, L. R.: Simulations of precipitation
using NRCM and comparisons with satellite observations and CAM: annual cycle,
Clim. Dynam., 36, 1659–79,
https://doi.org/10.1007/s00382-010-0878-z,
2011.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale measurements,
J. Geophys. Res., 116, 1–19,
https://doi.org/10.1029/2010JD015139,
2011.
Ochoa, A., Pineda, L., Crespo, P., and Willems, P.: Evaluation of TRMM 3B42
precipitation estimates and WRF retrospective precipitation simulation over
the Pacific–Andean region of Ecuador and Peru, Hydrol. Earth Syst. Sci., 18,
3179–3193,
https://doi.org/10.5194/hess-18-3179-2014,
2014.
Paulson, C. A.: The mathematical representation of wind speed and temperature
profiles in the unstable atmospheric surface layer, J. Appl. Meteorol., 9,
857–861,
https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2,
1970.
Roca, R., Chambon, P., Jobard, I., Kirstetter, P. E., Gosset, M., and
Bergès, J. C.: Comparing satellite and surface rainfall products over
West Africa at meteorologically relevant scales during the AMMA campaign
using error estimates, J. Appl. Meteorol. Clim., 49, 715–731,
https://doi.org/10.1175/2009JAMC2318.1,
2010.
Sambou, S. Modèle statistique des hauteurs de pluies journalières en
zone sahélienne: exemple du bassin amont du fleuve
Sénégal/Frequency analysis of daily rainfall in the Sahelian area:
case of the upstream basin of the Senegal River, Hydrolog. Sci. J., 49,
115–129,
https://doi.org/10.1623/hysj.49.1.115.53989,
2004.
Salzmann, N., Huggel, C., Rohrer, M., Silverio, W., Mark, B. G., Burns, P.,
and Portocarrero, C.: Glacier changes and climate trends derived from
multiple sources in the data scarce Cordillera Vilcanota region, southern
Peruvian Andes, The Cryosphere, 7, 103–118,
https://doi.org/10.5194/tc-7-103-2013,
2013.
Scheel, M. L. M., Rohrer, M., Huggel, Ch., Santos Villar, D., Silvestre, E.,
and Huffman, G. J.: Evaluation of TRMM Multi-satellite Precipitation Analysis
(TMPA) performance in the Central Andes region and its dependency on spatial
and temporal resolution, Hydrol. Earth Syst. Sci., 15, 2649–2663,
https://doi.org/10.5194/hess-15-2649-2011,
2011.
Schwarb, M., Acuña, D., Konzelmann, Th., Rohrer, M., Salzmann, N.,
Serpa Lopez, B., and Silvestre, E.: A data portal for regional climatic trend
analysis in a Peruvian High Andes region, Adv. Sci. Res., 6, 219–226,
https://doi.org/10.5194/asr-6-219-2011,
2011.
Silverio, W. and Jaquet, J. M.: Glacial cover mapping (1987–1996) of the
Cordillera Blanca (Peru) using satellite imagery, Remote Sens. Environ., 95,
342–350,
https://doi.org/10.1016/j.rse.2004.12.012,
2005.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Duda, M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A description of the
advanced research WRF version 3, NCAR Technical Note, NCAR/TN-475+STR, 113,
https://doi.org/10.5065/D68S4MVH, 2008.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
forecasts of winter precipitation using an improved bulk microphysics scheme.
Part II: Implementation of a new snow parameterization, Mon. Weather Rev.,
136, 5095–5115,
https://doi.org/10.1175/2008MWR2387.1,
2008.
Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., and Rinaldo, A.:
Improved interpolation of meteorological forcings for hydrologic applications
in a Swiss Alpine region, J. Hydrol., 401, 77–89, 2011.
Vera, C., Higgins, W., Amador, J. Ambrizzi, T., Garreaud, R., Gochis, D.
Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle, J.,
Silva Dias, P. L., and Zhang, C.: Toward a unified view of the American
monsoon systems, J. Climate, 19, 4977–5000,
https://doi.org/10.1175/JCLI3896.1, 2006.
Vischel, T., Quantin, G., Lebel, T., Viarre, J., Gosset, M., Cazenave, F.,
and Panthou, G.: Generation of high resolution rainfields in West Africa:
evaluation of dynamical interpolation methods, J. Hydrometeorol., 12,
1465–1482, https://doi.org/10.1175/JHM-D-10-05015.1, 2011.
Vuille, M., Kaser, G., and Juen, I.: Glacier mass balance variability in the
Cordillera Blanca, Peru and its relationship with climate and the large-scale
circulation, Global Planet. Change, 62, 14–28,
https://doi.org/10.1016/j.gloplacha.2007.11.003,
2008a.
Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., and
Bradley, R. S.: Climate change and tropical Andean glaciers: past, present
and future, Earth-Sci. Rev., 89, 79–96,
https://doi.org/10.1016/j.earscirev.2008.04.002,
2008b.
Ward, E., Buytaert, W., Peaver, L., and Wheater, H.: Evaluation of
precipitation products over complex mountainous terrain: a water resources
perspective, Adv. Water Resour., 34, 1222–1231,
https://doi.org/10.1016/j.advwatres.2011.05.007,
2011.
Weckwerth, T. M., Bennett, L. J., Jay Miller, L., Van Baelen, J., Di
Girolamo, P., Blyth, A. M. and Hertneky, T. J.: An Observational and Modeling
Study of the Processes Leading to Deep, Moist Convection in Complex Terrain,
Mon. Weather Rev., 142, 2687–2708,
https://doi.org/10.1175/MWR-D-13-00216.1,
2014.
Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Manning, K., Niyogi, D., Tewari, M., and Xia, Y. L.: The community Noah land
surface model with multiparameterization options (Noah-MP): 2. Evaluation
over global river basins, J. Geophys. Res., 116, 1–16,
https://doi.org/10.1029/2010JD015140,
2011.
Yin, Z. Y., Liu, X., Zhang, X., and Chung, C. F.: Using a geographic
information system to improve Special Sensor Microwave Imager precipitation
estimates over the Tibetan Plateau, J. Geophys. Res., 109, 1984–2012,
https://doi.org/10.1029/2003JD003749,
2004.
Young, K. R. and Leon, B.: Natural hazard in Peru: causation and
vulnerability, Developments in Earth Surface Processes, 13, 165–180,
https://doi.org/10.1016/S0928-2025(08)10009-8,
2009.
Short summary
Three different types of gridded precipitation products are compared in a high glaciated tropical mountain environment (Cordillera Blanca, Peru): ground-based interpolation, a satellite-derived product (TRMM3B42), and outputs from the WRF regional climate model. While none of the products meets the challenge of representing both accumulated quantities and frequency of occurrence at the short timescale, we concluded that new methods should be used to merge those various precipitation products.
Three different types of gridded precipitation products are compared in a high glaciated...