
Hydrol. Earth Syst. Sci., 17, 2669–2684, 2013
www.hydrol-earth-syst-sci.net/17/2669/2013/
doi:10.5194/hess-17-2669-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Assessing the predictive capability of randomized tree-based
ensembles in streamflow modelling

S. Galelli1 and A. Castelletti2,3

1Singapore-Delft Water Alliance, National University of Singapore 2 Engineering Drive 2, 117577, Singapore
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano Piazza L. da Vinci, 32, 20133 Milano, Italy
3Centre for Water Research, University of Western Australia, Crawley, Western Australia, Australia

Correspondence to:A. Castelletti (andrea.castelletti@polimi.it)

Received: 11 January 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 1 February 2013
Revised: 5 June 2013 – Accepted: 5 June 2013 – Published: 11 July 2013

Abstract. Combining randomization methods with ensem-
ble prediction is emerging as an effective option to balance
accuracy and computational efficiency in data-driven mod-
elling. In this paper, we investigate the prediction capability
of extremely randomized trees (Extra-Trees), in terms of ac-
curacy, explanation ability and computational efficiency, in a
streamflow modelling exercise. Extra-Trees are a totally ran-
domized tree-based ensemble method that (i) alleviates the
poor generalisation property and tendency to overfitting of
traditional standalone decision trees (e.g. CART); (ii) is com-
putationally efficient; and, (iii) allows to infer the relative im-
portance of the input variables, which might help in the ex-
post physical interpretation of the model. The Extra-Trees
potential is analysed on two real-world case studies – Marina
catchment (Singapore) and Canning River (Western Aus-
tralia) – representing two different morphoclimatic contexts.
The evaluation is performed against other tree-based meth-
ods (CART and M5) and parametric data-driven approaches
(ANNs and multiple linear regression). Results show that
Extra-Trees perform comparatively well to the best of the
benchmarks (i.e. M5) in both the watersheds, while outper-
forming the other approaches in terms of computational re-
quirement when adopted on large datasets. In addition, the
ranking of the input variable provided can be given a physi-
cally meaningful interpretation.

1 Introduction

Streamflow processes are complex nonlinear hydrological
phenomena exhibiting a high degree of spatial and temporal

variability. Their accurate characterisation plays an impor-
tant role in any decision-making process concerned with wa-
ter availability, such as water reservoirs planning and man-
agement, operation of hydropower plants and irrigation sys-
tems, management of urban water supply systems, and many
others. Two main approaches to streamflow modelling and
prediction can be discerned in the hydrological literature
(e.g. Beck, 1991; Wheater et al., 1993; Young, 2003): the
hypothetico-deductive (or bottom-up) approach, according
to which the physical mechanisms that contribute to stream-
flow formation in the hydrological cycle are conceptualised
in a simplified lumped or semi-distributed representation
(process-based models); and the inductive (or top-down) ap-
proach, in which the mapping from the space of predictor
variables (e.g. precipitation, temperature) to that of the re-
sponse variables (i.e. streamflow) is inferred totally and di-
rectly from observational data to a more general class of
models (data-driven or metric models).

Depending on the objective of the modelling exercise, one
approach can be more appropriate than the other. The the
complexity of process-based models is key to improve our
understanding of the hydrological process and has a clear
advantage in “what-if” or scenario analyses. However, the
high number of parameters and states these models include,
particularly to characterise spatial variability, often result
in mis-calibration and over-parameterisation (e.g.Jakeman
and Hornberger, 1993; Beven, 2001), ultimately limiting
the model predictive capability and operational value. Data-
driven models combine high predictive potential and a more
compact representation, with generally considerably less pa-
rameters and state variables, which well combines with
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the computational burden of optimization-based decision-
making (e.g.Castelletti et al., 2010). Yet, their effective iden-
tification requires long data records and their normal black-
box nature, revealing very little of the internal structure, is
often a deterrent to the systematic use in operational hydrol-
ogy, though some successful attempts have been made to
produce understandable insights from these model structures
(e.g. Young and Beven, 1994; Babovic and Keijzer, 2002;
See et al., 2008; Young, 2013).

Data-driven type of models applied to streamflow mod-
elling includes traditional ARMA (e.g.Rasmussen et al.,
1996, and references therein) and all its extensions, transfer
function models (e.g.Young, 2006), and databased mech-
anistic (DBM) models (Young, 2003; Romanowicz et al.,
2008). Methods from data mining, machine learning and ar-
tificial intelligence have also gained a good reputation in op-
erational hydrology (Solomatine and Ostfeld, 2008). Among
them, artificial neural networks, firstly used for streamflow
modelling byHsu et al.(1995), are the most popular choice
(see the reviews byMaier and Dandy, 2000; Shamseldin
et al., 2002). Other data-driven approaches largely experi-
enced in hydrological modelling (e.g. see the comparative
analysis byElshorbagy et al., 2010a,b) include Fuzzy rule-
based systems (e.g.Hundecha et al., 2001) and support vec-
tor machines (e.g.Lin et al., 2006). All these data-driven
model families are based on the parameterisation of the
input-output relationship and are built by a two-stage identi-
fication process: first, the model structure is selected (includ-
ing, when relevant, model input selection), then the param-
eters are estimated with appropriate automatic algorithms.
The wrong selection of the model structure might have a sig-
nificant impact on the predicting capability of the identified
model, even when the parameters can be estimated optimally
within the selected family of functions.

