Articles | Volume 19, issue 11
Hydrol. Earth Syst. Sci., 19, 4441–4461, 2015
https://doi.org/10.5194/hess-19-4441-2015
Hydrol. Earth Syst. Sci., 19, 4441–4461, 2015
https://doi.org/10.5194/hess-19-4441-2015

Research article 05 Nov 2015

Research article | 05 Nov 2015

SACRA – a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI

S. Kotsuki and K. Tanaka

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit
Alka Singh, John Thomas Reager, and Ali Behrangi
Hydrol. Earth Syst. Sci., 25, 511–526, https://doi.org/10.5194/hess-25-511-2021,https://doi.org/10.5194/hess-25-511-2021, 2021
Short summary
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021,https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020,https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary
Assimilation of vegetation optical depth retrievals from passive microwave radiometry
Sujay V. Kumar, Thomas R. Holmes, Rajat Bindlish, Richard de Jeu, and Christa Peters-Lidard
Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020,https://doi.org/10.5194/hess-24-3431-2020, 2020
Short summary
Long-term total water storage change from a Satellite Water Cycle reconstruction over large southern Asian basins
Victor Pellet, Filipe Aires, Fabrice Papa, Simon Munier, and Bertrand Decharme
Hydrol. Earth Syst. Sci., 24, 3033–3055, https://doi.org/10.5194/hess-24-3033-2020,https://doi.org/10.5194/hess-24-3033-2020, 2020
Short summary

Cited articles

Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, Water Resour. Res., 38, 1037, https://doi.org/10.1029/2001WR000355, 2002.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoerschb, B., Isolaa, C., Laberintia, P., Martimorta, P., Meygretc, A., Spotoa, F., Sya, O., Marchesed, F., and Bargellini, P.: Sentinel-2: ESA's optical high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Dye, D. G. and Tucker, C. J.: Seasonality and trends of snow cover, vegetation index, and temperature in northern Eurasia, Geophys. Res. Lett., 30, 1405, https://doi.org/10.1029/2002GL016384, 2003.
Food and Agriculture Organization of the United Nations: Bread wheat, FAO Plant Production and Protection Series 30, Rome, Italy, available at: http://www.fao.org/docrep/006/y4011e/y4011e04.htm, last access: 2 November 2015.
Faroux, A., Kaptuè Tchuentè, A. T., Roujean, J.-L., Masson, V., Maritin, E., and Le Moigne, P.: ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev., 6, 563–582, https://doi.org/10.5194/gmd-6-563-2013, 2013.
Download
Short summary
This study aims to develop a new global data set of a satellite-derived crop calendar (SACRA) and to reveal its advantages and disadvantages compared to other global products. The cultivation period of SACRA is identified from the time series of NDVI; therefore, SACRA considers current effects of human decisions and natural disasters. The difference between the estimated sowing dates and other existing products is less than 2 months (< 62 days) in most areas.