Articles | Volume 19, issue 3
https://doi.org/10.5194/hess-19-1125-2015
https://doi.org/10.5194/hess-19-1125-2015
Research article
 | Highlight paper
 | 
02 Mar 2015
Research article | Highlight paper |  | 02 Mar 2015

Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar

P. Klenk, S. Jaumann, and K. Roth

Related authors

Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017,https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Monitoring infiltration processes with high-resolution surface-based Ground-Penetrating Radar
P. Klenk, S. Jaumann, and K. Roth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-12215-2015,https://doi.org/10.5194/hessd-12-12215-2015, 2015
Revised manuscript has not been submitted
Short summary
Identifying a parameterisation of the soil water retention curve from on-ground GPR measurements
A. Dagenbach, J. S. Buchner, P. Klenk, and K. Roth
Hydrol. Earth Syst. Sci., 17, 611–618, https://doi.org/10.5194/hess-17-611-2013,https://doi.org/10.5194/hess-17-611-2013, 2013

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
In situ estimation of soil hydraulic and hydrodispersive properties by inversion of electromagnetic induction measurements and soil hydrological modeling
Giovanna Dragonetti, Mohammad Farzamian, Angelo Basile, Fernando Monteiro Santos, and Antonio Coppola
Hydrol. Earth Syst. Sci., 26, 5119–5136, https://doi.org/10.5194/hess-26-5119-2022,https://doi.org/10.5194/hess-26-5119-2022, 2022
Short summary
Towards disentangling heterogeneous soil moisture patterns in cosmic-ray neutron sensor footprints
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021,https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
The International Soil Moisture Network: serving Earth system science for over a decade
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021,https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Technical note: Evaporating water is different from bulk soil water in δ2H and δ18O and has implications for evaporation calculation
Hongxiu Wang, Jingjing Jin, Buli Cui, Bingcheng Si, Xiaojun Ma, and Mingyi Wen
Hydrol. Earth Syst. Sci., 25, 5399–5413, https://doi.org/10.5194/hess-25-5399-2021,https://doi.org/10.5194/hess-25-5399-2021, 2021
Short summary
Technical note: Unresolved aspects of the direct vapor equilibration method for stable isotope analysis (δ18O, δ2H) of matrix-bound water: unifying protocols through empirical and mathematical scrutiny
Benjamin Gralher, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 5219–5235, https://doi.org/10.5194/hess-25-5219-2021,https://doi.org/10.5194/hess-25-5219-2021, 2021
Short summary

Cited articles

Annan, A. P.: GPR Methods for Hydrogeological Studies, in: Hydrogeophysics, vol. 50 of Water Science and Technology Library, edited by Rubin, Y., Hubbard, S. S., and Singh, V., Springer Netherlands, Dordrecht, the Netherlands, 185–213, https://doi.org/10.1007/1-4020-3102-5, 2005.
Bano, M.: Effects of the transition zone above a water table on the reflection of GPR waves, Geophys. Res. Lett., 33, L13309, https://doi.org/10.1029/2006GL026158, 2006.
Bevan, M. J., Endres, A. L., Rudolph, D. L., and Parkin, G.: The non-invasive characterization of pumping-induced dewatering using ground penetrating radar, J. Hydrol., 281, 55–69, https://doi.org/10.1016/S0022-1694(03)00200-2, 2003.
Birchak, J. R., Gardner, C. G., Hipp, J. E., and Victor, J. M.: High dielectric constant microwave probes for sensing soil moisture, Proc. IEEE, 62, 93–98, https://doi.org/10.1109/PROC.1974.9388, 1974.
Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., and Vereecken, H.: Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability, Vadose Zone J., 9, 1002–1013, https://doi.org/10.2136/vzj2009.0173, 2010.
Download
Short summary
In this study, we analyze a set of high-resolution, surface-based, 2-D ground-penetrating radar (GPR) observations of artificially induced subsurface water dynamics. In particular, we place close scrutiny on the evolution of the capillary fringe in a highly dynamic regime with surface-based time-lapse GPR. We thoroughly explain all observed phenomena based on theoretical soil physical considerations and numerical simulations of both subsurface water flow and the expected GPR response.