A less traditional data-driven approach that is receiving in-
creasing attention in the hydrological literature (e.g.Laaha
and Bl̈oschl, 2006; Sauquet and Catalogne, 2011; Bachmair
and Weiler, 2012) is represented by decision trees, in partic-
ular Classification And Regression Trees (CART,Breiman
et al., 1984), which are the simplest form of a decision tree.
CART are non-parametric regressors with tree-like structures
obtained by recursively partitioning the input space into mu-
tually exclusive regions. The most internal regions (leaves)
are associated with a constant output value obtained as the
average of the output data falling in each leaf. CART have
two advantages over most of the above mentioned data-
driven approaches. First, they avoid the need to find poten-
tially complicated parametric functions, thus reducing the
potential for a model structural component to the predic-
tion error (Iorgulescu and Beven, 2004). Second, the tree
structure can readily be interpreted as a cascade of “if-then”
rules between combinations of inputs and the output, and so
CART can give better insight on the model internal structure
and underlying physical processes (Iorgulescu and Beven,
2004; Wei and Watkins Jr., 2011). CART have been shown

to perform comparatively well than other data-driven models
in a number of applications (Dawson et al., 2000; Iorgulescu
and Beven, 2004; Vezza et al., 2010). Yet they suffer from
a double drawback: (i) the predicted output is composed
of discrete values and the streamflow is reconstructed as a
piecewise constant function. To ensure a good predicting
accuracy, the number of output classes (tree leaves) must
be very high, but this increases the risk of overfitting the
observed data and reduces the model generalisation ability
(Ho, 1995; Breiman, 1996). (ii) The partitioning process is
deterministically performed by exhaustively comparing all
the possible combinations of input values to select the best
performing partition. This makes computation requirements
growing rapidly with the input space dimensionality and
indeed the optimal training of a decisions tree is NP-hard
(Hyafil and Rivest, 1976).

The first weakness can be resolved in two ways. One idea
is to replace averaging in the tree leaves by fitting a linear re-
gression function to the data and obtaining a continuous rep-
resentation of the output. This approach, mostly known as
M5 tree-modelling, was first introduced byQuinlan(1992)
and applied to hydrological problems bySolomatine and
Dulal (2003); Solomatine and Xue(2004); Bhattacharya and
Solomatine(2005); Stravs and Brilly(2007); Jothiprakash
and Kote (2011). Another idea is to use an ensemble
method (e.g. bagging,Breiman, 1996 or boosting,Freund
and Schapire, 1996) to build a forest of regression trees.
The underlying concept of ensembles is that multiple model
predictions aggregated in one ensemble output allow to ob-
tain better predictive performance than any of the constituent
models (Dietterich, 2000). The adoption of tree ensembles
for hydrological modelling has been reported bySnelder
et al. (2009); Erdal and Karakurt(2013). Both the contribu-
tions show that trees ensembles remarkably advance the pre-
diction capability of CART and generally compare favorably
to other data-driven approaches.

Unfortunately, neither M5 or CART ensembles help in re-
ducing the computational burden associated with the optimal
deterministic tree building process they incorporate. Rather,
model identification is made even more computationally in-
tensive by generally increasing the number of operations to
be performed by the training algorithm. Recently, random-
ization methods have been shown to be an effective compan-
ion of ensemble tree methods (e.g.Geurts, 2002, and ref-
erences therein). In fact, ensemble methods highly benefit
from the diversity in the constituent models (Kuncheva and
Whitaker, 2003) and injection of randomness is a way of pro-
ducing more or less diversified ensembles (Ho, 1995). In par-
ticular, the direct randomization of the individual tree grow-
ing method seems to be more productive for the ensemble in
terms of both accuracy and computational requirements than
the optimality of traditional induction algorithms, such those
in M5 and CART (Geurts, 2002).

Several approaches have been developed based on the di-
rect randomization of the tree growing method (e.g. Bagging
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predictors,Breiman, 1996; Random Subspace,Ho, 1998;
Random forests,Breiman, 2001; PERT,Cutler and Guohua,
2001). Lately, the extremely randomized trees developed by
Geurts et al.(2006) (Extra-Trees in short) have been empiri-
cally demonstrated to outperform most of the other random-
ized and deterministic methods in terms of both prediction
accuracy (more specifically, variance and bias reduction) and
computational efficiency. Extra-Trees are ensembles of to-
tally randomized trees in that they randomize both the in-
put variables and the splitting values considered in creating
a partition, in the process of building a tree, and create a
forest of trees to compensate for the randomization, via av-
eraging of the constituent tree outcomes. The combination
of averaging and randomization ensures (i) modelling flexi-
bility/accuracy (i.e. ability of characterising strong nonlinear
relationships), (ii) computational efficiency, and (iii) scala-
bility with respect to input dimensionality. In addition, (iv)
Extra-Trees, like several other tree-based ensemble methods
(Jong et al., 2004), can be exploited to infer the relative im-
portance of the input variables and to order them accordingly
(Wehenkel, 1998; Fonteneau et al., 2008). This allows to pro-
vide an ex-post interpretation of the model and makes the
model more understandable and credible to the users than
other data-driven approaches.

In this paper we explore the applicability of Extra-Trees to
streamflow modelling and comprehensively analyse their ad-
vantages and disadvantages in terms of predicting accuracy,
explanation ability and computational efficiency. Specifi-
cally, we adopt a four-step assessment procedure including
(i) random sampling of the observational dataset to ensure
a robust evaluation of the model performance (Elshorbagy
et al., 2010a); (ii) multi-criteria assessment of the model
performance (Hwang et al., 2012, and references therein)
to consistently validate the model behaviour under differ-
ent flow conditions; (iii) comparative assessment of pre-
dicting accuracy and computational efficiency against tree-
based methods (M5 and CART) already experimented in
water-related applications and other traditional data-driven
approaches (ANNs and multiple linear regression); (iv) un-
certainty analysis on the model residual.

The numerical analysis is conducted on two streamflow
modelling problems with different spatial domains, hydro-
meteorological features, and temporal dynamics. Marina
catchment, Singapore, is a relatively small urban catchment
with a very short time of concentration, considerably altered
by human intervention and subject to a tropical climate; the
Cunning River, Western Australia, is a large river basin, pre-
dominantly natural, characterised by a Mediterranean cli-
mate and modelled with a daily time step.

