Research article
20 Feb 2015
Research article
| 20 Feb 2015
Development and evaluation of an efficient soil-atmosphere model (FHAVeT) based on the Ross fast solution of the Richards equation for bare soil conditions
A.-J. Tinet et al.
Related authors
No articles found.
Isabelle Braud, Lilly-Rose Lagadec, Loïc Moulin, Blandine Chazelle, and Pascal Breil
Nat. Hazards Earth Syst. Sci., 20, 947–966, https://doi.org/10.5194/nhess-20-947-2020, https://doi.org/10.5194/nhess-20-947-2020, 2020
Short summary
Short summary
A method for the evaluation of a model that maps the susceptibility of a territory to surface runoff is presented. It is based on proxy data of localized impacts related to runoff. It accounts for the hazard level, the vulnerability of the study area and possible mitigation actions taken to reduce the risk. The evaluation is made on a 80 km railway line in Normandy (north of France), where a comprehensive database of runoff-related impacts on the railway has been gathered over the 20th century.
Magdalena Uber, Jean-Pierre Vandervaere, Isabella Zin, Isabelle Braud, Maik Heistermann, Cédric Legoût, Gilles Molinié, and Guillaume Nord
Hydrol. Earth Syst. Sci., 22, 6127–6146, https://doi.org/10.5194/hess-22-6127-2018, https://doi.org/10.5194/hess-22-6127-2018, 2018
Short summary
Short summary
We investigate how rivers in a flash-flood-prone region in southern France respond to rainfall depending on initial soil moisture. Therefore, high-resolution data of rainfall, river discharge and soil moisture were used. We find that during dry initial conditions, the rivers hardly respond even for heavy rain events, but for wet initial conditions, the response remains unpredictable: for some rain events almost all rainfall is transformed to discharge, whereas this is not the case for others.
William Amponsah, Pierre-Alain Ayral, Brice Boudevillain, Christophe Bouvier, Isabelle Braud, Pascal Brunet, Guy Delrieu, Jean-François Didon-Lescot, Eric Gaume, Laurent Lebouc, Lorenzo Marchi, Francesco Marra, Efrat Morin, Guillaume Nord, Olivier Payrastre, Davide Zoccatelli, and Marco Borga
Earth Syst. Sci. Data, 10, 1783–1794, https://doi.org/10.5194/essd-10-1783-2018, https://doi.org/10.5194/essd-10-1783-2018, 2018
Short summary
Short summary
The EuroMedeFF database comprises 49 events that occurred in France, Israel, Germany, Slovenia, Romania, and Italy. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the verification of flash flood hydrological models and for hydro-meteorological forecast systems. It provides, moreover, a sample of rainfall and flood discharge extremes in different climates.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
M. Adamovic, I. Braud, F. Branger, and J. W. Kirchner
Hydrol. Earth Syst. Sci., 19, 2427–2449, https://doi.org/10.5194/hess-19-2427-2015, https://doi.org/10.5194/hess-19-2427-2015, 2015
Short summary
Short summary
This study explores how catchment heterogeneity and variability can be summarized in simplified models, representing the dominant hydrological processes. We apply simple dynamical system approach (Kirchner, 2009) in the Ardèche catchment (south-east France). The simple dynamical system hypothesis works especially well in wet conditions (peaks and recessions are well modelled) and for granite catchments, which are likely to be characterized by shallow subsurface flow.
C. Velluet, J. Demarty, B. Cappelaere, I. Braud, H. B.-A. Issoufou, N. Boulain, D. Ramier, I. Mainassara, G. Charvet, M. Boucher, J.-P. Chazarin, M. Oï, H. Yahou, B. Maidaji, F. Arpin-Pont, N. Benarrosh, A. Mahamane, Y. Nazoumou, G. Favreau, and J. Seghieri
Hydrol. Earth Syst. Sci., 18, 5001–5024, https://doi.org/10.5194/hess-18-5001-2014, https://doi.org/10.5194/hess-18-5001-2014, 2014
Short summary
Short summary
Long-term average water and energy cycles are described for two main land cover types in the cultivated Sahel (millet crop and fallow bush). Mean seasonal cycles and annual budgets for all component variables were estimated from detailed field and model analysis. Evapotranspiration totals over 80% of rainfall for both covers, but with different time distribution and soil/plant contributions. The remainder is shared between runoff and deep drainage for the crop, but is only runoff for the fallow.
