Articles | Volume 17, issue 7
https://doi.org/10.5194/hess-17-2669-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-2669-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
S. Galelli
Singapore-Delft Water Alliance, National University of Singapore 2 Engineering Drive 2, 117577, Singapore
A. Castelletti
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano Piazza L. da Vinci, 32, 20133 Milano, Italy
Centre for Water Research, University of Western Australia, Crawley, Western Australia, Australia
Related authors
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-441, https://doi.org/10.5194/essd-2024-441, 2024
Preprint under review for ESSD
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 185 large reservoirs across Mainland Southeast Asia from 1985–2023. It provides valuable insights into how reservoir storage has grown by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023, https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Dung Trung Vu, Thanh Duc Dang, Stefano Galelli, and Faisal Hossain
Hydrol. Earth Syst. Sci., 26, 2345–2364, https://doi.org/10.5194/hess-26-2345-2022, https://doi.org/10.5194/hess-26-2345-2022, 2022
Short summary
Short summary
The lack of data on how big dams are operated in the Upper Mekong, or Lancang, largely contributes to the ongoing controversy between China and the other Mekong countries. Here, we rely on satellite observations to reconstruct monthly storage time series for the 10 largest reservoirs in the Lancang. Our analysis shows how quickly reservoirs were filled in, what decisions were made during recent droughts, and how these decisions impacted downstream discharge.
Thanh Duc Dang, A. F. M. Kamal Chowdhury, and Stefano Galelli
Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, https://doi.org/10.5194/hess-24-397-2020, 2020
Short summary
Short summary
A common problem in catchment hydrology lies in the representation of dams in numerical models. Here, we contribute to the existing literature by showing that the representation of water reservoirs can largely impact the model parameters, a result attained by comparing the parameters of a model for the upper Mekong basin built with or without reservoirs. We show that a flawed parameter estimation affects the representation of key physical processes and the downstream applications of the model.
Sean W. D. Turner, James C. Bennett, David E. Robertson, and Stefano Galelli
Hydrol. Earth Syst. Sci., 21, 4841–4859, https://doi.org/10.5194/hess-21-4841-2017, https://doi.org/10.5194/hess-21-4841-2017, 2017
Short summary
Short summary
This study investigates the relationship between skill and value of ensemble seasonal streamflow forecasts. Using data from a modern forecasting system, we show that skilled forecasts are more likely to provide benefits for reservoirs operated to maintain a target water level rather than reservoirs operated to satisfy a target demand. We identify the primary causes for this behaviour and provide specific recommendations for assessing the value of forecasts for reservoirs with supply objectives.
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-441, https://doi.org/10.5194/essd-2024-441, 2024
Preprint under review for ESSD
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 185 large reservoirs across Mainland Southeast Asia from 1985–2023. It provides valuable insights into how reservoir storage has grown by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023, https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Dung Trung Vu, Thanh Duc Dang, Stefano Galelli, and Faisal Hossain
Hydrol. Earth Syst. Sci., 26, 2345–2364, https://doi.org/10.5194/hess-26-2345-2022, https://doi.org/10.5194/hess-26-2345-2022, 2022
Short summary
Short summary
The lack of data on how big dams are operated in the Upper Mekong, or Lancang, largely contributes to the ongoing controversy between China and the other Mekong countries. Here, we rely on satellite observations to reconstruct monthly storage time series for the 10 largest reservoirs in the Lancang. Our analysis shows how quickly reservoirs were filled in, what decisions were made during recent droughts, and how these decisions impacted downstream discharge.
Alessandro Amaranto, Dinis Juizo, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 26, 245–263, https://doi.org/10.5194/hess-26-245-2022, https://doi.org/10.5194/hess-26-245-2022, 2022
Short summary
Short summary
This study aims at designing water supply strategies that are robust against climate, social, and land use changes in a sub-Saharan river basin. We found that robustness analysis supports the discovery of policies enhancing the resilience of water resources systems, benefiting the agricultural, energy, and urban sectors. We show how energy sustainability is affected by water availability, while urban and irrigation resilience also depends on infrastructural interventions and land use changes.
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020, https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
Short summary
This paper aims at quantifying the value of hydroclimatic forecasts in terms of potential economic benefit to end users in the Lake Como basin (Italy), which allows the inference of a relation between gains in forecast skill and gains in end user profit. We also explore the sensitivity of this benefit to both the forecast system setup and end user behavioral factors, showing that the estimated forecast value is potentially undermined by different levels of end user risk aversion.
Thanh Duc Dang, A. F. M. Kamal Chowdhury, and Stefano Galelli
Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, https://doi.org/10.5194/hess-24-397-2020, 2020
Short summary
Short summary
A common problem in catchment hydrology lies in the representation of dams in numerical models. Here, we contribute to the existing literature by showing that the representation of water reservoirs can largely impact the model parameters, a result attained by comparing the parameters of a model for the upper Mekong basin built with or without reservoirs. We show that a flawed parameter estimation affects the representation of key physical processes and the downstream applications of the model.