2 Extremely randomized trees (Extra-Trees)

Tree-based regressors are structured as a hierarchical cas-
cade of rules able to predict numerical values of the output

(Breiman et al., 1984). The process of building the nodes and
branches forming a tree is based on the partitioning of the in-
put space into mutually exclusive regions according to a pre-
defined splitting criterion, progressively narrowing down the
size of the regions. Eventually, when the number of instances
in a region becomes smaller than a specific a preassigned
value (or their values vary just slightly), the partitioning of
that region stops and a leaf is created. Whenever a new in-
stance is fed into the tree, a specific path is followed accord-
ing to the splitting rules defined in the tree-building proce-
dure, and the predicted output is then obtained from the ag-
gregation of the values stored in the leaf. The splitting crite-
rion, the termination test, the number of trees grown, and the
rule adopted to associate a numerical value to each leaf are
the key-features differentiating the many tree-based methods
available in the literature. On one extreme CART are a fully
deterministic single-tree method, on the other, Extra-Trees
are a totally randomized ensemble method as explained next.

2.1 Model building

Extra-Trees substantially differ from traditional determinis-
tic and randomized methods in two particular aspects. First,
in the process of building a tree, the selection of the input
and splitting value to split a node are randomized, i.e. they
occur independently of the output variable. Second, an en-
semble ofM trees is created in order to compensate for the
effect of randomization, and the outcome of the ensemble
is the average of each tree output. Nodes are split using the
following rule: K alternative inputs (cut-directions) are ran-
domly selected and, for each one, a random splitting value
(cut-point) is chosen; a score is then associated to each cut-
direction and the one maximising the variance reduction fol-
lowing the adopted splitting criterion is adopted to split the
node. The termination test that determines when to stop parti-
tioning a node is based on the number of instances within the
node. When this number is smaller than a user-defined value
nmin, the algorithm stops partitioning a node and a leaf is cre-
ated (Geurts et al., 2006). To each leaf a value is eventually
assigned, obtained as the average of the target values associ-
ated to the inputs falling in that leaf. The estimates produced
by theM trees are finally aggregated by arithmetic average
(see Table1 for a tabular version of the Extra-Trees building
algorithm). The rationale behind the approach is that the use
of the original training dataset (instead of a bootstrap replica,
as in the Bagging method,Breiman, 1996) is motivated to
minimise bias, while the combined use of randomization and
ensemble averaging is aimed at reducing the variance of the
model output (Geurts et al., 2006).

2.2 Hyperparameters

The three hyper-parametersM, K, andnmin characterising
the model building algorithm diversely affect the ensem-
ble performance and overall method efficiency. Increasingly
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Table 1.Tabular version of the Extra-Trees building algorithm.

Input: an output variabley, n inputs{x1, x2, . . . , xn
} and a training datasetD composed of|D| input-output observations.

Output: a single Extremely Randomized Tree. The algorithm is repeatedM times to produce an ensemble.

Step 1. Randomly select without replacementK inputs{x1, x2, . . . , xK
} among then available (non-constant inD).

Step 2. For each selected input variablexi (with i = 1, . . . ,K):

Step 2a. Compute the minimum and maximum value ofxi in D, denoted asxi,min
D andx

i,max
D .

Step 2b. Randomly select a cut-pointsi in the interval
[
x
i,min
D , x

i,max
D

]
.

Step 2c. Return the split
[
xi < si

]
.

Step 3. Among theK splits{s1, s2, . . . , sK
}, select the splits∗ such that

s∗
= arg max

i =1, ..., K
1var(s

i ,D)

where:

– 1var(s
i ,D) is the variance reduction defined as var{y|D} −

|Dl(xi )|
|D|

var{y|Dl(xi)} −
|Dr (xi )|

|D|
var{y|Dr (xi)}.

–Dl(xi) andDr (xi) are the two subsets ofD satisfying the conditionsxi < si andxi > si ,
– |D| is the number of samples inD, |Dl(xi)| and|Dr (xi)| are the number of samples inDl(xi) andDrxi).

Step 4. According tos∗, split the setD into the subsetsDl(xi) andDr (xi), and return the (non-terminal) nodeνj .

Step 5. For the subsetDl(xi) (andDr (xi)), verify the following conditions:
– |Dl(xi)| (or |Dr (xi)|) is lower thannmin (minimum cardinality).
– All input variables{x1, x2, . . . , xn

} are constant inDl(xi) (orDr (xi)).
– The output variable is constant inDl(xi) (orDr (xi)).

Step 6. If one of the conditions in Step 5 is satisfied, the subset is is leaf (labelled with the average of the output variables
values).
Alternatively, Steps 1–5 are repeated by replacingD with Dl(xi) (orDr (xi)).

high values ofM reduce the variance of the final estimate
(Breiman, 2001), but also considerably add to the compu-
tational requirements of the building algorithm, so the final
choice depends on a trade-off between the desired model ac-
curacy and available computing power.K can be chosen in
the interval [1, . . . ,n], with n being the number of input vari-
ables, and controls the level of randomness in the tree build-
ing process. The smallerK, the stronger the randomization of
the trees and the weaker the dependence of their structure on
the values of the output variable in the training dataset. In the
extreme case, whenK is equal to 1, the splits (cut-directions
and cut-points) are chosen in a totally independent way of
the output variable and the method builds totally randomized
trees. As empirically demonstrated byGeurts et al.(2006),
the optimal value ofK for regression problems is equal to
the numbern of inputs, and so the number of cut-directions
randomly selected. Finally, the thresholdnmin is used to bal-
ance bias and variance reduction. Large values ofnmin lead
to small trees, with high bias and small variance; conversely,
low values ofnmin lead to fully-grown trees, which may over-
fit the data. The optimal tuning ofnmin can depend on the
level of noise in the training dataset: the noisier the outputs,
the higher the optimal value ofnmin should be. Although this
tuning might require some experiments,Geurts et al.(2006)

have shown that a value ofnmin between 5 and 50 is a robust
choice in a broad range of typical conditions.

2.3 Computational requirements

From the computational point of view, the complexity
of the Extra-Trees building procedure is in the order of
|D| · log(|D|), with |D| being the number of input-output ob-
servations in the training datasetD. The computational time
linearly increases withM and K, and logarithmically de-
creases for increasing values ofnmin, meaning that the ap-
proach still remains computationally efficient, though based
on the construction of a tree ensemble. This is because the
splitting rule is very simple compared to other splitting rules
that locally optimise the cut-points, as, for example, those
adopted by CART and M5.

