Articles | Volume 29, issue 11
https://doi.org/10.5194/hess-29-2407-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2407-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Hydrologic Modeling and Assimilation Lab, Portland State University, Portland, OR, USA
Fatemeh Gholizadeh
Department of Civil and Environmental Engineering, Hydrologic Modeling and Assimilation Lab, Portland State University, Portland, OR, USA
Keyhan Gavahi
Center for Complex Hydrosystems Research, Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
Hamid Moradkhani
Center for Complex Hydrosystems Research, Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
Related authors
Peyman Abbaszadeh, Fadji Zaouna Maina, Chen Yang, Dan Rosen, Sujay Kumar, Matthew Rodell, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-280, https://doi.org/10.5194/hess-2024-280, 2024
Revised manuscript under review for HESS
Short summary
Short summary
To manage Earth's water resources effectively amid climate change, it's crucial to understand both surface and groundwater processes. We developed a new modeling system that combines two advanced tools, ParFlow and LIS/Noah-MP, to better simulate both land surface and groundwater interactions. By testing this integrated model in the Upper Colorado River Basin, we found it improves predictions of hydrologic processes, especially in complex terrains.
Peyman Abbaszadeh, Fadji Zaouna Maina, Chen Yang, Dan Rosen, Sujay Kumar, Matthew Rodell, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-280, https://doi.org/10.5194/hess-2024-280, 2024
Revised manuscript under review for HESS
Short summary
Short summary
To manage Earth's water resources effectively amid climate change, it's crucial to understand both surface and groundwater processes. We developed a new modeling system that combines two advanced tools, ParFlow and LIS/Noah-MP, to better simulate both land surface and groundwater interactions. By testing this integrated model in the Upper Colorado River Basin, we found it improves predictions of hydrologic processes, especially in complex terrains.
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024, https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 28, 2531–2553, https://doi.org/10.5194/hess-28-2531-2024, https://doi.org/10.5194/hess-28-2531-2024, 2024
Short summary
Short summary
Linking hydrodynamics with machine learning models for compound flood modeling enables a robust characterization of nonlinear interactions among the sources of uncertainty. Such an approach enables the quantification of cascading uncertainty and relative contributions to total uncertainty while also tracking their evolution during compound flooding. The proposed approach is a feasible alternative to conventional statistical approaches designed for uncertainty analyses.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021, https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary
Short summary
In this study, daily observations are assimilated into a hydrodynamic model to update the performance of modeling and improve the flood inundation mapping skill. Results demonstrate that integrating data assimilation with a hydrodynamic model improves the performance of flood simulation and provides more reliable inundation maps. A flowchart provides the overall steps for applying this framework in practice and forecasting probabilistic flood maps before the onset of upcoming floods.
Cited articles
Abbaszadeh, P., Moradkhani, H., and Yan, H.: Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo, Adv. Water Resour., 111, 192–204, https://doi.org/10.1016/j.advwatres.2017.11.011, 2018.
Abbaszadeh, P., Moradkhani, H., and Daescu, D. N.: The Quest for Model Uncertainty Quantification: A Hybrid Ensemble and Variational Data Assimilation Framework, Water Resour. Res., 55, 2407–2431, https://doi.org/10.1029/2018WR023629, 2019.
Abbaszadeh, P., Gavahi, K., and Moradkhani, H.: Multivariate remotely sensed and in-situ data assimilation for enhancing community WRF-Hydro model forecasting, Adv. Water Resour., 145, 103721, https://doi.org/10.1016/j.advwatres.2020.103721, 2020.
Ahmadisharaf, E., Kalyanapu, A. J., and Bates, P. D.: A probabilistic framework for floodplain mapping using hydrological modeling and unsteady hydraulic modeling, Hydrolog. Sci. J., 63, 1759–1775, https://doi.org/10.1080/02626667.2018.1525615, 2018.