Marta Zaniolo, Matteo Giuliani, Andrea Francesco Castelletti, and Manuel Pulido-Velazquez
Hydrol. Earth Syst. Sci., 22, 2409–2424, https://doi.org/10.5194/hess-22-2409-2018, https://doi.org/10.5194/hess-22-2409-2018, 2018
Short summary
Short summary
Drought indexes are an effective tool to support drought management in water systems, but their definition must be tailored to the features of the considered basin. In highly regulated contexts, non-generalizable ad hoc methods are usually employed to design these indexes. This paper contributes the novel Framework for Index-based Drought Analysis (FRIDA) that supports the automatic construction of basin-customized drought indexes representing a surrogate of the basin drought conditions.
Sean W. D. Turner, James C. Bennett, David E. Robertson, and Stefano Galelli
Hydrol. Earth Syst. Sci., 21, 4841–4859, https://doi.org/10.5194/hess-21-4841-2017, https://doi.org/10.5194/hess-21-4841-2017, 2017
Short summary
Short summary
This study investigates the relationship between skill and value of ensemble seasonal streamflow forecasts. Using data from a modern forecasting system, we show that skilled forecasts are more likely to provide benefits for reservoirs operated to maintain a target water level rather than reservoirs operated to satisfy a target demand. We identify the primary causes for this behaviour and provide specific recommendations for assessing the value of forecasts for reservoirs with supply objectives.
Yu Li, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 21, 4693–4709, https://doi.org/10.5194/hess-21-4693-2017, https://doi.org/10.5194/hess-21-4693-2017, 2017
Short summary
Short summary
The paper contributes a comparative analysis of the operational value of different forecast products for the agricultural sector. The underlying idea is that forecast accuracy per se might not be the most effective indicator of the goodness of a forecast but the
behaviourof the farmers using the forecast should somehow also be taken into consideration and, correspondingly, the benefit generated by the forecast. This paper explores and validates this idea with a model-based analysis.
Matteo Giuliani, Andrea Castelletti, Roman Fedorov, and Piero Fraternali
Hydrol. Earth Syst. Sci., 20, 5049–5062, https://doi.org/10.5194/hess-20-5049-2016, https://doi.org/10.5194/hess-20-5049-2016, 2016
Short summary
Short summary
The unprecedented availability of user-generated data on the Web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images. The value of the obtained virtual snow indexes is assessed for a real-world water management problem.
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Processes and controls of regional floods over eastern China
Inferring heavy tails of flood distributions through hydrograph recession analysis
Landscape structures regulate the contrasting response of recession along rainfall amounts
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Regional significance of historical trends and step changes in Australian streamflow
River flooding mechanisms and their changes in Europe revealed by explainable machine learning
Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau
A data-driven method for estimating the composition of end-members from stream water chemistry time series
Evaporation loss estimation of the river-lake continuum of arid inland river: Evidence from stable isotopes
Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate
Causal effects of dams and land cover changes on flood changes in mainland China
Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?
Simultaneously determining global sensitivities of model parameters and model structure
Technical note: Calculation scripts for ensemble hydrograph separation
Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios
A line-integral-based method to partition climate and catchment effects on runoff
Technical note: A two-sided affine power scaling relationship to represent the concentration–discharge relationship
On the flood peak distributions over China
New water fractions and transit time distributions at Plynlimon, Wales, estimated from stable water isotopes in precipitation and streamflow
Does the weighting of climate simulations result in a better quantification of hydrological impacts?
A 50-year analysis of hydrological trends and processes in a Mediterranean catchment
Technical Note: On the puzzling similarity of two water balance formulas – Turc–Mezentsev vs. Tixeront–Fu
Climate or land cover variations: what is driving observed changes in river peak flows? A data-based attribution study
Quantifying new water fractions and transit time distributions using ensemble hydrograph separation: theory and benchmark tests
Land cover effects on hydrologic services under a precipitation gradient
Technical note: Long-term persistence loss of urban streams as a metric for catchment classification
Responses of runoff to historical and future climate variability over China
Characterization and evaluation of controls on post-fire streamflow response across western US watersheds
Analysis and modelling of a 9.3 kyr palaeoflood record: correlations, clustering, and cycles
Climate change impacts on Yangtze River discharge at the Three Gorges Dam
Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?
Delineation of homogenous regions using hydrological variables predicted by projection pursuit regression
Multivariate hydrological data assimilation of soil moisture and groundwater head
On the propagation of diel signals in river networks using analytic solutions of flow equations
Dominant climatic factors driving annual runoff changes at the catchment scale across China
Data assimilation in integrated hydrological modelling in the presence of observation bias
Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010)
Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis
Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis
Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
Time series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of north-central Portugal
Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance
Attribution of high resolution streamflow trends in Western Austria – an approach based on climate and discharge station data
A constraint-based search algorithm for parameter identification of environmental models
Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA
Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China
Streamflow input to Lake Athabasca, Canada
Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024, https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Short summary
We developed hybrid schemes to enhance national-scale streamflow predictions, combining long short-term memory (LSTM) with a physically based hydrological model (PBM). A comprehensive evaluation of hybrid setups across Denmark indicates that LSTM models forced by climate data and catchment attributes perform well in many regions but face challenges in groundwater-dependent basins. The hybrid schemes supported by PBMs perform better in reproducing long-term streamflow behavior and extreme events.