2.4 Input ranking

The particular structure of Extra-Trees can be exploited to
rank the importance of then input variables in explaining
the selected output behaviour. This approach, as originally
proposed byWehenkel(1998), is based on the idea of scor-
ing each input variable by estimating the relative variance re-
duction it can be associated with by propagating the training
datasetD over theM different trees composing the ensemble.

Hydrol. Earth Syst. Sci., 17, 2669–2684, 2013 www.hydrol-earth-syst-sci.net/17/2669/2013/
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Table 2.Tabular version of the Extra-Trees input ranking algorithm.

Input: an output variabley, n inputs{x1, x2, . . . , xn
} and a training datasetD composed of

|D| input-output observations.
Output: ranking of the input variables (sorted by decreasing values of their relevance), and an

ensemble ofM Extra-Trees.

Step 1. Assign to each input variablexi (with i = 1, . . . ,K) a scoreG(xi) equal to 0.

Step 2. Define suitable values forM, K andnmin and build an ensemble of Extra-Trees (as
described in Table1).
At each split nodeνj update the score corresponding to the selected input variablexi

according to the following equation:
G(xi , j) = G(xi , j − 1) + 1var(ν

j )

Step 3. Normalise the scoreG(xi) of each input variable, and sort these values in decreasing
order.

More precisely, the relevanceG(xi) of thei-th input variable
xi in explaining the outputy can be evaluated as follows

G
(
xi

)
=

M∑
τ=1

�∑
j=1

δ
(
νj , xi

)
· 1var

(
νj

)
|D|

M∑
τ=1

�∑
νj =1

1var
(
νj

)
|D|

(1)

whereνj is the j -th non-terminal node in theτ -th tree,�
is the number of non-terminal nodes in the tree,δ(νj , xi) is
equal to 1 if the variablexi is used to split the nodeνj (and
0 otherwise), and1var(ν

j ) (or 1var(s
i,D)) is the variance

reduction associated to nodeνj (see Table1). Finally, the
input variables{x1, x2, . . . , xn

} are sorted by decreasing
values of their relevance (see Table2 for a tabular version of
the input ranking algorithm).

3 Experimental setup

3.1 Datasets

The Extra-Trees capabilities are tested on two stream-
flow modelling problems with different spatial domains and
hydro-meteorological features: Marina catchment is a rela-
tively small urban catchment, considerably altered by human
intervention and subject to a tropical climate; the Cunning
River watershed is a large basin, predominantly natural, char-
acterised by a Mediterranean climate.

3.1.1 Marina catchment

Marina catchment feeds the homonymous reservoir located
in the heart of Singapore. The reservoir, created in late 2008
with the construction of a tidal barrier, has a surface area
of 2.45 km2 and an active storage of about 3.2× 106 m3 op-
erated for floods control and drinking water supply (Galelli
et al., 2013). Five main tributaries discharge water into the

Table 3. Descriptive statistics of the output variable for Marina
catchment and Canning River datasets.

Marina streamflow Canning streamflow
[m3 s−1] [m3 s−1

]

Number of samples 24 120 4017
Minimum 0.00 0.00
Maximum 845.21 16.77
Mean 5.92 0.31
Std. dev. 25.32 1.08
Coefficient of variation 4.28 3.43
Skewness 14.13 7.38

reservoir, draining a catchment of≈ 100 km2 (almost 15 %
of the land area of Singapore) and producing a mean an-
nual inflow of about 150× 106 m3 with a typical tropical
pattern. The catchment includes one of the most densely
populated and urbanised regions in Singapore and Southeast
Asia (Xie, 2006), and its drainage system consists of con-
crete lined canals, which make the time of concentration ex-
tremely short (≈ 1 h) and the base flow almost null. Because
of the high-intensity rainfall events characterising the region
(Selvalingam et al., 1987), discharges occur in high peaks
over short periods of few hours (see Fig.1, upper panel).

The available dataset consists of hourly rainfall and in-
flow measurements over the period 1 April 2009–31 Decem-
ber 2011, for a total of 24 120 data points (see Table3 for
the descriptive statistics of the output variable). The selec-
tion of the most significant time-lags is performed by means
of the Mutual Information (MI) criterion (e.g.Hejazi and Cai,
2009, and references therein), which singled out an input set
composed of three time-lags for each variable, namely [yt−1,
yt−2, yt−3, rt−1, rt−2, rt−3], with yt−1 andrt−1 denoting the
inflow and rainfall in the time interval [t − 1, t ]. The stream-
flow modelling exercise is then performed over a prediction
horizon of 1 h.

www.hydrol-earth-syst-sci.net/17/2669/2013/ Hydrol. Earth Syst. Sci., 17, 2669–2684, 2013
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Fig. 1.Specimen of the hydrograph generated in Marina catchment and Canning River under different rainfall (and temperature) scenarios.

3.1.2 Canning River

The second dataset is taken from the Canning River basin, a
major tributary of the Swan River in Western Australia. The
river drains a catchment area of≈ 850 km2, where woodland
is the predominant land use. The climate shows a Mediter-
ranean pattern, characterised by warm and dry summers and
cool, wet winters. The long-term average annual rainfall for
the catchment is≈ 900 mm mostly falling between May and
September. The combination of this rainfall pattern and land
use gives the river an ephemeral nature (Young, 2002) with
practically no flow during the summer period. As discussed
in Young et al.(1997), a data analysis shows indeed a strong
nonlinear correlation between the rainfall and the river flow
(Fig. 1).

For the present analysis the dataset consists of daily rain-
fall, temperature and flow measurements available for the
period 1 January 1977–31 December 1987, for a total of
4017 data points (Table3). As for the former dataset, the
most significant input variables are selected with the MI cri-
terion. According to this criterion two time-lags for each
variables, namely [yt−1, yt−2, rt−1, rt−2, Tt−1, Tt−2] (with
Tt−1 denoting the average temperature in the time interval
[t − 1, t ]), are selected to predict the flow one-day-ahead.