Alipour, A., Ahmadalipour, A., Abbaszadeh, P., and Moradkhani, H.: Leveraging machine learning for predicting flash flood damage in the Southeast US, Environ. Res. Lett., 15, 024011, https://doi.org/10.1088/1748-9326/ab6edd, 2020a.
Alipour, A., Ahmadalipour, A., and Moradkhani, H.: Assessing flash flood hazard and damages in the southeast United States, J. Flood Risk Manag., 13, 1–17, https://doi.org/10.1111/jfr3.12605, 2020b.
Annis, A., Nardi, F., Volpi, E., and Fiori, A.: Quantifying the relative impact of hydrological and hydraulic modelling parameterizations on uncertainty of inundation maps, Hydrolog. Sci. J., 65, 507–523, https://doi.org/10.1080/02626667.2019.1709640, 2020.
Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: Flood risk assessment and associated uncertainty, Nat. Hazards Earth Syst. Sci., 4, 295–308, https://doi.org/10.5194/nhess-4-295-2004, 2004.
Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002.
Bates, P. D., Horritt, M. S., Aronica, G., and Beven, K.: Bayesian updating of flood inundation likelihoods conditioned on flood extent data, Hydrol. Process., 18, 3347–3370, https://doi.org/10.1002/hyp.1499, 2004.
Bennett, K. E., Cherry, J. E., Balk, B., and Lindsey, S.: Using MODIS estimates of fractional snow cover area to improve streamflow forecasts in interior Alaska, Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, 2019.
Bermúdez, M., Neal, J. C., Bates, P. D., Coxon, G., Freer, J. E., Cea, L., and Puertas, J.: Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regional-local flood modeling system, Water Resour. Res., 53, 2770–2785, https://doi.org/10.1002/2016WR019903, 2017.
Bhuyian, M. N. M., Kalyanapu, A. J., and Nardi, F.: Approach to Digital Elevation Model Correction by Improving Channel Conveyance, J. Hydrol. Eng., 20, 04014062, https://doi.org/10.1061/(asce)he.1943-5584.0001020, 2015.
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., and Lun, D.: Changing climate both increases and decreases European river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Bowman, A. L., Franz, K. J., and Hogue, T. S.: Case studies of a MODIS-based potential evapotranspiration input to the Sacramento Soil Moisture Accounting model, J. Hydrometeorol., 18, 151–158, https://doi.org/10.1175/JHM-D-16-0214.1, 2017.
Burnash, R. J. C., Ferral, R. L., and McGuire, R. A.: A generalized streamflow simulation system – Conceptual modeling for digital computers, National Weather Service, NOAA, and the State of California Tech. Rep. Joint Federal and State River Forecast Center, 204 pp., 1973.
Cheng, S., Argaud, J.-P., Iooss, B., Lucor, D., and Ponçot, A.: Background error covariance iterative updating with invariant observation measures for data assimilation, Stoch. Env. Res. Risk A., 33, 2033–2051, https://doi.org/10.1007/s00477-019-01743-6, 2019.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008.
DeChant, C. M. and Moradkhani, H.: Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation, Hydrol. Earth Syst. Sci., 15, 3399–3410, https://doi.org/10.5194/hess-15-3399-2011, 2011.
DeChant, C. M. and Moradkhani, H.: Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resour. Res., 48, 1–15, https://doi.org/10.1029/2011WR011011, 2012.
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.
Di Liberto, T.: Record-breaking hurricane Matthew causes devastation, NOAA Clim., https://www.climate.gov/news-features/event-tracker/record-breaking-hurricane-matthew-causes-devastation (last access: 2 June 2025), 2016.
Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., and Efstratiadis, A.: Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, J. Hydrol., 534, 478–492, https://doi.org/10.1016/j.jhydrol.2016.01.020, 2016.
Domeneghetti, A., Castellarin, A., and Brath, A.: Assessing rating-curve uncertainty and its effects on hydraulic model calibration, Hydrol. Earth Syst. Sci., 16, 1191–1202, https://doi.org/10.5194/hess-16-1191-2012, 2012.
Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., and Brath, A.: Probabilistic flood hazard mapping: effects of uncertain boundary conditions, Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, 2013.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global minimization, J. Optimiz. Theory App., 76, 501–521, https://doi.org/10.1007/BF00939380, 1993.
Earth Data Science: Acquiring streamflow data from USGS with climata and Python [WWW Document], Earth Lab, https://www.earthdatascience.org/tutorials/acquire-and-visualize-usgs-hydrology-data/ (last access: 11 November 2021), 2021.
Felder, G., Zischg, A., and Weingartner, R.: The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation, J. Hydrol., 550, 157–165, https://doi.org/10.1016/j.jhydrol.2017.04.052, 2017.
Grimaldi, S., Schumann, G. J. P., Shokri, A., Walker, J. P., and Pauwels, V. R. N.: Challenges, opportunities, and pitfalls for global coupled hydrologic-hydraulic modeling of floods, Water Resour. Res., 55, 5277–5300, https://doi.org/10.1029/2018WR024289, 2019.
Gourley, J. J., Flamig, Z. L., Hong, Y., and Howard, K. W.: Evaluation of past, present and future tools for radar-based flash-flood prediction in the USA, Hydrolog. Sci. J., 59, 1377–1389, https://doi.org/10.1080/02626667.2014.919391, 2014.
Hain, C. R., Crow, W. T., Anderson, M. C., and Mecikalski, J. R.: An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model, Water Resour. Res., 48, W11517, https://doi.org/10.1029/2011WR011268, 2012.
Ingram, K. T., Dow, K., Carter, L., and Anderson, J.: Forests and Climate Change in the Southeast USA, in: Climate of the Southeast United States, NCA Regional Input Reports, edited by: Ingram, K. T., Dow, K., Carter, L., and Anderson, J., Island Press, Washington, DC, https://doi.org/10.5822/978-1-61091-509-0_8, 2013.
Jafarzadegan, K., Moradkhani, H., Pappenberger, F., Moftakhari, H., Bates, P., Abbaszadeh, P., Marsooli, R., Ferreira, C., Cloke, H., Ogden, F., and Qingyun, D.: Recent advances and new frontiers in riverine and coastal flood modeling, Rev. Geophys., 61, e2022RG000788, https://doi.org/10.1007/s11625-023-01298-0, 2023.
Knabb, R. D. and Brown, D. P.: Tropical Cyclone Report Hurricane Rita, https://www.nhc.noaa.gov/data/tcr/AL182005_Rita.pdf (last access: 2 June 2025), 2006.
Koster, R. D., Liu, Q., Mahanama, S. P. P., and Reichle, R. H.: Improved hydrological simulation using SMAP data: Relative impacts of model calibration and data assimilation, J. Hydrometeorol., 19, 727–741, https://doi.org/10.1175/JHM-D-17-0228.1, 2018.
Knox, P. and Mogil, M.: The weather and climate of Georgia: Georgia's “peachy” weather and climate: Something for everyone, Weatherwise, 73, 40–41, https://doi.org/10.1080/00431672.2020.1787719, 2020.
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018.
Kuczera, G. and Parent, E.: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211, 69–85, https://doi.org/10.1016/S0022-1694(98)00198-X, 1998.
Laganier, O., Ayral, P. A., Salze, D., and Sauvagnargues, S.: A coupling of hydrologic and hydraulic models appropriate for the fast floods of the Gardon River basin (France), Nat. Hazards Earth Syst. Sci., 14, 2899–2920, https://doi.org/10.5194/nhess-14-2899-2014, 2014.
Lee, H., Seo, D. J., and Koren, V.: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states, Adv. Water Resour., 34, 1597–1615, https://doi.org/10.1016/j.advwatres.2011.08.012, 2011.