I. Braud, P.-A. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, G. Nord, J.-P. Vandervaere, S. Anquetin, M. Adamovic, J. Andrieu, C. Batiot, B. Boudevillain, P. Brunet, J. Carreau, A. Confoland, J.-F. Didon-Lescot, J.-M. Domergue, J. Douvinet, G. Dramais, R. Freydier, S. Gérard, J. Huza, E. Leblois, O. Le Bourgeois, R. Le Boursicaud, P. Marchand, P. Martin, L. Nottale, N. Patris, B. Renard, J.-L. Seidel, J.-D. Taupin, O. Vannier, B. Vincendon, and A. Wijbrans
Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, https://doi.org/10.5194/hess-18-3733-2014, 2014
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Net irrigation requirement under different climate scenarios using AquaCrop over Europe
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Drought impact links to meteorological drought indicators and predictability in Spain
Opportunities for seasonal forecasting to support water management outside the tropics
Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
A system dynamic model to quantify the impacts of water resources allocation on water-energy-food-society (WEFS) nexus
Robustness of a parsimonious subsurface drainage model at the French national scale
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia
Assessing interannual variability in nitrogen sourcing and retention through hybrid Bayesian watershed modeling
Minimizing the impact of vacating instream storage of a multi-reservoir system: a trade-off study of water supply and empty flushing
Global cotton production under climate change – Implications for yield and water consumption
Signatures of human intervention – or not? Downstream intensification of hydrological drought along a large Central Asian river: the individual roles of climate variability and land use change
Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields
Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong River
Multi-level storylines for participatory modeling – involving marginalized communities in Tz'olöj Ya', Mayan Guatemala
Benchmarking an operational hydrological model for providing seasonal forecasts in Sweden
Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach
A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins
Projection of irrigation water demand based on the simulation of synthetic crop coefficients and climate change
Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation
Assessing the value of seasonal hydrological forecasts for improving water resource management: insights from a pilot application in the UK
From skill to value: isolating the influence of end user behavior on seasonal forecast assessment
The value of citizen science for flood risk reduction: cost–benefit analysis of a citizen observatory in the Brenta-Bacchiglione catchment
Risk assessment in water resources planning under climate change at the Júcar River basin
Interplay of changing irrigation technologies and water reuse: example from the upper Snake River basin, Idaho, USA
The benefit of using an ensemble of seasonal streamflow forecasts in water allocation decisions
Evapotranspiration partition using the multiple energy balance version of the ISBA-A-gs land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco)
Irrigation return flow causing a nitrate hotspot and denitrification imprints in groundwater at Tinwald, New Zealand
Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm
A novel data-driven analytical framework on hierarchical water allocation integrated with blue and virtual water transfers
A novel regional irrigation water productivity model coupling irrigation- and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China
An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data
On the assimilation of environmental tracer observations for model-based decision support
Inferred inflow forecast horizons guiding reservoir release decisions across the United States
Assessment of potential implications of agricultural irrigation policy on surface water scarcity in Brazil
Ability of a soil–vegetation–atmosphere transfer model and a two-source energy balance model to predict evapotranspiration for several crops and climate conditions
Assessing water security in the São Paulo metropolitan region under projected climate change
WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food–climate nexus
Representation and improved parameterization of reservoir operation in hydrological and land-surface models
Water restrictions under climate change: a Rhône–Mediterranean perspective combining bottom-up and top-down approaches
Quantifying thermal refugia connectivity by combining temperature modeling, distributed temperature sensing, and thermal infrared imaging
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022, https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci., 26, 923–940, https://doi.org/10.5194/hess-26-923-2022, https://doi.org/10.5194/hess-26-923-2022, 2022
Short summary
Short summary
As the global demand for crops is increasing, it is vital to understand spatial and temporal patterns of crop water footprints (WFs). Previous studies looked into spatial patterns but not into temporal ones. Here, we present a new process-based gridded crop model to simulate WFs and apply it for maize in 1986–2016. We show that despite the average unit WF reduction (−35 %), the global WF of maize production has increased (+50 %), which might harm ecosystems and human livelihoods in some regions.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021, https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Short summary
The rapid increase in economic development and urbanization is contributing to the imbalances and conflicts between water supply and demand and further deteriorates river ecological health, which intensifies their interactions and causes water unsustainability. This paper proposes a methodology for sustainable development of water resources, considering socioeconomic development, food safety, and ecological protection, and the dynamic interactions across those water users are further assessed.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-521, https://doi.org/10.5194/hess-2021-521, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
Sustainability of water-energy-food (WEF) nexus remains challenge, as interactions between WEF and community sensitivity and reservoir operation in water system are often neglected. The paper applies system dynamics model to simulate WEF nexus by incorporating community sensitivity and reservoirs operation. Results indicate environmental awareness keeps WEFS nexus from collapsing by feedback and water resources allocation sustains WEFS nexus by ensuring water supply through reservoir operation.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021, https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Short summary
This study proposes a multiple-dependence model for estimating streamflow at partially gaged sites. The evaluations are conducted on a case study of the eastern USA and show that the proposed model is suited for infilling missing values. The performance is further evaluated with six other infilling models. Results demonstrate that the proposed model produces more reliable streamflow estimates than the other approaches. The model can be applicable to other hydro-climatological variables.