3.2 Setting the experiments

The quantitative assessment of Extra-Trees is performed us-
ing a four-step procedure:

– Random sampling: to ensure a robust evaluation of the
model performance (Elshorbagy et al., 2010a), the two
datasets are randomly sampled (without replacement)
100 times, in order to create at each sampling exer-
cise a training/cross-validation and testing subsets, re-
spectively containing two thirds and one third of the
available data. Ten different groups (each composed of
training/cross-validation and testing subsets) are then
selected based on their statistical properties, namely
mean and standard deviation of the output variable. Ten
different models are identified on the 10 data groups,
with each model finally evaluated on the corresponding
testing subset.

– Model evaluation: the Extra-Trees evaluation is based
on multi-assessment criteria (Hwang et al., 2012),
aimed at describing the model behaviour under differ-
ent flow conditions. The criteria considered are (i) the
Nash–Sutcliffe (NS) criterion and (ii) the Relative Root
Mean Squared Error (RRMSE), which are normalised
statistics providing a description of the models be-
haviour over the whole range of flow conditions; (iii) the
Root Mean Squared Error (RMSE), which measures the
goodness of fit relevant to high flows (iv) the Mean Ab-
solute Error (MAE), which indicates the goodness of
fit at moderate flow values. This assessment is com-
pleted by a graphical analysis of the scatter plots and
hydrographs.

– Comparative assessment: the best Extra-Trees ensem-
ble so identified is compared against several machine
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Fig. 2. Values of NS(a), MAE (b), RMSE(c) and RRMSE(d) as a function ofnmin andM over the testing subsets for Marina Catchment
(average over 10 data groups).

learning modelling methods, including tree-based meth-
ods (M5 model trees and CART) and ANNs. To facili-
tate the comparison, Multiple Linear Regression (MLR)
models are employed as base line references.

– Uncertainty analysis: to estimate the uncertainty associ-
ated with model predictions, the residuals of the 10 test-
ing subsets are computed and aggregated in a single
dataset, for which both the empirical and probability
distributions are fit. Each probability distribution is se-
lected using a trial-and-error analysis on several can-
didate distributions (e.g. Beta, Gamma, Logistic, Nor-
mal, t location-scale, etc.), whose parameters are cal-
ibrated by means of maximum likelihood estimation.
Among the different candidate distributions, the most
performing one with respect to the Bayesian informa-
tion criterion is then adopted. In the benchmarking ex-
ercise, a two-sample Kolmogorov–Smirnov test is also
performed to compare the distributions of model residu-
als. In particular, residuals are tested under the null hy-
pothesis that they are from the same distribution: two
residuals are considered significantly different if the
null hypothesis is rejected at the 5 % confidence level
(p value6 0.05). This means that, if the null hypothe-
sis is rejected, the residuals generated by two models on
the 10 testing subsets are likely to belong (with 95 %
confidence) to different probability distributions.

4 Extra-Trees application results

4.1 Prediction

Extra-Trees’ predicting potential is assessed for different val-
ues ofM, K, andnmin. The sensitivity analysis is performed
by running an extensive number of training/cross-validation
and testing experiments on the selected 10 data groups of
each dataset. As explained in Sect.2.1, the value ofK is fixed
equal to the numbern of input variables, which is 6 for both
Marina and Canning dataset. 25 values forM andnmin are
sampled in the domains [1, 1000] and [2, 1000], leading to
625 different parameterisations. The extreme cases are: (i) a
single Extra-Tree with large leaves (i.e.M = 1, nmin = 1000)
or a fully-grown tree (i.e.M = 1, nmin = 2), (ii) a large for-
est composed of small or fully-grown trees (M = 1000 with
nmin = 1000 or 2, respectively).

The values of the multi-assessment criteria as a function of
M andnmin are illustrated in Figs.2 and3, while a graphical
analysis of the parameters’ effect on the NS criterion is given
in Fig. 4. For both Marina and Canning dataset the larger the
numberM of trees in the forest, the higher the variance re-
duction. The reduction in the variance has a positive effect on
the Extra-Trees estimation error and reflects in the abatement
of the distance between observed and predicted values forM

growing from 1 to 100. Since the computation time linearly
increases withM, a balance must be found between accuracy
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Fig. 3. Values of NS(a), MAE (b), RMSE (c) and RRMSE(d) as a function ofnmin andM over the testing subsets for Canning River
(average over 10 data groups).

and time requirements. The saturation effect (Fig.4c and d)
might help in deciding a proper value (see alsoCastelletti
et al., 2010): the performance improvement from values of
M greater than 200–300 is distinctively negligible. The value
of nmin determines the number of leaves in a tree and, thus,
the ensemble’s overall trade-off between bias and variance.
As shown in Figs.2 and3, reducingnmin has a positive ef-
fect on all the assessment criteria. This effect is consistent up
to a value ofnmin equal to about 5. Indeed, when this thresh-
old is reached, the model building algorithm produces fully
grown trees, with the consequent risk of over-fitting the data
(i.e. lower bias but higher variance in the model output).

In synthesis, sensitivity analysis shows that Extra-Trees
provide reasonably good performance over a broad range of
parameter values: the value ofM must indeed be as large as
possible, though a saturation effect is reached forM greater
than 200–300, whilenmin, as already discussed byGeurts
et al. (2006), should be comprehended between 5 and 15.
For the subsequent analysis (i.e. input ranking and bench-
marking) a parameterisation withM andnmin equal to 500
and 5, respectively, is finally chosen.

Table 4. Input Ranking results for the Marina catchment dataset
(average over 10 data groups). The initial variance is 10 421 100.

Ranking xi G(xi) (%)

1 rt−1 66.89
2 yt−1 15.92
3 rt−2 5.16
4 yt−2 4.49
5 yt−3 4.09
6 rt−3 3.45

4.2 Explanation

As anticipated, the Extra-Trees model building algorithm im-
plicitly allows to rank the model inputs in terms of their rele-
vance in explaining the output. This is useful for the ex-post
physical interpretation of the cause-effect relationships cap-
tured by the model. The ranking is run on the ensemble se-
lected at the end of the model building process. In particular,
an ensemble is cross-validated on the selected 10 data groups
of each dataset, and the inputs are sorted in decreasing or-
der according to the ranking algorithm described in Sect.2.4.
The results obtained as the average relative contribution (over
10 data groups) are reported in Tables4 and5.
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Fig. 4. Values of NS as a function ofnmin (with M = 500) and ofM (with nmin = 100) over the testing subsets for Marina (a andc) and
Canning River (b andd). Dotted lines represent the standard deviation calculated over the the selected 10 data groups of each dataset.