Lee, H., Seo, D.-J., and Noh, S. J.: A weakly-constrained data assimilation approach to address rainfall-runoff model structural inadequacy in streamflow prediction, J. Hydrol., 542, 373–391, 2016.
Lievens, H., De Lannoy, G. J. M., Al Bitar, A., Drusch, M., Dumedah, G., Hendricks Franssen, H. J., Kerr, Y. H., Tomer, S. K., Martens, B., Merlin, O., Pan, M., Roundy, J. K., Vereecken, H., Walker, J. P., Wood, E. F., Verhoest, N. E. C., and Pauwels, V. R. N.: Assimilation of SMOS soil moisture and brightness temperature products into a land surface model, Remote Sens. Environ., 180, 292–304, https://doi.org/10.1016/j.rse.2015.10.033, 2016.
Liu, C., Xiao, Q., and Wang, B.: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test, Mon. Weather Rev., 136, 3363–3373, https://doi.org/10.1175/2008MWR2312.1, 2008.
Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006WR005756, 2007.
Liu, Z., Merwade, V., and Jafarzadegan, K.: Investigating the role of model structure and surface roughness in generating flood inundation extents using one- and two-dimensional hydraulic models, J. Flood Risk Manag., 12, 1–19, https://doi.org/10.1111/jfr3.12347, 2019.
Mai, D. T. and De Smedt, F.: A combined hydrological and hydraulic model for flood prediction in Vietnam applied to the Huong river basin as a test case study, Water (Switzerland), 9, 879, https://doi.org/10.3390/w9110879, 2017.
Mallakpour, I. and Villarini, G.: The changing nature of flooding across the central United States, Nat. Clim. Change, 5, 250–254, https://doi.org/10.1038/nclimate2516, 2015.
Marshall, L., Nott, D., and Sharma, A.: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling, Water Resour. Res., 40, 1–11, https://doi.org/10.1029/2003WR002378, 2004.
McNeill, R. and Wilson, D.: Exclusive: At least $23 billion of property affected by Hurricane Harvey – Reuters analysis, Reuters, https://www.reuters.com/article/us-storm-harvey-property-exclusive/exclusive-at-least-23-billion-of-property-affected-by-hurricane-harvey-reuters-analysis-idUSKCN1BA31P (last access: 2 June 2025), 2017.
Montzka, C., Grant, J. P., Moradkhani, H., Franssen, H.-J. H., Weihermüller, L., Drusch, M., and Vereecken, H.: Estimation of radiative transfer parameters from L-band passive microwave brightness temperatures using advanced data assimilation, Vadose Zone J., 12, 1–17, https://doi.org/10.2136/vzj2012.0040, 2013.
Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, 1–17, https://doi.org/10.1029/2004WR003604, 2005.
Moradkhani, H., DeChant, C. M., and Sorooshian, S.: Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method, Water Resour. Res., 48, W12520, https://doi.org/10.1029/2012WR012144, 2012.
Moradkhani, H., Nearing, G. S., Abbaszadeh, P., and Pathiraja, S.: Fundamentals of Data Assimilation and Theoretical Advancesm in: Handbook of Hydrometeorological Ensemble Forecasting, edited by: Duan, Q., Pappenberger, F., Wood, A., Cloke, H., and Schaake, J., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-39925-1_30, 2019.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Neal, J. C., Odoni, N. A., Trigg, M. A., Freer, J. E., Garcia-Pintado, J., Mason, D. C., Wood, M., and Bates, P. D.: Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models, J. Hydrol., 529, 169–183, https://doi.org/10.1016/j.jhydrol.2015.07.026, 2015.
Nelder, J. A. and Mead, R.: A Simplex Method for Function Minimization, Comput. J., 7, 308–313, https://doi.org/10.1093/comjnl/7.4.308, 1965.
Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., AghaKouchak, A., Sanders, B., Koren, V., Cui, Z., and Smith, M.: A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling, J. Hydrol., 541, 401–420, https://doi.org/10.1016/j.jhydrol.2015.10.047, 2016.
