Articles | Volume 28, issue 1
https://doi.org/10.5194/hess-28-241-2024
https://doi.org/10.5194/hess-28-241-2024
Research article
 | 
17 Jan 2024
Research article |  | 17 Jan 2024

Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments

Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov

Related authors

Climate noise effect on uncertainty of hydrological extremes: numerical experiments with hydrological and climate models
A. N. Gelfan, V. A. Semenov, and Yu. G. Motovilov
Proc. IAHS, 369, 49–53, https://doi.org/10.5194/piahs-369-49-2015,https://doi.org/10.5194/piahs-369-49-2015, 2015
Ensemble seasonal forecast of extreme water inflow into a large reservoir
A. N. Gelfan, Yu. G. Motovilov, and V. M. Moreido
Proc. IAHS, 369, 115–120, https://doi.org/10.5194/piahs-369-115-2015,https://doi.org/10.5194/piahs-369-115-2015, 2015

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025,https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Distribution, trends, and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025,https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary

Cited articles

Arpe, K. and Leroy, S. A.: The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled, Quatern. Int., 173, 144–152, https://doi.org/10.1016/j.quaint.2007.03.008, 2007. 
Arpe, K., Leroy, S. A. G., Lahijani, H., and Khan, V.: Impact of the European Russia drought in 2010 on the Caspian Sea level, Hydrol. Earth Syst. Sci., 16, 19–27, https://doi.org/10.5194/hess-16-19-2012, 2012. 
Arpe, K., Tsuang, B. J., Tseng, Y. H., Liu, X. Y., and Leroy, S. A.: Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation, Theor. Appl. Climatol., 136, 475–488, https://doi.org/10.1007/s00704-018-2481-x, 2019. 
Arslanov, K. A., Yanina, T. A., Chepalyga, A. L., Svitoch, A. A., Makshaev, R. R., Maksimov, F. E., Chernov, S. B., Tertychniy, N. I., and Starikova, A. A.: On the age of the Khvalynian deposits of the Caspian Sea coast according to 14C and 230Th/234U methods, Quatern. Int., 409, 81–87, https://doi.org/10.1016/j.quaint.2015.05.067, 2016. 
Borisova, O., Sidorchuk, A., and Panin, A.: Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data, Catena, 66, 53–73, https://doi.org/10.1016/j.catena.2005.07.010, 2006. 
Download
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Share