As for Marina Catchment, the measured rainfallrt−1 and
antecedent flowyt−1 are the most important variables, con-
tributing for about 80 % of the ensemble total variance. The
measured rainfallrt−1 is ranked in the first position, with a
relative score of almost 67 %. This high relevance is due to
the hydraulic characteristics of Marina catchment, which is
drained by concrete lined canals with an almost null base
flow: high flow peaks are mainly driven by rainfall, so the
cumulated precipitation in the previous hour becomes the
most relevant information to the model output. Because of
the short time of concentration (approximately one hour),
the measured precipitation and antecedent flow with 2 and
3 time-lags are less important.

The Canning River drains a large, natural catchment
forced by a Mediterranean climate. As illustrated in Table5,
the antecedent flow with 1 and 2 time lags is the most relevant
variable (87 % of the ensemble output), followed by rainfall
and temperature.

5 Benchmarking

The best Extra-Trees ensemble identified in the model build-
ing process is compared against M5 model trees, CART,

Table 5. Input ranking results for the Canning River dataset (aver-
age over 10 data groups). The initial variance is 2958.69.

Ranking xi G(xi) (%)

1 yt−1 63.56
2 yt−2 22.90
3 rt−1 5.28
4 rt−2 3.26
5 Tt−1 2.56
6 Tt−2 2.44

ANNs and MLR. The same experimental setting and datasets
used for the Extra-Trees are adopted in this benchmark-
ing exercise in order to guarantee a rigorous and unbiased
comparison.

5.1 Models implementation

The MatLab toolbox M5PrimeLab (Jekabsons, 2010) is used
to implement the M5 model trees in the different case stud-
ies and relative data groups. Pruning and smoothing are ac-
counted for as suggested inJothiprakash and Kote(2011);
in particular, the smoothing coefficient is optimised via
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Table 6.k-fold cross-validation (withk = 10) and testing results of Extra-Trees and benchmarking models for Marina Catchment dataset.

k fold cross-validation Testing

NS RMSE RRMSE MAE NS RMSE RRMSE MAE
Model [−] [m3 s−1] [−] [m3 s−1

] [−] [m3 s−1
] [−] [m3 s−1

]

Extra-Trees 0.76 12.39 0.49 2.01 0.76 12.29 0.49 1.99
M5 0.77 11.89 0.48 2.01 0.78 11.77 0.47 1.99
CART 0.69 13.68 0.55 2.31 0.71 13.61 0.54 2.26
ANNs 0.65 14.45 0.57 3.99 0.69 13.92 0.55 4.06
MLR 0.74 12.66 0.51 3.84 0.74 12.82 0.51 3.84

trial-and-error in the range [0, 20] (Wang and Witten, 1997).
The other parameters requiring a manual tuning are the split
threshold and the minimum number of training samples one
node may represent. The former is explored in the range
[0.05, 0.20], the latter in the range [2, 1000].

CART are implemented with the MatLab Statistics Tool-
box, which relies on the original algorithm proposed by
Breiman et al.(1984). Similarly to the other tree-based meth-
ods adopted in this study (i.e. Extra-Trees and M5), the min-
imum number of training samples one node may represent
is heuristically optimised in the range [2, 1000]. Pruning is
adopted to compute the full tree and the optimal sequence of
pruned subtrees, thus minimising the risk of over-fitting the
cross-validation data.

The MatLab Neural Network Toolbox is adopted to set
up the ANNs, whose parameters are optimised by means of
the Levenberg–Marquardt algorithm. For each of the 10 data
groups (of each case study), the ANNs cross-validation pro-
cess is repeated 100 times with 100 different initialisation
of the random weights. The best performing parameterisa-
tion in terms of RMSE is then selected as representative of
a data group. As for the ANNs architecture, the number of
input nodes corresponds to the number of input variables
(thus 6 for both Marina and Canning River case study), while
the number of hidden nodes is heuristically optimised in the
range [1, 10].

MLR models are also implemented in MatLab, and cali-
brated using least-squares.

For each machine learning method considered in this
study, this implementation eventually leads to 10 models (for
each case study) developed and tested using the correspond-
ing unseen data groups.

5.2 Results and analysis

As discussed in Sects.3.1 and 4.2, the Marina catchment
dataset is characterised by a weak autocorrelation in the
hourly inflow to the reservoir. This is the reason why pro-
viding the antecedent flow as an input to predict future dis-
charges does not strongly increase the information available
to the different models. Rather, the limiting factor for the
model performance seems to be the capability of exploring

the correlation between the future inflows and the measured
rainfall and flow. This is confirmed by the results reported
in Table6. Extra-Trees and M5 outperform the other mod-
els with respect to all the multi-assessment criteria. In this
specific comparison, Extra-Trees and M5 are, de-facto, com-
parable over the whole range of flows, as shown by the NS
and RRMSE values. Extra-Trees and M5 are also compara-
ble in terms of MAE, which indicates the goodness of fit at
moderate flow values. Yet, M5 stands out as the best per-
forming model when accounting for the RMSE, which mea-
sures the model performance relevant to high flows. This be-
haviour can probably be explained by considering the differ-
ent models architectures: M5 have linear models in the fi-
nal (pruned) leaves, and this allows them to extrapolate over
unseen events; the Extra-Trees prediction corresponds to the
average of the output values associated to the inputs falling
in a specific leaf, and this can limit their extrapolation capa-
bilities. The third model family in order of performance is
ANNs, while the worst results are attributable to CART and
MLR. The low CART performance can again be explained
by accounting for the model architecture: the CART model
building algorithm provides an optimal partitioning of the in-
put space (with respect to the standard deviation reduction
of the output variables; seeBreiman et al., 1984), but the
prediction associated to each leaf is simply the average of
the output values associated to the inputs falling in a spe-
cific leaf. As a consequence, a CART structure can be seen
as a classification of the different flow regimes registered in
the training/cross-validation data group, and this can limit
the overall model predictive capabilities. This does not oc-
cur with Extra-Trees since the model building algorithm im-
proves the performance of a single model by ensemble aver-
aging. Unlike Marina catchment, the Canning River dataset
shows a stronger autocorrelation in the flow process, and this
enhances the information content at the disposal of the dif-
ferent models. As shown in Table7, models are characterised
by more comparable performance, although Extra-Trees and
M5 stand out as the best performing models.

