Articles | Volume 28, issue 1
https://doi.org/10.5194/hess-28-241-2024
https://doi.org/10.5194/hess-28-241-2024
Research article
 | 
17 Jan 2024
Research article |  | 17 Jan 2024

Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments

Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov

Related authors

A sea ice free Arctic: Assessment Fast Track abrupt-127k experimental protocol and motivation
Louise C. Sime, Rachel Diamond, Christian Stepanek, Chris Brierley, David Schroeder, Masa Kageyama, Irene Malmierca-Vallet, Ed Blockley, Alex West, Danny Feltham, Jeff Ridley, Pascale Braconnot, Charles J. R. Williams, Xiaoxu Shi, Bette L. Otto-Bliesner, Sophia I. Macarewich, Silvana Ramos Buarque, Qiong Zhang, Allegra LeGrande, Weipeng Zheng, Dabang Jiang, Polina Morozova, Chuncheng Guo, Zhongshi Zhang, Nicholas Yeung, Laurie Menviel, Sandeep Narayanasetti, Olivia Reeves, Matthew Pollock, and Anni Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3531,https://doi.org/10.5194/egusphere-2025-3531, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Comparing the runoff decompositions of small testbed catchments: end-member mixing analysis against hydrological modelling
Andrey Bugaets, Boris Gartsman, Tatiana Gubareva, Sergei Lupakov, Andrey Kalugin, Vladimir Shamov, and Leonid Gonchukov
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-626,https://doi.org/10.5194/hess-2021-626, 2021
Manuscript not accepted for further review
Short summary
Assimilation of ice compactness data in a strong coupling regime in the ocean – sea ice coupled model
Maxim N. Kaurkin, Leonid Y. Kalnitski, Konstantin V. Ushakov, and Rashit A. Ibrayev
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-65,https://doi.org/10.5194/os-2021-65, 2021
Publication in OS not foreseen
Short summary
Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021,https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Snow cover duration trends observed at sites and predicted by multiple models
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020,https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary

Cited articles

Arpe, K. and Leroy, S. A.: The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled, Quatern. Int., 173, 144–152, https://doi.org/10.1016/j.quaint.2007.03.008, 2007. 
Arpe, K., Leroy, S. A. G., Lahijani, H., and Khan, V.: Impact of the European Russia drought in 2010 on the Caspian Sea level, Hydrol. Earth Syst. Sci., 16, 19–27, https://doi.org/10.5194/hess-16-19-2012, 2012. 
Arpe, K., Tsuang, B. J., Tseng, Y. H., Liu, X. Y., and Leroy, S. A.: Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation, Theor. Appl. Climatol., 136, 475–488, https://doi.org/10.1007/s00704-018-2481-x, 2019. 
Arslanov, K. A., Yanina, T. A., Chepalyga, A. L., Svitoch, A. A., Makshaev, R. R., Maksimov, F. E., Chernov, S. B., Tertychniy, N. I., and Starikova, A. A.: On the age of the Khvalynian deposits of the Caspian Sea coast according to 14C and 230Th/234U methods, Quatern. Int., 409, 81–87, https://doi.org/10.1016/j.quaint.2015.05.067, 2016. 
Borisova, O., Sidorchuk, A., and Panin, A.: Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data, Catena, 66, 53–73, https://doi.org/10.1016/j.catena.2005.07.010, 2006. 
Download
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Share