Yixin Yang, Long Yang, Jinghan Zhang, and Qiang Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-168, https://doi.org/10.5194/hess-2024-168, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We introduce a machine-learning framework to study flood spatial characteristics and drivers in eastern China, using 37 years of flood peak data from a vast gauging network. Our analyses provide better understanding of contrasting flood behaviors by explicitly characterizing their spatial extents. This knowledge can help improve flood risk management.
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023, https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Short summary
Accurately assessing heavy-tailed flood behavior with limited data records is challenging and can lead to inaccurate hazard estimates. Our research introduces a new index that uses hydrograph recession to identify heavy-tailed flood behavior, compare severity, and produce reliable results with short data records. This index overcomes the limitations of current metrics, which lack physical meaning and require long records. It thus provides valuable insight into the flood hazard of river basins.
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023, https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Short summary
Streamflow recession, shaped by landscape and rainfall, is not well understood. This study examines their combined impact using data from 19 mountainous rivers. Longer, gentler hillslopes promote flow and reduce nonlinearity, while larger catchments with more rainfall show increased landscape heterogeneity. In small catchments, the exponent decreases with rainfall, indicating less landscape and runoff variation. Further research is needed to validate these findings across diverse regions.
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023, https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Short summary
Measuring the similarity of distributions of water is a useful tool for model calibration and assessment. We provide a new way of measuring this similarity for streamflow time series. It is derived from the concept of the amount of
workrequired to rearrange one mass distribution into the other. We also use similar mathematical techniques for defining a type of
averagebetween water distributions.
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023, https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Short summary
Reservoir regulation affects various streamflow characteristics. Still, information on when water is stored in and released from reservoirs is hardly available. We develop a statistical model to reconstruct reservoir operation signals from observed streamflow time series. By applying this approach to 74 catchments in the Alps, we find that reservoir management varies by catchment elevation and that seasonal redistribution from summer to winter is strongest in high-elevation catchments.
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023, https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary
Short summary
We used statistical tests to detect annual and seasonal streamflow trends and step changes across Australia. The Murray–Darling Basin and other rivers in the southern and north-eastern areas showed decreasing trends. Only rivers in the Timor Sea region in northern Australia showed significant increasing trends. Our results assist with infrastructure planning and management of water resources. This study was undertaken by the Bureau of Meteorology with its responsibility under the Water Act 2007.
Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 26, 6339–6359, https://doi.org/10.5194/hess-26-6339-2022, https://doi.org/10.5194/hess-26-6339-2022, 2022
Short summary
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Jiarong Wang, Xi Chen, Man Gao, Qi Hu, and Jintao Liu
Hydrol. Earth Syst. Sci., 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022, https://doi.org/10.5194/hess-26-3901-2022, 2022
Short summary
Short summary
The accelerated climate warming in the Tibetan Plateau after 1997 has strong consequences for hydrology, geography, and social wellbeing. In hydrology, the change in streamflow as a result of changes in dynamic water storage originating from glacier melt and permafrost thawing in a warming climate directly affects the available water resources for societies of some of the most populated nations in the world.
Esther Xu Fei and Ciaran Joseph Harman
Hydrol. Earth Syst. Sci., 26, 1977–1991, https://doi.org/10.5194/hess-26-1977-2022, https://doi.org/10.5194/hess-26-1977-2022, 2022
Short summary
Short summary
Water in streams is a mixture of water from many sources. It is sometimes possible to identify the chemical fingerprint of each source and track the time-varying contribution of that source to the total flow rate. But what if you do not know the chemical fingerprint of each source? Can you simultaneously identify the sources (called end-members), and separate the water into contributions from each, using only samples of water from the stream? Here we suggest a method for doing just that.
Guofeng Zhu, Zhigang Sun, Yuanxiao Xu, Yuwei Liu, Zhuanxia Zhang, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-75, https://doi.org/10.5194/hess-2022-75, 2022
Revised manuscript not accepted
Short summary
Short summary
We analyzed the stable isotopic composition of surface water and estimated its evaporative loss in the Shiyang River Basin. The characteristics of stable isotopes in surface water show a gradual enrichment from mountainous areas to deserts, and the evaporation loss of surface water also shows a gradually increasing trend from upstream to downstream. The study of evaporative losses in the river-lake continuum contributes to the sustainable use of water resources.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Weifei Yang, Changlai Xiao, Zhihao Zhang, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 25, 1747–1760, https://doi.org/10.5194/hess-25-1747-2021, https://doi.org/10.5194/hess-25-1747-2021, 2021
Short summary
Short summary
This study analyzed the effectiveness of the conductivity mass balance (CMB) method for correcting the Eckhardt method. The results showed that the approach of calibrating the Eckhardt method against the CMB method provides a
falsecalibration of total baseflow by offsetting the inherent biases in the baseflow sequences generated by the two methods. The reason for this phenomenon is the baseflow series generated by the two methods containing different transient water sources.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci., 24, 4503–4521, https://doi.org/10.5194/hess-24-4503-2020, https://doi.org/10.5194/hess-24-4503-2020, 2020
Short summary
Short summary
With serious concerns about global change rising in the Mediterranean, we established a new climatic classification to follow hydrological and ecohydrological activities. The classification coincided with a geographical distribution ranging from the most seasonal and driest class in the south to the least seasonal and most humid in the north. RCM scenarios showed that northern classes evolve to southern ones with shorter humid seasons and earlier snowmelt which might affect hydrologic regimes.
