Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-1035-2015
https://doi.org/10.5194/hess-19-1035-2015
Research article
 | 
25 Feb 2015
Research article |  | 25 Feb 2015

A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China

D. Liu, F. Tian, M. Lin, and M. Sivapalan

Related authors

Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025,https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong River
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021,https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Temporal and spatial variation of hydrological condition in the Ziwu River Basin of the Han River in China
Ziyan Li, Dengfeng Liu, Qiang Huang, Tao Bai, Shuai Zhou, and Mu Lin
Proc. IAHS, 379, 313–321, https://doi.org/10.5194/piahs-379-313-2018,https://doi.org/10.5194/piahs-379-313-2018, 2018
Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016
Jinkai Luan, Dengfeng Liu, Lianpeng Zhang, Qiang Huang, Jiuliang Feng, Mu Lin, and Guobao Li
Proc. IAHS, 379, 287–292, https://doi.org/10.5194/piahs-379-287-2018,https://doi.org/10.5194/piahs-379-287-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Predicting snow cover and frozen ground impacts on large basin runoff: developing appropriate model complexity
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci., 29, 3703–3725, https://doi.org/10.5194/hess-29-3703-2025,https://doi.org/10.5194/hess-29-3703-2025, 2025
Short summary
A distributed hybrid physics–AI framework for learning corrections of internal hydrological fluxes and enhancing high-resolution regionalized flood modeling
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
Hydrol. Earth Syst. Sci., 29, 3589–3613, https://doi.org/10.5194/hess-29-3589-2025,https://doi.org/10.5194/hess-29-3589-2025, 2025
Short summary
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025,https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025,https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary

Cited articles

Alvarez, J., Bilancini, E., D'Alessandro, S., and Porcile, G.: Agricultural institutions, industrialization and growth: The case of New Zealand and Uruguay in 1870–1940, Explor. Econ. Hist., 48, 151–168, 2011.
Arnold, J., Srinivasan, R., Muttiah, R., and Williams, J.: Large area hydrologic modeling and assessment, Part I: model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Baudena, M., Boni, G., Ferraris, L., von Hardenberg, J., and Provenzale, A.: Vegetation response to rainfall intermittency in drylands: Results from a simple ecohydrological box model, Adv. Water Resour., 30, 1320–1328, 2007.
Bilancini, E. and D'Alessandro, S.: Long-run welfare under externalities in consumption, leisure, and production: A case for happy degrowth vs. unhappy growth, Ecol. Econ., 84, 194–205, 2012.
Brander, J. A. and Taylor, M. S.: The simple economics of Easter Island: a Ricardo–Malthus model of renewable resource use, Am. Econ. Rev., 88, 119–138, 1998.
Download
Short summary
A simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of a co-evolutionary model. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. The hydrological equation focusing on water balance is coupled to the evolutionary equations of the other three sub-systems.
Share