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021, https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary
Short summary
The growing water crisis in Central Asia and the complex water politics of the region's transboundary rivers are a hot topic for research, while the dynamic changes of water politics in Central Asia have yet to be studied in depth. Based on the Gini coefficient, water political events and social network analysis, we analyzed the matching degree between water and socio-economic elements and the dynamics of hydropolitics in transboundary river basins of Central Asia.
Jonathan W. Miller, Kimia Karimi, Arumugam Sankarasubramanian, and Daniel R. Obenour
Hydrol. Earth Syst. Sci., 25, 2789–2804, https://doi.org/10.5194/hess-25-2789-2021, https://doi.org/10.5194/hess-25-2789-2021, 2021
Short summary
Short summary
Within a watershed, nutrient export can vary greatly over time and space. In this study, we develop a model to leverage over 30 years of streamflow, precipitation, and nutrient sampling data to characterize nitrogen export from various livestock and land use types across a range of precipitation conditions. Modeling results reveal that urban lands developed before 1980 have remarkably high levels of nitrogen export, while agricultural export is most responsive to precipitation.
Chia-Wen Wu, Frederick N.-F. Chou, and Fong-Zuo Lee
Hydrol. Earth Syst. Sci., 25, 2063–2087, https://doi.org/10.5194/hess-25-2063-2021, https://doi.org/10.5194/hess-25-2063-2021, 2021
Short summary
Short summary
This paper promotes the feasibility of emptying instream storage through joint operation of multiple reservoirs. The trade-off between water supply and emptying reservoir storage and alleviating impacts on downstream environment are thoroughly discussed. Operation of reservoirs is optimized to calibrate the optimal parameters defining the activation and termination of emptying reservoir. The optimized strategy limits the water shortage and maximizes the expected benefits of emptying reservoir.
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021, https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary
Short summary
Growth of and irrigation water demand on cotton may be challenged by future climate change. To analyze the global cotton production and irrigation water consumption under spatially varying present and future climatic conditions, we use the global terrestrial biosphere model LPJmL. Our simulation results suggest that the beneficial effects of elevated [CO2] on cotton yields overcompensate yield losses from direct climate change impacts, i.e., without the beneficial effect of [CO2] fertilization.
Artemis Roodari, Markus Hrachowitz, Farzad Hassanpour, and Mostafa Yaghoobzadeh
Hydrol. Earth Syst. Sci., 25, 1943–1967, https://doi.org/10.5194/hess-25-1943-2021, https://doi.org/10.5194/hess-25-1943-2021, 2021
Short summary
Short summary
In a combined data analysis and modeling study in the transboundary Helmand River basin, we analyzed spatial patterns of drought and changes therein based on the drought indices as well as on absolute water deficits. Overall the results illustrate that flow deficits and the associated droughts clearly reflect the dynamic interplay between temporally varying regional differences in hydro-meteorological variables together with subtle and temporally varying effects linked to human intervention.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Jessica A. Bou Nassar, Julien J. Malard, Jan F. Adamowski, Marco Ramírez Ramírez, Wietske Medema, and Héctor Tuy
Hydrol. Earth Syst. Sci., 25, 1283–1306, https://doi.org/10.5194/hess-25-1283-2021, https://doi.org/10.5194/hess-25-1283-2021, 2021
Short summary
Short summary
Our research suggests a method that facilitates the inclusion of marginalized stakeholders in model-building activities to address problems in water resources. Our case study showed that knowledge produced by typically excluded stakeholders had significant and unique contributions to the outcome of the process. Moreover, our method facilitated the identification of relationships between societal, economic, and hydrological factors, and it fostered collaborations across different communities.