Mingguo Zheng
Hydrol. Earth Syst. Sci., 24, 2365–2378, https://doi.org/10.5194/hess-24-2365-2020, https://doi.org/10.5194/hess-24-2365-2020, 2020
Short summary
Short summary
This paper developed a mathematically precise method to partition climate and catchment effects on streamflow. The method reveals that both the change magnitude and pathway (timing of change), not the magnitude alone, dictate the partition unless for a linear system. The method has wide relevance. For example, it suggests that the global warming effect of carbon emission is path dependent, and an optimal pathway would facilitate a higher global budget of carbon emission.
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci., 24, 1823–1830, https://doi.org/10.5194/hess-24-1823-2020, https://doi.org/10.5194/hess-24-1823-2020, 2020
Short summary
Short summary
This paper deals with the mathematical representation of concentration–discharge relationships. We propose a two-sided affine power scaling relationship (2S-APS) as an alternative to the classic one-sided power scaling relationship (commonly known as
power law). We also discuss the identification of the parameters of the proposed relationship, using an appropriate numerical criterion, based on high-frequency chemical time series of the Orgeval-ORACLE observatory.
Long Yang, Lachun Wang, Xiang Li, and Jie Gao
Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019, https://doi.org/10.5194/hess-23-5133-2019, 2019
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019, https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
Short summary
We describe, present, and make publicly available two extensive data sets of stable water isotopes in streamwater and precipitation at Plynlimon, Wales, consisting of measurements at 7-hourly intervals for 17 months and at weekly intervals for 4.25 years. We use these data to calculate new water fractions and transit time distributions for different discharge rates and seasons, thus quantifying the contribution of recent precipitation to streamflow under different conditions.
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019, https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Nathalie Folton, Eric Martin, Patrick Arnaud, Pierre L'Hermite, and Mathieu Tolsa
Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, https://doi.org/10.5194/hess-23-2699-2019, 2019
Short summary
Short summary
The long-term study of precipitation, flows, flood or drought mechanisms, in the Réal Collobrier research Watershed, located in South-East France, in the Mediterranean forest, improves knowledge of the water cycle and is unique tool for understanding of how catchments function. This study shows a small decrease in rainfall and a marked tendency towards a decrease in the water resources of the catchment in response to climate trends, with a consistent increase in drought severity and duration.
Vazken Andréassian and Tewfik Sari
Hydrol. Earth Syst. Sci., 23, 2339–2350, https://doi.org/10.5194/hess-23-2339-2019, https://doi.org/10.5194/hess-23-2339-2019, 2019
Short summary
Short summary
In this Technical Note, we present two water balance formulas: the Turc–Mezentsev and Tixeront–Fu formulas. These formulas have a puzzling numerical similarity, which we discuss in detail and try to interpret mathematically and hydrologically.
Jan De Niel and Patrick Willems
Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, https://doi.org/10.5194/hess-23-871-2019, 2019
James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 303–349, https://doi.org/10.5194/hess-23-303-2019, https://doi.org/10.5194/hess-23-303-2019, 2019
Short summary
Short summary
How long does it take for raindrops to become streamflow? Here I propose a new approach to this old problem. I show how we can use time series of isotope data to measure the average fraction of same-day rainfall appearing in streamflow, even if this fraction varies greatly from rainstorm to rainstorm. I show that we can quantify how this fraction changes from small rainstorms to big ones, and from high flows to low flows, and how it changes with the lag time between rainfall and streamflow.
Ane Zabaleta, Eneko Garmendia, Petr Mariel, Ibon Tamayo, and Iñaki Antigüedad
Hydrol. Earth Syst. Sci., 22, 5227–5241, https://doi.org/10.5194/hess-22-5227-2018, https://doi.org/10.5194/hess-22-5227-2018, 2018
Short summary
Short summary
This study establishes relationships between land cover and river discharge. Using discharge data from 20 catchments of the Bay of Biscay findings showed the influence of land cover on discharge changes with the amount of precipitation, with lower annual water resources associated with the greater presence of forests. Results obtained illustrate the relevance of land planning to the management of water resources and the opportunity to consider it in future climate-change adaptation strategies.