In order to better comment on the ability of Extra-Trees in
reproducing different flow regimes, both Extra-Trees and the
benchmarking models are evaluated on four specific regimes,
i.e. base, low, intermediate and high flow. The identification
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Table 7.k fold cross-validation (withk = 10) and testing results of Extra-Trees and benchmarking models for Canning River dataset.

k-fold cross-validation Testing

NS RMSE RRMSE MAE NS RMSE RRMSE MAE
Model [−] [m3 s−1

] [−] [m3 s−1
] [−] [m3 s−1

] [−] [m3 s−1
]

Extra-Trees 0.92 0.30 0.28 0.05 0.93 0.28 0.27 0.05
M5 0.94 0.25 0.24 0.06 0.94 0.26 0.24 0.06
CART 0.87 0.36 0.35 0.07 0.88 0.37 0.35 0.07
ANNs 0.88 0.35 0.34 0.12 0.90 0.34 0.33 0.10
MLR 0.92 0.29 0.28 0.08 0.92 0.30 0.29 0.08

Fig. 5. Scatter plots of predicted (y-axis) and measured (x-axis) streamflow [m3 s−1] in Marina catchment for the different models on the
testing subsets. Different colours are used to represent the flow regimes: blue, green, red and purple correspond to base, low, intermediate
and high flow, respectively.

of these flow regimes is based on the calculation of spe-
cific percentile values on the testing dataset. For both Ma-
rina catchment and Canning River, the flow regimes are cat-
egorised by using the 75th, 95th and 99.5th percentiles, as
shown in Table8. These percentile values are related to Ma-
rina catchment and Canning River dynamics, which are char-
acterised by prolonged periods of low or null flow. In the
former case this is due to the presence of large paved ar-
eas that reduce the infiltration, while in the latter case the
null flow is due to the ephemeral nature of the river dur-
ing the summer period. Because of this prolonged periods
of no flow, 75 % of the observations falls below the base flow
threshold. The other extreme of the flow regimes, i.e. high
flow, also corresponds to a high percentile value (99.5th).
The models performance for the different flow regimes are
graphically represented in two scatter plots (Figs.5 and6)

and measured in terms of RMSE (Table9). The table shows
that M5 and Extra-Trees are the best performing models,
with M5 having better performance on base and high flow.
Indeed, as explained above, the tendency of Extra-Trees in
overestimating and underestimating base and high flows, re-
spectively, is due to the model architecture. Unsurprisingly,
other models that do not make use of a regression system,
such as CART, also show underestimation problems for high
flows (and overestimation for base flows). On the other hand,
Extra-Trees predictive capabilities are either comparable or
better than M5 one on low and intermediate flow conditions.
A comparison between the measured and predicted stream-
flow with two best performing models, i.e. Extra-Trees and
M5, is given in Fig.7, where 95 % confidence bounds asso-
ciated to each prediction are also reported. These latter are
computed as twice the error standard deviation assuming the
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Table 8.Percentile-based categorised flow regimes for Marina catchment and Canning River.

Marina catchment Canning River
Flow regime Percentile Flow limit[m3 s−1

] Flow limit [m3 s−1
]

Base flow < 75th 3.17 0.16
Low flow 75th–95th 3.17–17.10 0.16–1.44
Intermediate flow 95th–99.5th 17.10–169.48 1.44–7.73
High flow > 99.5th 169.48 7.73

Table 9. Testing results, in terms of RMSE [m3 s−1], of Extra-Trees and benchmarking models for Marina catchment and Canning River
datasets on four different flow regimes.

Marina catchment Canning River

Model Base fl. Low fl. Int. fl. High fl. Base fl. Low fl. Int. fl. High fl.

Extra-Trees 2.14 4.56 31.64 141.27 0.01 0.15 0.86 3.07
M5 1.73 4.25 31.70 139.75 0.01 0.17 0.89 2.39
CART 2.87 6.57 35.36 152.09 0.02 0.16 1.28 3.41
ANNs 2.70 8.82 40.66 142.13 0.16 0.21 0.98 3.21
MLR 2.23 7.61 33.63 141.08 0.10 0.15 0.83 3.17

Fig. 6.Scatter plots of predicted (y-axis) and measured (x-axis) streamflow [m3 s−1] in Canning River for the different models on the testing
subsets. Different colours are used to represent the flow regimes: blue, green, red and purple correspond to base, low, intermediate and high
flow, respectively.

logistic distribution as underlying probability distribution (as
explained in the next section).

5.3 Residuals analysis

The Logistic probability distribution, with different param-
etersα andβ, is found to best fit the residuals of the dif-
ferent models in both case studies (on the testing subsets).
Although being characterised by the same distribution, a
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Fig. 7. Comparison between the measured and predicted streamflow (with Extra-Trees and M5) for Marina catchment and Canning River
(left panels), and comparison between measured and predicted streamflow with Extra-Trees and 95 % confidence bounds (right panels).
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Fig. 8. Fitted logistic and empirical probability distribution of the models residuals for Marina catchment(a, c)and Canning River(b, d) on
the testing subsets.

graphical analysis shows a substantial difference in the es-
timated parameters (Fig.8a and b). Apart from MLR, all the
models residuals are characterised by a symmetrical distri-
bution, with Extra-Trees and M5 having the smallest predic-
tive uncertainty. These two models are followed by CART
and ANNs, which show lower probability of null residuals
and a more prominent kurtosis. The linear model residuals

are statistically comparable to CART residuals for Canning
River case study, while for Marina catchment dataset they
show an asymmetrical distribution with higher probability of
positive residuals. These findings are confirmed by the em-
pirical distributions (Fig.8c and d). However, there is not a
full resemblance between these latter and the probability dis-
tributions, and this could be due to the streamflow generation
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Table 10.Comparison ofk fold cross-validation (withk = 10) and testing CPU time for Extra-Trees, M5, CART, ANNs and MLR for Marina
and Canning River dataset. The estimates are with respect to a single (of the 10) data group composing each dataset.

