Articles | Volume 28, issue 24
https://doi.org/10.5194/hess-28-5401-2024
https://doi.org/10.5194/hess-28-5401-2024
Research article
 | 
17 Dec 2024
Research article |  | 17 Dec 2024

Estimating global precipitation fields by interpolating rain gauge observations using the local ensemble transform Kalman filter and reanalysis precipitation

Yuka Muto and Shunji Kotsuki

Related authors

Ensemble-based model predictive control using data assimilation techniques
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
Nonlin. Processes Geophys., 32, 293–307, https://doi.org/10.5194/npg-32-293-2025,https://doi.org/10.5194/npg-32-293-2025, 2025
Short summary
Evaluation of the effectiveness of an intervention strategy in a control simulation experiment through comparison with model predictive control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys., 32, 281–292, https://doi.org/10.5194/npg-32-281-2025,https://doi.org/10.5194/npg-32-281-2025, 2025
Short summary
Model Predictive Control with Foreseeing Horizon Designed to Mitigate Extreme Events in Chaotic Dynamical Systems
Fumitoshi Kawasaki, Atsushi Okazaki, Kenta Kurosawa, Tadashi Tsuyuki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-1785,https://doi.org/10.5194/egusphere-2025-1785, 2025
Short summary
Meteorological Landscape of Tropical Cyclone
Pascal Oettli, Keita Tokuda, Yusuke Imoto, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-1458,https://doi.org/10.5194/egusphere-2025-1458, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Observation error estimation in climate proxies with data assimilation and innovation statistics
Atsushi Okazaki, Diego Carrio, Quentin Dalaiden, Jarrah Harrison-Lofthouse, Shunji Kotsuki, and Kei Yoshimura
EGUsphere, https://doi.org/10.5194/egusphere-2025-1389,https://doi.org/10.5194/egusphere-2025-1389, 2025
Short summary

Cited articles

Barnes, S. L.: A technique for maximizing details in numerical weather map analysis, J. Appl. Meteorol., 3, 396–409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2, 1964. 
Becker A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013. 
Bishop, C. H.: The GIGG-EnKF: ensemble Kalman filtering for highly skewed non-negative uncertainty distributions, Q. J. Roy. Meteorol. Soc., 142, 1395–1412, https://doi.org/10.1002/qj.2742, 2016. 
Chen, M., Xie, P., and Janowiak, J. E.: Global land precipitation: A 50-yr monthly analysis based on gauge observations, J. Hydrometeorol., 3, 249–266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2, 2002. 
Chen, M., Xie, P. and CPC Precipitation Working Group: CPC Global Unified Gauge-based Analysis of Daily Precipitation, NOAA CPC [data set], https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/ (last access: 1 August 2024), 2008. 
Download
Short summary
It is crucial to improve global precipitation estimates to understand water-related disasters and water resources. This study proposes a new methodology to interpolate global precipitation fields from ground rain gauge observations using ensemble data assimilation and the precipitation of a numerical weather prediction model. Our estimates agree better with independent rain gauge observations than existing precipitation estimates, especially in mountainous or rain-gauge-sparse regions.
Share