Dusan Jovanovic, Tijana Jovanovic, Alfonso Mejía, Jon Hathaway, and Edoardo Daly
Hydrol. Earth Syst. Sci., 22, 3551–3559, https://doi.org/10.5194/hess-22-3551-2018, https://doi.org/10.5194/hess-22-3551-2018, 2018
Short summary
Short summary
A relationship between the Hurst (H) exponent (a long-term correlation coefficient) within a flow time series and various catchment characteristics for a number of catchments in the USA and Australia was investigated. A negative relationship with imperviousness was identified, which allowed for an efficient catchment classification, thus making the H exponent a useful metric to quantitatively assess the impact of catchment imperviousness on streamflow regime.
Chuanhao Wu, Bill X. Hu, Guoru Huang, Peng Wang, and Kai Xu
Hydrol. Earth Syst. Sci., 22, 1971–1991, https://doi.org/10.5194/hess-22-1971-2018, https://doi.org/10.5194/hess-22-1971-2018, 2018
Short summary
Short summary
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal–spatial patterns of water resources. In this paper, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future climate variability over China at both grid and catchment scales. The results help to better understand the hydrological effects of climate change and adapt to a changing environment.
Samuel Saxe, Terri S. Hogue, and Lauren Hay
Hydrol. Earth Syst. Sci., 22, 1221–1237, https://doi.org/10.5194/hess-22-1221-2018, https://doi.org/10.5194/hess-22-1221-2018, 2018
Short summary
Short summary
We investigate the impact of wildfire on watershed flow regimes, examining responses across the western United States. On a national scale, our results confirm the work of prior studies: that low, high, and peak flows typically increase following a wildfire. Regionally, results are more variable and sometimes contradictory. Our results may be significant in justifying the calibration of watershed models and in contributing to the overall observational analysis of post-fire streamflow response.
Annette Witt, Bruce D. Malamud, Clara Mangili, and Achim Brauer
Hydrol. Earth Syst. Sci., 21, 5547–5581, https://doi.org/10.5194/hess-21-5547-2017, https://doi.org/10.5194/hess-21-5547-2017, 2017
Short summary
Short summary
Here we present a unique 9.5 m palaeo-lacustrine record of 771 palaeofloods which occurred over a period of 10 000 years in the Piànico–Sèllere basin (southern Alps) during an interglacial period in the Pleistocene (sometime between 400 000 and 800 000 years ago). We analyse the palaeoflood series correlation, clustering, and cyclicity properties, finding a long-range cyclicity with a period of about 2030 years superimposed onto a fractional noise.
Steve J. Birkinshaw, Selma B. Guerreiro, Alex Nicholson, Qiuhua Liang, Paul Quinn, Lili Zhang, Bin He, Junxian Yin, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 21, 1911–1927, https://doi.org/10.5194/hess-21-1911-2017, https://doi.org/10.5194/hess-21-1911-2017, 2017
Short summary
Short summary
The Yangtze River basin in China is home to more than 400 million people and susceptible to major floods. We used projections of future precipitation and temperature from 35 of the most recent global climate models and applied this to a hydrological model of the Yangtze. Changes in the annual discharge varied between a 29.8 % decrease and a 16.0 % increase. The main reason for the difference between the models was the predicted expansion of the summer monsoon north and and west into the basin.
Maurizio Mazzoleni, Martin Verlaan, Leonardo Alfonso, Martina Monego, Daniele Norbiato, Miche Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 839–861, https://doi.org/10.5194/hess-21-839-2017, https://doi.org/10.5194/hess-21-839-2017, 2017
Short summary
Short summary
This study assesses the potential use of crowdsourced data in hydrological modeling, which are characterized by irregular availability and variable accuracy. We show that even data with these characteristics can improve flood prediction if properly integrated into hydrological models. This study provides technological support to citizen observatories of water, in which citizens can play an active role in capturing information, leading to improved model forecasts and better flood management.
Martin Durocher, Fateh Chebana, and Taha B. M. J. Ouarda
Hydrol. Earth Syst. Sci., 20, 4717–4729, https://doi.org/10.5194/hess-20-4717-2016, https://doi.org/10.5194/hess-20-4717-2016, 2016
Short summary
Short summary
For regional flood frequency, it is challenging to identify regions with similar hydrological properties. Therefore, previous works have mainly proposed to use regions with similar physiographical properties. This research proposes instead to nonlinearly predict the desired hydrological properties before using them for delineation. The presented method is applied to a case study in Québec, Canada, and leads to hydrologically relevant regions, while enhancing predictions made inside them.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Morgan Fonley, Ricardo Mantilla, Scott J. Small, and Rodica Curtu
Hydrol. Earth Syst. Sci., 20, 2899–2912, https://doi.org/10.5194/hess-20-2899-2016, https://doi.org/10.5194/hess-20-2899-2016, 2016
Short summary
Short summary
We design and implement a theoretical experiment to show that, under low-flow conditions, observed streamflow discrepancies between early and late summer can be attributed to different flow velocities in the river network. By developing an analytic solution to represent flow along a given river network, we emphasize the dependence of streamflow amplitude and time delay on the geomorphology of the network. We also simulate using a realistic river network to highlight the effects of scale.