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci., 25, 1189–1209, https://doi.org/10.5194/hess-25-1189-2021, https://doi.org/10.5194/hess-25-1189-2021, 2021
Short summary
Short summary
The Swedish hydrological warning service is extending its use of seasonal forecasts, which requires an analysis of the available methods. We evaluate the simple ESP method and find out how and why forecasts vary in time and space. We find that forecasts are useful up to 3 months into the future, especially during winter and in northern Sweden. They tend to be good in slow-reacting catchments and bad in flashy and highly regulated ones. We finally link them with areas of similar behaviour.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Michel Le Page, Younes Fakir, Lionel Jarlan, Aaron Boone, Brahim Berjamy, Saïd Khabba, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 25, 637–651, https://doi.org/10.5194/hess-25-637-2021, https://doi.org/10.5194/hess-25-637-2021, 2021
Short summary
Short summary
In the context of major changes, the southern Mediterranean area faces serious challenges with low and continuously decreasing water resources mainly attributed to agricultural use. A method for projecting irrigation water demand under both anthropogenic and climatic changes is proposed. Time series of satellite imagery are used to determine a set of semiempirical equations that can be easily adapted to different future scenarios.
Mohammad Taghi Sattari, Halit Apaydin, Shahab S. Band, Amir Mosavi, and Ramendra Prasad
Hydrol. Earth Syst. Sci., 25, 603–618, https://doi.org/10.5194/hess-25-603-2021, https://doi.org/10.5194/hess-25-603-2021, 2021
Short summary
Short summary
The aim of study is to estimate the reference evapotranspiration (ET0) amount with artificial intelligence using minimum meteorological parameters in the Corum region, which is an agricultural center of Turkey. Kernel-based GPR and SVR and BFGS-ANN and LSTM models were used to estimate ET0 amounts in 10 different combinations. The results show that all four methods used predicted ET0 amounts at acceptable accuracy and error levels. The BFGS-ANN model showed higher success than the others.
Andres Peñuela, Christopher Hutton, and Francesca Pianosi
Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020, https://doi.org/10.5194/hess-24-6059-2020, 2020
Short summary
Short summary
In this paper we evaluate the potential use of seasonal weather forecasts to improve reservoir operation in a UK water supply system. We found that the use of seasonal forecasts can improve the efficiency of reservoir operation but only if the forecast uncertainty is explicitly considered. We also found the degree of efficiency improvement is strongly affected by the decision maker priorities and the hydrological conditions.
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020, https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
Short summary
This paper aims at quantifying the value of hydroclimatic forecasts in terms of potential economic benefit to end users in the Lake Como basin (Italy), which allows the inference of a relation between gains in forecast skill and gains in end user profit. We also explore the sensitivity of this benefit to both the forecast system setup and end user behavioral factors, showing that the estimated forecast value is potentially undermined by different levels of end user risk aversion.
Michele Ferri, Uta Wehn, Linda See, Martina Monego, and Steffen Fritz
Hydrol. Earth Syst. Sci., 24, 5781–5798, https://doi.org/10.5194/hess-24-5781-2020, https://doi.org/10.5194/hess-24-5781-2020, 2020
Short summary
Short summary
As part of the flood risk management strategy of the
Brenta-Bacchiglione catchment (Italy), a citizen observatory for flood risk management is currently being implemented. A cost–benefit analysis of the citizen observatory was undertaken to demonstrate the value of this approach in monetary terms. Results show a reduction in avoided damage of 45 % compared to a scenario without implementation of the citizen observatory. The idea is to promote this methodology for future flood risk management.
Sara Suárez-Almiñana, Abel Solera, Jaime Madrigal, Joaquín Andreu, and Javier Paredes-Arquiola
Hydrol. Earth Syst. Sci., 24, 5297–5315, https://doi.org/10.5194/hess-24-5297-2020, https://doi.org/10.5194/hess-24-5297-2020, 2020
Short summary
Short summary
This work responds to the need for an effective methodology that integrates climate change projections into water planning and management to guide complex basin decision-making. This general approach is based on a model chain for management and drought risk assessments and applied to the Júcar River basin (Spain), showing a worrying deterioration of the basin's future water resources availability and drought indicators, despite a considerable uncertainty of results from the mid-century onwards.
Shan Zuidema, Danielle Grogan, Alexander Prusevich, Richard Lammers, Sarah Gilmore, and Paula Williams
Hydrol. Earth Syst. Sci., 24, 5231–5249, https://doi.org/10.5194/hess-24-5231-2020, https://doi.org/10.5194/hess-24-5231-2020, 2020
Short summary
Short summary
In our case study we find that increasing the efficiency of irrigation technology will have unintended consequences like reducing water available for aquifer replenishment or for other irrigators. The amount of water needed to stabilize regional aquifers exceeds the amount that could be saved by improving irrigation efficiency. Since users depend upon local groundwater storage, which is more sensitive to management decisions than river flow, comanagement of surface and groundwater is critical.
