Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-1035-2015
https://doi.org/10.5194/hess-19-1035-2015
Research article
 | 
25 Feb 2015
Research article |  | 25 Feb 2015

A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China

D. Liu, F. Tian, M. Lin, and M. Sivapalan

Related authors

Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025,https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong River
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021,https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Temporal and spatial variation of hydrological condition in the Ziwu River Basin of the Han River in China
Ziyan Li, Dengfeng Liu, Qiang Huang, Tao Bai, Shuai Zhou, and Mu Lin
Proc. IAHS, 379, 313–321, https://doi.org/10.5194/piahs-379-313-2018,https://doi.org/10.5194/piahs-379-313-2018, 2018
Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016
Jinkai Luan, Dengfeng Liu, Lianpeng Zhang, Qiang Huang, Jiuliang Feng, Mu Lin, and Guobao Li
Proc. IAHS, 379, 287–292, https://doi.org/10.5194/piahs-379-287-2018,https://doi.org/10.5194/piahs-379-287-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary

Cited articles

Alvarez, J., Bilancini, E., D'Alessandro, S., and Porcile, G.: Agricultural institutions, industrialization and growth: The case of New Zealand and Uruguay in 1870–1940, Explor. Econ. Hist., 48, 151–168, 2011.
Arnold, J., Srinivasan, R., Muttiah, R., and Williams, J.: Large area hydrologic modeling and assessment, Part I: model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Baudena, M., Boni, G., Ferraris, L., von Hardenberg, J., and Provenzale, A.: Vegetation response to rainfall intermittency in drylands: Results from a simple ecohydrological box model, Adv. Water Resour., 30, 1320–1328, 2007.
Bilancini, E. and D'Alessandro, S.: Long-run welfare under externalities in consumption, leisure, and production: A case for happy degrowth vs. unhappy growth, Ecol. Econ., 84, 194–205, 2012.
Brander, J. A. and Taylor, M. S.: The simple economics of Easter Island: a Ricardo–Malthus model of renewable resource use, Am. Econ. Rev., 88, 119–138, 1998.
Download
Short summary
A simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of a co-evolutionary model. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. The hydrological equation focusing on water balance is coupled to the evolutionary equations of the other three sub-systems.
Share