Articles | Volume 19, issue 11
https://doi.org/10.5194/hess-19-4441-2015
https://doi.org/10.5194/hess-19-4441-2015
Research article
 | 
05 Nov 2015
Research article |  | 05 Nov 2015

SACRA – a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI

S. Kotsuki and K. Tanaka

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024,https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024,https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024,https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Interannual Variations of Terrestrial Water Storage in the East African Rift Region
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-641,https://doi.org/10.5194/egusphere-2024-641, 2024
Short summary
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023,https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary

Cited articles

Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, Water Resour. Res., 38, 1037, https://doi.org/10.1029/2001WR000355, 2002.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoerschb, B., Isolaa, C., Laberintia, P., Martimorta, P., Meygretc, A., Spotoa, F., Sya, O., Marchesed, F., and Bargellini, P.: Sentinel-2: ESA's optical high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Dye, D. G. and Tucker, C. J.: Seasonality and trends of snow cover, vegetation index, and temperature in northern Eurasia, Geophys. Res. Lett., 30, 1405, https://doi.org/10.1029/2002GL016384, 2003.
Food and Agriculture Organization of the United Nations: Bread wheat, FAO Plant Production and Protection Series 30, Rome, Italy, available at: http://www.fao.org/docrep/006/y4011e/y4011e04.htm, last access: 2 November 2015.
Faroux, A., Kaptuè Tchuentè, A. T., Roujean, J.-L., Masson, V., Maritin, E., and Le Moigne, P.: ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev., 6, 563–582, https://doi.org/10.5194/gmd-6-563-2013, 2013.
Download
Short summary
This study aims to develop a new global data set of a satellite-derived crop calendar (SACRA) and to reveal its advantages and disadvantages compared to other global products. The cultivation period of SACRA is identified from the time series of NDVI; therefore, SACRA considers current effects of human decisions and natural disasters. The difference between the estimated sowing dates and other existing products is less than 2 months (< 62 days) in most areas.