Alexander Kaune, Faysal Chowdhury, Micha Werner, and James Bennett
Hydrol. Earth Syst. Sci., 24, 3851–3870, https://doi.org/10.5194/hess-24-3851-2020, https://doi.org/10.5194/hess-24-3851-2020, 2020
Short summary
Short summary
This paper was developed from PhD research focused on assessing the value of using hydrological datasets in water resource management. Previous studies have assessed how well data can help in predicting river flows, but there is a lack of knowledge of how well data can help in water allocation decisions. In our research, it was found that using seasonal streamflow forecasts improves the available water estimates, resulting in better water allocation decisions in a highly regulated basin.
Ghizlane Aouade, Lionel Jarlan, Jamal Ezzahar, Salah Er-Raki, Adrien Napoly, Abdelfattah Benkaddour, Said Khabba, Gilles Boulet, Sébastien Garrigues, Abdelghani Chehbouni, and Aaron Boone
Hydrol. Earth Syst. Sci., 24, 3789–3814, https://doi.org/10.5194/hess-24-3789-2020, https://doi.org/10.5194/hess-24-3789-2020, 2020
Short summary
Short summary
Our objective is to question the representation of the energy budget in surface–vegetation–atmosphere transfer models for the prediction of the convective fluxes in crops with complex structures (row) and under transient hydric regimes due to irrigation. The main result is that a coupled multiple energy balance approach is necessary to properly predict surface exchanges for these complex crops. It also points out the need for other similar studies on various crops with different sparsity levels.
Michael Kilgour Stewart and Philippa Lauren Aitchison-Earl
Hydrol. Earth Syst. Sci., 24, 3583–3601, https://doi.org/10.5194/hess-24-3583-2020, https://doi.org/10.5194/hess-24-3583-2020, 2020
Short summary
Short summary
This paper is important for water resource management, being concerned with irrigation return flow causing
hotspotsin nitrate concentrations in groundwater and
denitrification imprintswhere nitrate concentrations are reduced by denitrification although the dissolved oxygen concentration is not low. The work is highly significant for modelling of nitrate transport through soil–groundwater systems, for understanding denitrification processes, and for managing fertilizer application to land.
Céline Monteil, Fabrice Zaoui, Nicolas Le Moine, and Frédéric Hendrickx
Hydrol. Earth Syst. Sci., 24, 3189–3209, https://doi.org/10.5194/hess-24-3189-2020, https://doi.org/10.5194/hess-24-3189-2020, 2020
Short summary
Short summary
Environmental modelling is complex, and models often require the calibration of several parameters that are not able to be directly evaluated from a physical quantity or a field measurement. Based on our experience in hydrological modelling, we propose combining two algorithms to obtain a fast and accurate way of calibrating complex models (many parameters and many objectives). We built an R package, caRamel, so that this multi-objective calibration algorithm can be easily implemented.
Liming Yao, Zhongwen Xu, Huijuan Wu, and Xudong Chen
Hydrol. Earth Syst. Sci., 24, 2769–2789, https://doi.org/10.5194/hess-24-2769-2020, https://doi.org/10.5194/hess-24-2769-2020, 2020
Short summary
Short summary
Results show that coalitional strategy of blue and virtual water transfers can substantially save water and improve utilization efficiency without harming sectors' benefits and increasing ecological stresses. Under various polices, we use data-driven analysis to simulate hydrological and economic parameters, such as available water, crop import price, and water market price. Different water allocation and transfer results are obtained by adjusting hydrological and economic parameters.
Jingyuan Xue, Zailin Huo, Shuai Wang, Chaozi Wang, Ian White, Isaya Kisekka, Zhuping Sheng, Guanhua Huang, and Xu Xu
Hydrol. Earth Syst. Sci., 24, 2399–2418, https://doi.org/10.5194/hess-24-2399-2020, https://doi.org/10.5194/hess-24-2399-2020, 2020
Short summary
Short summary
Due to increasing food demand and limited water resources, the quantification of the irrigation water productivity (IWP) is critical. Hydrological processes in irrigated areas differ in different watersheds owing to different irrigation–drainage activities, and this is more complex with shallow groundwater. Considering the complexity of the IWP, we developed a regional IWP model to simulate its spatial distribution; this informs irrigation managers on where they can improve IWP and save water.
