Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 17, issue 2
Hydrol. Earth Syst. Sci., 17, 611–618, 2013
https://doi.org/10.5194/hess-17-611-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 611–618, 2013
https://doi.org/10.5194/hess-17-611-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Feb 2013

Research article | 11 Feb 2013

Identifying a parameterisation of the soil water retention curve from on-ground GPR measurements

A. Dagenbach, J. S. Buchner, P. Klenk, and K. Roth A. Dagenbach et al.
  • Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany

Abstract. We show the potential of on-ground Ground-Penetrating Radar (GPR) to identify the parameterisation of the soil water retention curve, i.e. its functional form, with a semi-quantitative analysis based on numerical simulations of the radar signal. An imbibition and drainage experiment has been conducted at the ASSESS-GPR site to establish a fluctuating water table, while an on-ground GPR antenna recorded traces over time at a fixed location. These measurements allow to identify and track the capillary fringe in the soil. The typical dynamics of soil water content with a transient water table can be deduced from the recorded radargrams. The characteristic reflections from the capillary fringes in model soils that are described by commonly used hydraulic parameterisations are investigated by numerical simulations. The parameterisations used are (i) full van Genuchten, (ii) simplified van Genuchten with m = 1 − 1/n and (iii) Brooks–Corey. All three yield characteristically different reflections, which allows the identification of an appropriate parameterisation by comparing to the measured signals. We show that for the sand used here, these signals are not consistent with the commonly used simplified van Genuchten parameterisation with m = 1 − 1/n.

Publications Copernicus
Download
Citation