NOAA: Hurricane Ivan Tropical Cyclone Report, National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL092004_Ivan.pdf (last access: 2 June 2025), 2005.
NOAA-OWP: sac-sma, GitHub [code], https://github.com/NOAA-OWP/sac-sma, last access: 2 June 2025.
Papaioannou, G., Vasiliades, L., Loukas, A., and Aronica, G. T.: Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling, Adv. Geosci., 44, 23–34, https://doi.org/10.5194/adgeo-44-23-2017, 2017.
Pappenberger, F., Beven, K., Horritt, M., and Blazkova, S.: Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, J. Hydrol., 302, 46–69, https://doi.org/10.1016/j.jhydrol.2004.06.036, 2005.
Pappenberger, F., Matgen, P., Beven, K. J., Henry, J. B., Pfister, L., and Fraipont, P.: Influence of uncertain boundary conditions and model structure on flood inundation predictions, Adv. Water Resour., 29, 1430–1449, https://doi.org/10.1016/j.advwatres.2005.11.012, 2006.
Parrish, M. A., Moradkhani, H., and Dechant, C. M.: Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation, Water Resour Res, 48, W03519, https://doi.org/10.1029/2011WR011116, 2012.
Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L., and Moradkhani, H.: Insights on the impact of systematic model errors on data assimilation performance in changing catchments, Adv. Water Resour., 113, 202–222, https://doi.org/10.1016/j.advwatres.2017.12.006, 2018a.
Pathiraja, S., Moradkhani, H., Marshall, L., Sharma, A., and Geenens, G.: Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation, Water Resour. Res., 54 , 1252–1280, https://doi.org/10.1002/2018WR022627, 2018b.
Petroselli, A., Vojtek, M., and Vojteková, J.: Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia, Hydrol. Res., 50, 379–392, https://doi.org/10.2166/nh.2018.040, 2019.
Plaza, D. A., De Keyser, R., De Lannoy, G. J. M., Giustarini, L., Matgen, P., and Pauwels, V. R. N.: The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter, Hydrol. Earth Syst. Sci., 16, 375–390, https://doi.org/10.5194/hess-16-375-2012, 2012.
Samuel, J., Coulibaly, P., and Metcalfe, R. A.: Estimation of Continuous Streamflow in Ontario Ungauged Basins: Comparison of Regionalization Methods, J. Hydrol. Eng., 16, 447–459, https://doi.org/10.1061/(asce)he.1943-5584.0000338, 2011.
Savage, J. S. T., Pianosi, F., Bates, P., Freer, J., and Wagener, T.: Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model, Water Resour. Res., 52, 9146–9163, https://doi.org/10.1002/2015WR018198, 2016.
Scharffenberg, W. A. and Kavvas, M. L.: Uncertainty in Flood Wave Routing in a Lateral-Inflow-Dominated Stream, J. Hydrol. Eng., 16, 165–175, https://doi.org/10.1061/(asce)he.1943-5584.0000298, 2011.
Shaw, J. A. and Daescu, D. N.: An ensemble approach to weak-constraint four-dimensional variational data assimilation, Procedia Comput. Sci., 80, 496–506, https://doi.org/10.1016/j.procs.2016.05.329, 2016.
Sindhu, K. and Durga Rao, K. H. V.: Hydrological and hydrodynamic modeling for flood damage mitigation in Brahmani–Baitarani River Basin, India, Geocarto Int., 32, 1004–1016, https://doi.org/10.1080/10106049.2016.1178818, 2017.
Smith, M. B., Laurine, D. P., Koren, V. I., Reed, S. M., and Zhang, Z.: Hydrologic Model calibration in the National Weather Service, 133–152, https://www.nwrfc.noaa.gov/nwrfc/papers/Calib/agu_final.htm (last access: 2 June 2025), 2003.