Bouchra Ait Hssaine, Olivier Merlin, Jamal Ezzahar, Nitu Ojha, Salah Er-Raki, and Said Khabba
Hydrol. Earth Syst. Sci., 24, 1781–1803, https://doi.org/10.5194/hess-24-1781-2020, https://doi.org/10.5194/hess-24-1781-2020, 2020
Matthew J. Knowling, Jeremy T. White, Catherine R. Moore, Pawel Rakowski, and Kevin Hayley
Hydrol. Earth Syst. Sci., 24, 1677–1689, https://doi.org/10.5194/hess-24-1677-2020, https://doi.org/10.5194/hess-24-1677-2020, 2020
Short summary
Short summary
The incorporation of novel and diverse data sources into predictive models is expected to improve the reliability of model forecasts. This study critically and rigorously explores the extent to which this expectation holds given the imperfect nature of numerical models (and therefore their compromised ability to appropriately assimilate information-rich data). We show that environmental tracer observations may be of variable benefit in reducing forecast uncertainty and may induce forecast bias.
Sean W. D. Turner, Wenwei Xu, and Nathalie Voisin
Hydrol. Earth Syst. Sci., 24, 1275–1291, https://doi.org/10.5194/hess-24-1275-2020, https://doi.org/10.5194/hess-24-1275-2020, 2020
Short summary
Short summary
To understand human vulnerability to flood and drought risk across large regions, researchers increasingly use large-scale hydrological models that convert climate to river flows. These models include the important effects of river regulation by dams but do not currently capture dam operators' use of flow forecasts to mitigate risk. This research addresses this problem by developing an approach to infer the forecast horizons contributing to the operations of a large sample of dams.
Sebastian Multsch, Maarten S. Krol, Markus Pahlow, André L. C. Assunção, Alberto G. O. P. Barretto, Quirijn de Jong van Lier, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 307–324, https://doi.org/10.5194/hess-24-307-2020, https://doi.org/10.5194/hess-24-307-2020, 2020
Short summary
Short summary
Expanding irrigation in agriculture is one of Brazil's strategies to increase production. In this study the amount of water required to grow the main crops has been calculated and compared to the water that is available in rivers at least 95 % of the time. Future decisions regarding expanding irrigated cropping areas must, while intensifying production practices, consider the likely regional effects on water scarcity levels, in order to reach sustainable agricultural production.
Guillaume Bigeard, Benoit Coudert, Jonas Chirouze, Salah Er-Raki, Gilles Boulet, Eric Ceschia, and Lionel Jarlan
Hydrol. Earth Syst. Sci., 23, 5033–5058, https://doi.org/10.5194/hess-23-5033-2019, https://doi.org/10.5194/hess-23-5033-2019, 2019
Short summary
Short summary
The purpose of our work is to estimate landscape evapotranspiration (ET) fluxes over agricultural areas by relying on two surface modeling approaches with increasing complexity and input data needs.
Both approaches, compared sequentially and over the entire crop cycle, showed quite similar performance except under developed vegetation and stressed conditions. This study helps lay the groundwork for exploring the complementarities between instantaneous and continuous ET mapping with TIR data.
Gabriela Chiquito Gesualdo, Paulo Tarso Oliveira, Dulce Buchala Bicca Rodrigues, and Hoshin Vijai Gupta
Hydrol. Earth Syst. Sci., 23, 4955–4968, https://doi.org/10.5194/hess-23-4955-2019, https://doi.org/10.5194/hess-23-4955-2019, 2019
Short summary
Short summary
We investigate the influence of anticipated climate change on water security in the Jaguari Basin, which is the main source of freshwater for 9 million people in the São Paulo metropolitan region. Our findings indicate an expansion of the basin critical period, and identify October and November as the most vulnerable months. There is an urgent need to implement efficient mitigation and adaptation policies that recognize the annual pattern of variation between insecure and secure periods.
Raphaël Payet-Burin, Mikkel Kromann, Silvio Pereira-Cardenal, Kenneth Marc Strzepek, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 23, 4129–4152, https://doi.org/10.5194/hess-23-4129-2019, https://doi.org/10.5194/hess-23-4129-2019, 2019
Short summary
Short summary
We present an open-source tool for water infrastructure investment planning considering interrelations between the water, food, and energy systems. We apply it to the Zambezi River basin to evaluate economic impacts of hydropower and irrigation development plans. We find trade-offs between the development plans and sensitivity to uncertainties (e.g. climate change, carbon taxes, capital costs of solar technologies, environmental policies) demonstrating the necessity for an integrated approach.
