Articles | Volume 29, issue 2
https://doi.org/10.5194/hess-29-485-2025
https://doi.org/10.5194/hess-29-485-2025
Research article
 | 
23 Jan 2025
Research article |  | 23 Jan 2025

How much water vapour does the Tibetan Plateau release into the atmosphere?

Chaolei Zheng, Li Jia, Guangcheng Hu, Massimo Menenti, and Joris Timmermans

Data sets

Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations (http://glass.umd.edu/ET/MODIS/1km/) Y. Yao et al. https://doi.org/10.1002/2013JD020864

The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) (https://doi.org/10.5067/RKPHT8KC1Y1T) R. Gelaro et al. https://doi.org/10.1175/JCLI-D-16-0758.1

Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges (https://doi.org/10.5067/TXBMLX370XX8) B. Li et al. https://doi.org/10.1029/2018WR024618

Improvements to a MODIS global terrestrial evapotranspiration algorithm (https://doi.org/10.5067/MODIS/MOD16A2.061) Q. Mu et al. https://doi.org/10.1016/j.rse.2011.02.019

The FLUXCOM ensemble of global land-atmosphere energy fluxes (https://doi.org/10.17871/FLUXCOM_EnergyFluxes_v1 and https://doi.org/10.17871/FLUXCOM_RS_METEO_CRUNCEPv6_1980_2013_v1) M. Jung et al. https://doi.org/10.1038/s41597-019-0076-8

The ERA5 global reanalysis (https://doi.org/10.24381/cds.adbb2d47) H. Hersbach https://doi.org/10.1002/qj.3803

ERA5-Land: a state-of-the-art global reanalysis dataset for land applications (https://doi.org/10.24381/cds.e2161bac) J. Muñoz-Sabater et al. https://doi.org/10.5194/essd-13-4349-2021

TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015 (https://doi.org/10.7923/G43J3B0R) J. T. Abatzoglou et al. https://doi.org/10.1038/sdata.2017.191

BESSv2.0: A satellite-based and coupled-process model for quantifying long-term global land-atmosphere fluxes (https://www.environment.snu.ac.kr/bessv2) B. Li et al. https://doi.org/10.1016/j.rse.2023.113696

FLUXNET-CH4 CN-Hgu Hongyuan S. Niu and W. Chen https://doi.org/10.18140/FLX/1669632

Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau (https://doi.org/10.18140/FLX/1440211) T. Kato et al. https://doi.org/10.1029/2003JD003951

The Global Land Data Assimilation System (https://doi.org/10.5067/SXAVCZFAQLNO and https://doi.org/10.5067/ZOG6BCSE26HV) M. Rodell et al. https://doi.org/10.1175/BAMS-85-3-381

Synthesis of global actual evapotranspiration from 1982 to 2019 (https://doi.org/10.7910/DVN/ZGOUED) A. Elnashar et al. https://doi.org/10.5194/essd-13-447-2021

Overview of ChinaFLUX and evaluation of its eddy covariance measurement (https://doi.org/10.12199/nesdc.ecodb.chinaflux2003-2010.2021.dxg.005 and https://doi.org/10.12199/nesdc.ecodb.chinaflux2003-2010.2021.hbg.006) G. R. Yu et al. https://doi.org/10.1016/j.agrformet.2006.02.011

A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau (https://doi.org/10.11888/Meteoro.tpdc.270910) Y. Ma et al. https://doi.org/10.5194/essd-12-2937-2020

TPHiPr: a long-term (1979-2020) high-accuracy precipitation dataset (1/30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations (https://doi.org/10.11888/Atmos.tpdc.272763) Y. Jiang et al. https://doi.org/10.5194/essd-15-621-2023

Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations (https://doi.org/10.12237/casearth.640f012a819aec3 f2b52a4b6) C. Zheng et al. https://doi.org/10.1016/j.jhydrol.2022.128444

An Enhanced MOD16 Evapotranspiration Model for the Tibetan Plateau During the Unfrozen Season (https://doi.org/10.11888/Hydro.tpdc.271236) L. Yuan et al. https://doi.org/10.1029/2020JD032787

Remote Sensing of Global Daily Evapotranspiration based on a Surface Energy Balance Method and Reanalysis Data (https://data.tpdc.ac.cn/zh-hans/data/df4005fb-9449-4760-8e8a-09727df9fe36) X. Chen et al. https://doi.org/10.1029/2020JD032873

Calibration-Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally (https://doi.org/10.6084/m9.figshare.13634552) N. Ma et al. https://doi.org/10.1029/2021WR029691

Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017 (https://doi.org/10.11888/Geogra.tpdc.270251) Y. Zhang et al. https://doi.org/10.1016/j.rse.2018.12.031

Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation (https://doi.org/10.12072/ncdc.Eco-Hydro.db1676.2022) N. Ma and Y. Zhang https://doi.org/10.1016/j.agrformet.2022.108887

Operational global actual evapotranspiration: Development, evaluation, and dissemination (https://doi.org/10.5066/P9L2YMV) G. B. Senay et al. https://doi.org/10.3390/s20071915

Download
Short summary
Reliable quantification of the amount and variability of evapotranspiration (ET) on the Tibetan Plateau is important for understanding the regional water cycle and resources. This study compares 22 ET products and finds that the mean annual ET over the Tibetan Plateau is 333.1 mm yr-1, and most products show an increasing trend. It also finds that soil evaporation is the largest contributor to total ET and that contributions from open-water evaporation and snow/ice sublimation cannot be ignored.