Zhongwei Huang, Hanbo Yang, and Dawen Yang
Hydrol. Earth Syst. Sci., 20, 2573–2587, https://doi.org/10.5194/hess-20-2573-2016, https://doi.org/10.5194/hess-20-2573-2016, 2016
Short summary
Short summary
The hydrologic processes have been influenced by different climatic factors. However, the dominant climatic factor driving annual runoff change is still unknown in many catchments in China. By using the climate elasticity method proposed by Yang and Yang (2011), the elasticity of runoff to climatic factors was estimated, and the dominant climatic factors driving annual runoff change were detected at catchment scale over China.
Jørn Rasmussen, Henrik Madsen, Karsten Høgh Jensen, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, https://doi.org/10.5194/hess-20-2103-2016, 2016
Short summary
Short summary
In the paper, observations are assimilated into a hydrological model in order to improve the model performance. Two methods for detecting and correcting systematic errors (bias) in groundwater head observations are used leading to improved results compared to standard assimilation methods which ignores any bias. This is demonstrated using both synthetic (user generated) observations and real-world observations.
Mohammed Achite and Sylvain Ouillon
Hydrol. Earth Syst. Sci., 20, 1355–1372, https://doi.org/10.5194/hess-20-1355-2016, https://doi.org/10.5194/hess-20-1355-2016, 2016
Short summary
Short summary
Changes of T, P, Q and sediment fluxes in a semi-arid basin little affected by human activities are analyzed from 40 years of measurements. T increased, P decreased, an earlier onset of first summer rains occurred. The flow regime shifted from perennial to intermittent. Sediment flux almost doubled every decade. The sediment regime shifted from two equivalent seasons of sediment delivery to a single major season regime. The C–Q rating curve ability declined due to enhanced hysteresis effects.
C. E. M. Lloyd, J. E. Freer, P. J. Johnes, and A. L. Collins
Hydrol. Earth Syst. Sci., 20, 625–632, https://doi.org/10.5194/hess-20-625-2016, https://doi.org/10.5194/hess-20-625-2016, 2016
Short summary
Short summary
This paper examines the current methodologies for quantifying storm behaviour through hysteresis analysis, and explores a new method. Each method is systematically tested and the impact on the results is examined. Recommendations are made regarding the most effective method of calculating a hysteresis index. This new method allows storm hysteresis behaviour to be directly compared between storms, parameters, and catchments, meaning it has wide application potential in water quality research.
W. Hu and B. C. Si
Hydrol. Earth Syst. Sci., 20, 571–587, https://doi.org/10.5194/hess-20-571-2016, https://doi.org/10.5194/hess-20-571-2016, 2016
Short summary
Short summary
Spatiotemporal SWC was decomposed into into three terms (spatial forcing, temporal forcing, and interactions between spatial and temporal forcing) for near surface and root zone; Empirical orthogonal function indicated that underlying patterns exist in the interaction term at small watershed scales; Estimation of spatially distributed SWC benefits from decomposition of the interaction term; The suggested decomposition of SWC with time stability analysis has potential in SWC downscaling.
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016, https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary
Short summary
Parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. A method for parameter optimization with particle swam optimization (PSO) algorithm has been proposed for physically based distributed hydrological model in catchment flood forecasting and validated in southern China. It has found that the appropriate particle number and maximum evolution number of PSO algorithm are 20 and 30 respectively.
D. Hawtree, J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A.-K. Boulet, F. Tavares-Wahren, and K.-H. Feger
Hydrol. Earth Syst. Sci., 19, 3033–3045, https://doi.org/10.5194/hess-19-3033-2015, https://doi.org/10.5194/hess-19-3033-2015, 2015
J. Rasmussen, H. Madsen, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, https://doi.org/10.5194/hess-19-2999-2015, 2015
C. Kormann, T. Francke, M. Renner, and A. Bronstert
Hydrol. Earth Syst. Sci., 19, 1225–1245, https://doi.org/10.5194/hess-19-1225-2015, https://doi.org/10.5194/hess-19-1225-2015, 2015
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
S. G. Leibowitz, R. L. Comeleo, P. J. Wigington Jr., C. P. Weaver, P. E. Morefield, E. A. Sproles, and J. L. Ebersole
Hydrol. Earth Syst. Sci., 18, 3367–3392, https://doi.org/10.5194/hess-18-3367-2014, https://doi.org/10.5194/hess-18-3367-2014, 2014
J. Niu, J. Chen, and B. Sivakumar
Hydrol. Earth Syst. Sci., 18, 1475–1492, https://doi.org/10.5194/hess-18-1475-2014, https://doi.org/10.5194/hess-18-1475-2014, 2014
K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry
Hydrol. Earth Syst. Sci., 17, 1681–1691, https://doi.org/10.5194/hess-17-1681-2013, https://doi.org/10.5194/hess-17-1681-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
Cited articles
Babovic, V. and Keijzer, M.: Rainfall-runoff modeling based on genetic programming, Nord. Hydrol., 5, 331–346, 2002.