Marina catchment Canning River
Model k fold cross-valid.[s] Testing[s] k fold cross-valid.[s] Testing[s]

Extra-Trees 1008.876 20.898 78.404 1.202
M5 1788.300 2.045 32.211 0.255
CART 9.891 0.037 1.580 0.011
ANNs 16.691 0.084 8.240 0.079
MLR 0.225 0.019 0.136 0.011

process and the associated model error. Indeed, both Marina
catchment and Canning river are characterised by prolonged
periods of null (or very little) flow, during which the associ-
ated streamflow prediction error is around zero, and shorter
periods of high flow, during which the prediction error can
raise to larger values. This is reflected by the empirical dis-
tributions, which show that the highest frequency of mod-
els errors is concentrated in the intervals−2.5 to 2.5 m3 s−1

and−0.5 to 0.5 m3 s−1 for Marina catchment and Canning
river, respectively. Such very high kurtosis is not fully cap-
tured by most of the fitted probability distributions we com-
pared, as they are not capable of concentrating the models
errors in a little interval. The comparison between empirical
and probability distributions also shows that the fitted logistic
for Canning River assumes values larger than one. This may
appear misleading, but the probability density function can
actually be larger than one, especially if the deviation is rel-
atively low (Box et al., 2005). The overall difference in the
pdf parameterisations is also confirmed by the two-sample
Kolmogorov–Smirnov test: the p-value is null for all the
combinations of models residuals, and it thus indicates that
the models residuals may represent different distributions.

5.4 Computational requests

All the cross-validation and testing experiments for M5,
CART, ANNs and MLR are carried out in MatLab 7.10.0
(R2010a) environment running on a 2.4 GHz Intel Core 2
Duo with 4 GB Ram. The experiments for Extra-Trees are
carried out using a compiled C++ package running on the
same machine. From Table10it can be noticed that when the
different models are applied to the Canning River case study,
the computational requests are quite limited, with Extra-
Trees and M5 requiring for example 78.40 and 32.21 s, re-
spectively for the cross-validation process of a single data
group consisting of 2560 samples (1280 in testing). The com-
putational requests of ANNs are smaller, but it is here neces-
sary to account for the 100 random initialisations (for a single
initialisation the computational request is equal to 8.24 s).

On the other hand, the application of these models to
Marina catchment problem, characterised by a much larger
number of samples (16 080 in cross-validation and 8030 in
testing), shows a different picture. The Extra-Trees CPU
time to cross-validate an ensemble of 500 Extra-Trees (with

nmin = 5) increases to 1008.88 s, while the amount of time
spent on M5 is 1788.30 s. The Extra-Trees model building al-
gorithm is roughly 45 % faster than the M5 one. Apart from
the specific model implementation (the C++ executable may
be faster than Matlab environment), the reason for this im-
portant difference stands in the rule adopted when splitting a
node during the building process. The M5 building procedure
examines all possible splits by exhaustive search (and then
chooses the one that maximises the standard deviation re-
duction of the output variable), while the Extra-Trees model
building algorithm explores onlyK cut-directions (withK
equal to the number of input variables) with corresponding
splitting values. Although building an ensemble of trees, the
overall computational burden remains limited because of the
simple splitting rule.

6 Conclusions

Extra-Trees have been evaluated in their predicting accu-
racy, explanation ability and computational performance
comparatively to other very popular data-driven methods
in a streamflow modelling exercise. The analysis was nu-
merically conducted on two hydrological datasets. Results
show that (i) Extra-Trees provide good performance on both
datasets, in terms of different assessment criteria. In par-
ticular, their performance is numerically equivalent to that
of the best performing model identified during the bench-
marking exercise (i.e. M5) on low and intermediate flows,
while it slightly decreases on base and high flow conditions;
(ii) despite their ensemble nature, Extra-Trees outperform the
other best performing methods in terms of computational ef-
ficiency when adopted on large datasets (good scalability),
such as Marina catchment; finally, (iii) Extra-Trees provide
a physically interpretable ranking of the input variables in
terms of relevance in explaining the output. This result on
two case studies of “known behaviour” suggests that Extra-
Trees could then be adopted in more complex domains, for
example, under varying meteorological conditions. In syn-
thesis, it can be argued that Extra-Trees represent a good
compromise between predicting accuracy and computational
requirements, and they ensure further benefits in terms of ex-
planation ability.
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It can also be observed that being a non-parametric
method, Extra-Trees do not require any parameter optimi-
sation whereas they provide good performance over a broad
range of hyper-parameters. In addition, the combined use of
randomization and ensemble averaging is aimed at minimis-
ing the output variance without the need for any a-posteriori
processing, such as pruning and smoothing (adopted for M5).
This has two advantages in that it further simplifies the
model identification and it adds to Extra-Trees computational
efficiency.

In conclusion, Extra-Trees are a valid alternative to tra-
ditional parametric data-driven methods, such as ANNs,
and to other non-ensemble tree-based approaches. They can
be adopted for any hydrological problem (as they provide
performance equivalent to those achievable with paramet-
ric methods), and should be recommended for computa-
tional intensive problems. These include modelling of large
datasets and input selection: large datasets are becoming
more frequent in several hydrological applications, such as
the modelling of urban hydrological processes, where the
short time of concentration of urban catchments requires
adopting a very short sampling/modelling time (e.g. one hour
in Marina catchment), thus largely adding to the dimension-
ality of the training and testing datasets.
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