Stewart, S. R.: National Hurricane Center Tropical Cyclone Report: Hurricane Matthew, Natl. Hurric. Cent. Trop. Cyclone Rep., 5, NOAA, https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf (last access: 2 June 2025), 2017.
The Seattle Times: Harvey recovery continues in parts of flooded Liberty County, The Seattle Times, https://www.seattletimes.com/nation-world/harvey-recovery-continues-in-parts-of-flooded-liberty-county/ (last access: 11 November 2021), 2021.
TPWD: After Rita, State Parks Dig Out, Game Wardens Patrol East Texas, Texas Parks & Wildlife Department, https://tpwd.texas.gov/newsmedia/releases/?req=20050927a (last access: 11 November 2021), 2021.
Trémolet, Y.: Model-error estimation in 4D-Var, Q. J. Roy. Meteor. Soc., 133, 1267–1280, https://doi.org/10.1002/qj.94, 2007.
Tripathy, S., Jafarzadegan, K., Moftakhari, H., and Moradkhani, H.: Dynamic Bivariate Hazard Forecasting of Hurricanes for Improved Disaster Preparedness, Commun. Earth Environ., 5, 12, https://doi.org/10.1038/s43247-023-01198-2, 2024.
USGS: Daily Discharge: Trinity Rv at Romayor, TX, USGS, https://waterdata.usgs.
gov/nwis/dv/?ts_id=133980,173616,173617&format=img_defa
ult&site_no=08066500&begin_date=20170817&end_date=201
70906 (last access: 11 November 2021), 2021a.
USGS: Daily Discharge: Trinity Rv at Romayor, TX, USGS, https://waterdata.usgs.
gov/nwis/dv/?ts_id=133980,173616,173617&format=img_defa
ult&site_no=08066500&begin_date=20050918&end_date=200
50930 (last access: 11 November 2021), 2021b.
Vrugt, J. A., Gupta, H. V., Nualláin, B. Ó., and Bouten, W.: Real-time data assimilation for operational ensemble streamflow forecasting, J. Hydrometeorol., 7, 548–565, https://doi.org/10.1175/JHM504.1, 2006.
Wahlstrom, M. and Guha-Sapir, D.: The human cost of weather-related disasters 1995–2015, UNISDR Publications, https://www.undrr.org/publication/human-cost-weather-related-disasters-1995-2015 (last access: 2 June 2025), 2015.
Werner, M., Blazkova, S., and Petr, J.: Spatially distributed observations in constraining inundation modelling uncertainties, Hydrol. Process., 19, 3081–3096, https://doi.org/10.1002/hyp.5833, 2005.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., Mocko, D., and Zhang, Q.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res., 117, 1–27, https://doi.org/10.1029/2011JD016048, 2012.
Yan, H. and Moradkhani, H.: Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling, Adv. Water Resour., 94, 364–378, https://doi.org/10.1016/j.advwatres.2016.06.002, 2016.
Yan, H., DeChant, C. M., and Moradkhani, H.: Improving Soil Moisture Profile Prediction With the Particle Filter-Markov Chain Monte Carlo Method, IEEE Trans. Geosci. Remote, 53, 6134–6147, https://doi.org/10.1109/TGRS.2015.2432067, 2015.
Zischg, A. P., Felder, G., Mosimann, M., Röthlisberger, V., Weingartner, R., and Blöschl, G.: Extending coupled hydrological-hydraulic model chains with a surrogate model for the estimation of flood losses, Environ. Model. Softw., 108, https://doi.org/10.1016/j.envsoft.2018.08.009, 2018.
Short summary
The Hybrid Ensemble and Variational Data Assimilation framework for Environmental Systems (HEAVEN) enhances flood predictions by refining hydrologic models through improved data integration and uncertainty management. Tested in three southeastern US watersheds during hurricanes, HEAVEN assimilates real-time United States Geological Survey (USGS) streamflow data, boosting forecast accuracy.
The Hybrid Ensemble and Variational Data Assimilation framework for Environmental Systems...