Fuad Yassin, Saman Razavi, Mohamed Elshamy, Bruce Davison, Gonzalo Sapriza-Azuri, and Howard Wheater
Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, https://doi.org/10.5194/hess-23-3735-2019, 2019
Eric Sauquet, Bastien Richard, Alexandre Devers, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 3683–3710, https://doi.org/10.5194/hess-23-3683-2019, https://doi.org/10.5194/hess-23-3683-2019, 2019
Short summary
Short summary
This study aims to identify catchments and the associated water uses vulnerable to climate change. Vulnerability is considered here to be the likelihood of water restrictions which are unacceptable for agricultural uses. This study provides the first regional analysis of the stated water restrictions, highlighting heterogeneous decision-making processes; data from a national system of compensation to farmers for uninsurable damages were used to characterize past failure events.
Jessica R. Dzara, Bethany T. Neilson, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 2965–2982, https://doi.org/10.5194/hess-23-2965-2019, https://doi.org/10.5194/hess-23-2965-2019, 2019
Short summary
Short summary
In Nevada's Walker River, stream temperatures nearly always exceed optimal temperature thresholds for adult trout. We used high-resolution measured data to verify simulated stream temperatures and estimate the spatial distribution of cold-water pockets for fish. Irrigation return canals, beaver dams, and groundwater seeps were river features with cold-water, and the average distance between pockets of cold-water in this river was 2.8 km.
Cited articles
Aboudare, A.: Stratégies de stockage et d'utilisation de l'eau pour le tournesol pluvial dans la région de Meknes, PhD thesis, Institut Agronomique et Vétérinaire Hassan II, Rabat, Maroc, 2000.
Ascough, J., Maier, H., Ravalico, J., and Strudley, M.: Future research challenges for incorporation of uncertainty in environmental and ecological decision-making, Ecol. Model., 219, 383–399, 2008.
Bergez, J.-E., Debaeke, P., Deumier, B., Lacroix, B., Leenhardt, D., Leroy, P., and Wallach, D.: MODERATO: an object-oriented decision tool for designing maize irrigation schedules, Ecol. Model., 137, 43–60, 2001.
Blyth, E.: Modelling soil moisture for a grassland and a woodland site in south-east England, Hydrol. Earth Syst. Sci., 6, 39–48, https://doi.org/10.5194/hess-6-39-2002, 2002.
Braud, I., Dantas-Antonino, A., Vauclin, M., Thony, J., and Ruelle, P.: A Simple Soil Plant Atmosphere Transfer model (SiSPAT), J. Hydrol., 166, 213–250, 1995.
Brooks, R. and Corey, A.: Hydraulic properties of porous media, Hydrology Paper 3, Colorado State Univ., Fort Collins, 27 pp., 1964.
Brutsaert, W.: Evaporation into the atmosphere: Theory, history and applications, D. Reidel Publishing Co., Dordrecht, 299 pp., 1982.
Caviedes-Voullieme, D., Garcia-Navarro, P., and Murillo, J.: Verification, conservation, stability and efficiency of a finite volume method for the 1D Richards equation, J. Hydrol., 480, 69–84, 2013.
Chanzy, A.: Modélisation simplifiée de l'évaporation d'un sol nu utilisant l'humidité et la température de surface accessible par télédétection, PhD thesis, Institut National Agronomique Paris-Grignon, Paris, France, 1991.
Chanzy, A. and Bruckler, L.: Significance of soil surface moisture with respect to daily bare soil evaporation, Water Resour. Res., 29, 1113–1125, 1993.
Chanzy, A., Mumen, M., and Richard, G.: Accuracy of top soil moisture simulation using a mechanistic model with limited soil characterization, Water Resour. Rese., 44, W03432.1–W03432.16, 2008.
Chopart, J., Mezino, M., Aure, F., Le Mezo, L., Mete, M., and Vauclin, M.: OSIRI: A simple decision-making tool for monitoring irrigation of small farms in heterogeneous environments, Agr. Water Manage., 87, 128–138, 2007.
Cosby, B., Hornberger, G., Clapp, R., and Ginn, T.: A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682–690, 1984.
Crevoisier, D., Chanzy, A., and Voltz, M.: Evaluation of the Ross fast solution of Richards' equation in unfavourable conditions for standard finite element methods, Adv. Water Resour., 32, 936–947, 2009.
De Vries, D.: Physics of plant environment, in: chap. Thermal properties of soil, North-Holland Publishing Co., the Netherlands, 210–235, 1963.
Evett, S. and Parkin, G.: Advances in soil water content sensing: the continuing maturation of technology and theory, Vadose Zone J., 4, 986–991, 2005.
Evett, S., Schwartz, R., Tolk, J., and Howell, T.: Soil profile water content determination: Spatiotemporal variability and neutron probe sensors in access tubes, Vadose Zone J., 8, 926–941, 2009.
