Articles | Volume 29, issue 2
https://doi.org/10.5194/hess-29-485-2025
https://doi.org/10.5194/hess-29-485-2025
Research article
 | 
23 Jan 2025
Research article |  | 23 Jan 2025

How much water vapour does the Tibetan Plateau release into the atmosphere?

Chaolei Zheng, Li Jia, Guangcheng Hu, Massimo Menenti, and Joris Timmermans

Related authors

Monitoring the combined effects of drought and salinity stress on crops using remote sensing in the Netherlands
Wen Wen, Joris Timmermans, Qi Chen, and Peter M. van Bodegom
Hydrol. Earth Syst. Sci., 26, 4537–4552, https://doi.org/10.5194/hess-26-4537-2022,https://doi.org/10.5194/hess-26-4537-2022, 2022
Short summary
GENERATING HIGH-TEMPORAL AND SPATIAL RESOLUTION TIR IMAGE DATA
M. Herrero-Huerta, S. Lagüela, S. M. Alfieri, and M. Menenti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 737–741, https://doi.org/10.5194/isprs-archives-XLII-2-W7-737-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W7-737-2017, 2017
Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction
Yerong Wu, Martin de Graaf, and Massimo Menenti
Atmos. Meas. Tech., 9, 5575–5589, https://doi.org/10.5194/amt-9-5575-2016,https://doi.org/10.5194/amt-9-5575-2016, 2016
Short summary
Modelling stream flow with a discrete rainfall–runoff model and 37 GHz PDBT microwave observations: the Xiangjiang River basin case study
Haolu Shang, Massimo Menenti, and Li Jia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-129,https://doi.org/10.5194/hess-2016-129, 2016
Manuscript not accepted for further review
Short summary
Orientation dependent glacial changes at the Tibetan Plateau derived from 2003–2009 ICESat laser altimetry
V. H. Phan, R. C. Lindenbergh, and M. Menenti
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-2425-2014,https://doi.org/10.5194/tcd-8-2425-2014, 2014
Revised manuscript not accepted

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
On the importance of discharge observation uncertainty when interpreting hydrological model performance
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024,https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci., 28, 4099–4126, https://doi.org/10.5194/hess-28-4099-2024,https://doi.org/10.5194/hess-28-4099-2024, 2024
Short summary
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023,https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary

Cited articles

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 170191, https://doi.org/10.1038/sdata.2017.191, 2018 (data available at: https://doi.org/10.7923/G43J3B0R). 
Bibi, S., Wang, L., Li, X., Zhou, J., Chen, D., and Yao, T.: Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review, Int. J. Climatol., 38, e1–e17, https://doi.org/10.1002/joc.5411, 2018. 
Bohn, T. J. and Vivoni, E. R.: Process-based characterization of evapotranspiration sources over the north american monsoon region, Water Resour. Res., 52, 358–384, https://doi.org/10.1002/2015WR017934, 2016. 
Chang, Y., Qin, D., Ding, Y., Zhao, Q., and Zhang, S.: A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China, J. Hydrol., 561, 16–30, https://doi.org/10.1016/j.jhydrol.2018.03.054, 2018. 
Chen, D., Xu, B., Yao, T., Guo, Z., Cui, P., Chen, F., Zhang, R., Zhang, X., Zhang, Y., Fan, J., Hou, Z., and Zhang, T.: Assessment of past, present and future environmental changes on the Tibetan Plateau, Chinese Sci. Bull., 60, 3025–3035, https://doi.org/10.1360/N972014-01370, 2015. 
Download
Short summary
Reliable quantification of the amount and variability of evapotranspiration (ET) on the Tibetan Plateau is important for understanding the regional water cycle and resources. This study compares 22 ET products and finds that the mean annual ET over the Tibetan Plateau is 333.1 mm yr-1, and most products show an increasing trend. It also finds that soil evaporation is the largest contributor to total ET and that contributions from open-water evaporation and snow/ice sublimation cannot be ignored.