Bachmair, S. and Weiler, M.: Hillslope characteristics as controls of subsurface flow variability, Hydrol. Earth Syst. Sci., 16, 3699–3715, https://doi.org/10.5194/hess-16-3699-2012, 2012.
Beck, M.: Forecasting environmental change, J. Forecast., 10, 3–19, 1991.
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001.
Bhattacharya, B. and Solomatine, D.: Neural networks and M5 model trees in modelling water level-discharge relationship, Neurocomputing, 63, 381–396, 2005.
Box, G. E. P., Hunter, J. S., and Hunter, W. G.: Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition, Wiley, New York, USA, 2005.
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Breiman, L., Friedman, J., Olsen, R., and Stone, C.: Classification and Regression Trees, Wadsworth & Brooks, Pacific Grove, CA, 1984.
Castelletti, A., Galelli, S., Restelli, M., and Soncini-Sessa, R.: Tree-based reinforcement learning for optimal water reservoir operation, Water Resour. Res., 46, W09507, https://doi.org/10.1029/2009WR008898, 2010.
Cutler, A. and Guohua, Z.: PERT – Perfect Random Trees Ensembles, Comp. Sci. Stat., 33, 490–497, 2001.
Dawson, C., Brown, M., and Wilby, R.: Inductive learning approaches to rainfall-runoff modelling, Int. J. Neural Syst., 10, 43–57, 2000.
Dietterich, T.: Ensemble methods in machine learning, Lect. Notes Comput Sc., 1857, 1–15, 2000.
Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology –Part 1: Concepts and methodology, Hydrol. Earth Syst. Sci., 14, 1931–1941, https://doi.org/10.5194/hess-14-1931-2010, 2010a.
Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology –Part 2: Application, Hydrol. Earth Syst. Sci., 14, 1943-1961, https://doi.org/10.5194/hess-14-1943-2010, 201b.
Erdal, H. and Karakurt, O.: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms, J. Hydrol., 477, 119–128, 2013.
Fonteneau, R., Wehenkel, L., and Ernst, D.: Variable selection for dynamic treatment regimes: a reinforcement learning approach, in: Proceedings of the European Workshop on Reinforcement Learning, 30 June–4 July 2008, Villeneuve d'Ascq, France, 2008.
Freund, Y. and Schapire, R.: Experiments with a new boosting algorithm, in: Proceedings of 13th International Conference on Mach. Learn., 3–6 July 1996, Bari, Italy, 148–146, 1996.
Galelli, S., Goedbloed, A., Schwanenberg, D., and van Overloop, D.: Optimal real-time operation of multi-purpose urban reservoirs: a case study in Singapore, J. Water Res. Pl.-ASCE, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000342, in press, 2013.
Geurts, P.: Contributions to Decision Tree Induction: Bias/Variance Tradeoff and Time Series Classification, Ph.D. thesis, University of Liège, Liège, Belgium, 2002.
Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, Mach. Learn., 63, 3–42, 2006.
Hejazi, M. and Cai, X.: Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm, Adv. Water Resour., 32, 582–593, 2009.
Ho, T.: Random decision forests, in: Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 1, ontreal, Quebec, 278–282, 1995.
Ho, T.: The random subspace method for constructing decision forests, IEEE T. Pattern Anal., 20, 832–844, 1998.
Hsu, K., Gupta, H., and Sorooshian, S.: Artificial neural-network modeling of the rainfall-runoff process, Water Resour. Res., 31, 2517–2530, 1995.
Hundecha, Y., Bardossy, A., and Theisen, H.: Development of a fuzzy logic-based rainfall-runoff model, Hydrolog. Sci. J., 46, 363–376, 2001.
Hwang, S., Ham, D., and Kim, J.: A new measure for assessing the efficiency of hydrological data-driven forecasting models, Hydrolog. Sci. J., 57, 1–18, 2012.
Hyafil, L. and Rivest, R.: Constructing optimal binary decision trees in NP-Complete, Inform. Process. Lett., 5, 15–17, 1976.
Iorgulescu, I. and Beven, K.: Nonparametric direct mapping of rainfall-runoff relationships: an alternative approach to data analysis and modeling?, Water Resour. Res., 40, W08403, https://doi.org/10.1029/2004WR003094, 2004.
Jakeman, A. and Hornberger, G.: How much complexity is warranted in a rainfall-runoff model, Water Resour. Res., 29, 2637–2649, 1993.
Jekabsons, G.: M5PrimeLab – M5' Regression Tree and Model Tree Toolbox for Matlab/Octave, Technical Report ver. 1.0.1, Faculty of Computer Science and Information Technology – Riga Technical University, Riga, Latvia, 2010.
Jong, K., Mary, J., Cornuéjols, A., Marchiori, E., and Sebag, M.: Ensemble feature ranking, in: Knowledge Discovery in Databases, Springer, 267–278, 2004.
Jothiprakash, V. and Kote, A.: Effect of pruning and smoothing while using M5 model tree technique for reservoir inflow prediction, J. Hydrol. Eng., 16, 563–574, 2011.