Findeling, A., Chanzy, A., and de Louvigny, N.: Modeling water and heat flows through a mulch allowing for radiative and long distance convective exchange in the mulch, Water Resour. Res., 39, 1244, https://doi.org/10.1029/2002WR001820, 2003.
Haverd, V. and Cuntz, M.: Soil-Litter-Iso: A one-dimensional model for coupled transport of heat, water and stable isotopes in soil with a litter layer and root extraction, J. Hydrol., 388, 438–455, 2010.
Holländer, H. M., Bormann, H., Blume, T., Buytaert, W., Chirico, G. B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Krauße, T., Kraft, P., Stoll, S., Blöschl, G., and Flühler, H.: Impact of modellers' decisions on hydrological a priori predictions, Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014, 2014.
Jarvis, N., Koestel, J., Messing, I., Moeys, J., and Lindahl, A.: Influence of soil, land use and climatic factors on the hydraulic conductivity of soil, Hydrol. Earth Syst. Sci., 17, 5185–5195, https://doi.org/10.5194/hess-17-5185-2013, 2013.
Lozano, D. and Mateos, L.: Usefulness and limitations of decision support systems for improving irrigation scheme management, Agr. Water Manage., 95, 409–418, 2008.
Medina, H., Romano, N., and Chirico, G. B.: Kalman filters for assimilating near-surface observations into the Richards equation – Part 2: A dual filter approach for simultaneous retrieval of states and parameters, Hydrol. Earth Syst. Sci., 18, 2521–2541, https://doi.org/10.5194/hess-18-2521-2014, 2014.
Mualem, Y.: A new model predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, 1976.
Philip, J. and De Vries, D.: Moisture movements in porous materials under temperature gradients, Eos Trans. Am. Geophys. Union, 38, 222–232, 1957.
Rawls, W. and Brakensiek, D.: Unsaturated flow in hydrologic modeling – Theory and practice, in: chap. Estimation of soil water retention and hydraulic properties, Kluwer Academic Publishing, Beltsville, USA, 275–300, 1989.
Ross, P.: Modeling soil water and solute transport – Fast, simplified numerical solutions, Agron. J., 95, 1352–1361, 2003.
Saffih-Hdadi, K., Defossez, P., Richard, G., Cui, Y.-J., Tang, A.-M., and Chaplain, V.: A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density, Soil Till. Res., 105, 96–103, 2009.
Schaap, M., Leij, F., and van Genuchten, M.: ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 163–176, 2001.
Short, D., Dawes, W., and White, I.: The practicability of using Richards' equation for general purpose soil-water dynamics models, Environ. Int., 21, 723–730, 1995.
Sillon, J.-F., Richard, G., and Cousin, I.: Tillage and traffic effect on soil hydraulic properties and evaporation, Geoderma, 116, 29–46, 2003.
Simunek, J., Sejna, M., Saito, H., Sakai, M., and van Genuchten, M. T.: The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Department of Environmental Sciences, University of California Riverside, Riverside, California, 2008.
Taconet, O., Bernard, R., and Vidal-Madjar, D.: Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data, J. Clim. Appl. Meteorol., 25, 284–307, 1986.
Van de Griend, A. and O'Neill, P.: Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing, in: IGARSS' 86 Symposium, Zurich, 1986.
van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 3, 909–916, 1980.
Varado, N., Braud, I., Ross, P., and Haverkamp, R.: Assessment of an efficient numerical solution of the the 1D Richards' equation on bare soil, J. Hydrol., 323, 244–257, 2006a.
Witono, H. and Bruckler, L.: Use of remotely sensed soil moisture content as boundary conditions in soil-atmosphere water transport modeling, Water Resour. Res., 25, 2423–2435, 1989.
Wosten, J., Pachepsky, Y., and Rawls, W.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics, J. Hydrol., 251, 123–150, 2001.
Zhang, X., Bengough, A., Crawford, J., and Young, I.: Efficient methods for solving water flow in variably saturated soils under prescribed flux infiltration, J. Hydrol., 260, 75–87, 2002.
Zhu, J. and Mohanty, B.: Soil hydraulic parameter upscaling for steady-state flow with root water uptake, Vadose Zone J., 3, 1464–1470, 2004.
Short summary
In agricultural management, a good timing in operations is essential to enhance economical and environmental performance. To improve such timing, predictive software is of particular interest. The objective of this study is to assess the accuracy of a physically based model with high efficiency. Compared to a more complex software (TEC) under bare soil conditions, a coupled model shows mostly improved efficiency and balance and a good capacity to predict water content thresholds.
In agricultural management, a good timing in operations is essential to enhance economical and...