Kuncheva, L. and Whitaker, C.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Mach. Learn., 51, 181–207, 2003.
Laaha, G. and Blöschl, G.: A comparison of low flow regionalisation methods – catchment grouping, J. Hydrol., 323, 193–214, 2006.
Lin, J.-Y., Cheng, C.-T., and Chau, K.-W.: Using support vector machines for long-term discharge prediction, Hydrolog. Sci. J., 51, 599–612, 2006.
Maier, H. and Dandy, G.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Model. Softw., 15, 101–124, 2000.
Quinlan, J.: Learning with continuous classes, in: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, 16–18 November, Hobart, Australia, 343–348, 1992.
Rasmussen, P., Salas, J., Fagherazzi, L., Rassam, J., and Bobee, B.: Estimation and validation of contemporaneous PARMA models for streamflow simulation, Water Resour. Res., 32, 3151–3160, 1996.
Romanowicz, R., Young, P., Beven, K., and Pappenberger, F.: A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting, Adv. Water Resour., 31, 1048–1056, 2008.
Sauquet, E. and Catalogne, C.: Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France, Hydrol. Earth Syst. Sci., 15, 2421–2435, https://doi.org/10.5194/hess-15-2421-2011, 2011.
See, L., Jain, A., Dawson, C., and Abrahart, R.: Visualisation of hidden neuron behaviour in a neural network rainfall-runoff model, in: Practical Hydroinformatics, vol. 68 of Water Science and Technology Library, edited by: Abrahart, R., See, L., and Solomatine, D., Springer, Berlin, Heidelberg, 87–99, 2008.
Selvalingam, S., Liong, S., and Manoharan, P.: Use of RORB and SWMM models to an urban catchment in Singapore, Adv. Water Resour., 10, 78–86, 1987.
Shamseldin, A. Y., Nasr, A. E., and O'Connor, K. M.: Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting, Hydrol. Earth Syst. Sci., 6, 671–684, https://doi.org/10.5194/hess-6-671-2002, 2002.
Snelder, T., Lamouroux, N., Leathwick, J., Pella, H., Sauquet, E., and Shankar, U.: Predictive mapping of the natural flow regimes of France, J. Hydrol., 373, 57–67, 2009.
Solomatine, D. and Dulal, K.: Model trees as an alternative to neural networks in rainfall-runoff modelling, Hydrolog. Sci. J., 48, 399–411, 2003.
Solomatine, D. and Ostfeld, A.: Data-driven modelling: some past experiences and new approaches, J. Hydroinform., 10, 3–22, 2008.
Solomatine, D. and Xue, Y.: M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China, J. Hydrol. Eng., 9, 491–501, 2004.
Stravs, L. and Brilly, M.: Development of a low-flow forecasting model using the M5 machine learning method, Hydrolog. Sci. J., 52, 466–477, 2007.
Vezza, P., Comoglio, C., Rosso, M., and Viglione, A.: low flows regionalization in North-Western Italy, Water Resour. Manage., 24, 4049–4074, 2010.
Wang, Y. and Witten, I.: Induction of model trees for predicting continuous classes, in: Proceedings of the European Conference on Mach. Learn., Prague, Czech Republic, 128–137, 1997.
Wehenkel, L.: Automatic Learning Techniques in Power Systems, Kluwer Academic, Boston, USA, 1998.
Wei, W. and Watkins Jr., D.: Data mining methods for hydroclimatic forecasting, Adv. Water Resour., 34, 1390–1400, 2011.
Wheater, H., Jakeman, A., and Beven, K.: Progress and Directions in Rainfall-Runoff Modelling, John Wiley, Chichester, 101–132, 1993.
Xie, J.: Dealing with Water Scarcity in Singapore: Institutions, Strategies, and Enforcement, China: Addressing Water Scarcity Background Paper No. 4, The World Bank – Environment and Social Development Department – East Asia and Pacific Region, Washington, DC, available at: http://www.worldbank.org/eapenvironment/ChinaWaterAAA (last access: 15 January 2013), 2006.
Young, P.: Data-based mechanistic and top-down modelling, in: Proceedings of the First Biennial Meeting of the International Environmental Modelling & Software Society, Vol. I, Lugano, Suisse, 363–374, 2002.
Young, P.: Top-down and data-based mechanistic modelling of rainfall–flow dynamics at the catchment scale, Hydrol. Process., 17, 2195–2217, 2003.
Young, P.: Rainfall-Runoff Modeling: Transfer Function Models, John Wiley & Sons, Ltd, 2006.
Young, P.: Hypothetico-inductive data-based mechanistic modeling of hydrological systems, Water Resour. Res., 49, 915–935, 2013.
Young, P. and Beven, K.: Data-based mechanistic modeling and the rainfall-flow nonlinearity, Environmetrics, 3, 335–363, 1994.
Young, P., Jakeman, A., and Post, D.: Recent advances in the data-based modelling and analysis of hydrological systems, Water Sci. Technol., 36, 99–116, 1997.