Articles | Volume 28, issue 1
https://doi.org/10.5194/hess-28-241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Alexander Gelfan
CORRESPONDING AUTHOR
Water Problems Institute, Russian Academy of Sciences, Moscow, Russia
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Andrey Panin
Water Problems Institute, Russian Academy of Sciences, Moscow, Russia
Institute of Geography, Russian Academy of Sciences, Moscow, Russia
Andrey Kalugin
Water Problems Institute, Russian Academy of Sciences, Moscow, Russia
Polina Morozova
Institute of Geography, Russian Academy of Sciences, Moscow, Russia
Vladimir Semenov
Water Problems Institute, Russian Academy of Sciences, Moscow, Russia
Institute of Geography, Russian Academy of Sciences, Moscow, Russia
Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
Alexey Sidorchuk
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Vadim Ukraintsev
Water Problems Institute, Russian Academy of Sciences, Moscow, Russia
Institute of Geography, Russian Academy of Sciences, Moscow, Russia
Konstantin Ushakov
Water Problems Institute, Russian Academy of Sciences, Moscow, Russia
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Related authors
No articles found.
Louise C. Sime, Rachel Diamond, Christian Stepanek, Chris Brierley, David Schroeder, Masa Kageyama, Irene Malmierca-Vallet, Ed Blockley, Alex West, Danny Feltham, Jeff Ridley, Pascale Braconnot, Charles J. R. Williams, Xiaoxu Shi, Bette L. Otto-Bliesner, Sophia I. Macarewich, Silvana Ramos Buarque, Qiong Zhang, Allegra LeGrande, Weipeng Zheng, Dabang Jiang, Polina Morozova, Chuncheng Guo, Zhongshi Zhang, Nicholas Yeung, Laurie Menviel, Sandeep Narayanasetti, Olivia Reeves, Matthew Pollock, and Anni Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3531, https://doi.org/10.5194/egusphere-2025-3531, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Arctic may have lost its summer sea ice 127,000 years ago during a naturally warm period in Earth’s past. Climate models can be tested by recreating those conditions, with similar sunlight and greenhouse gas levels. Analysing the large sea ice changes in these simulations helps us understand how the Arctic might respond in the near future and improves how we test and trust our climate models.
Andrey Bugaets, Boris Gartsman, Tatiana Gubareva, Sergei Lupakov, Andrey Kalugin, Vladimir Shamov, and Leonid Gonchukov
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-626, https://doi.org/10.5194/hess-2021-626, 2021
Manuscript not accepted for further review
Short summary
Short summary
Comparison of streamflow composition of two small experimental catchments simulated with three well-known rainfall-runoff (RR) models against the End-Member Mixing Analysis (EMMA) results. All used RR models and EMMA outcome demonstrate that two neighboring catchments significantly different in mutual dynamics of the runoff fractions. Three data aggregation intervals (season, month and pentad) were applied to assess proximity of the RR models and EMMA hydrograph decomposition outcome.
Maxim N. Kaurkin, Leonid Y. Kalnitski, Konstantin V. Ushakov, and Rashit A. Ibrayev
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-65, https://doi.org/10.5194/os-2021-65, 2021
Publication in OS not foreseen
Short summary
Short summary
The Arctic plays an important role in the global climate system, where sea ice regulates the exchange of heat and momentum between the atmosphere and the ocean. Interpretation of such changes is difficult due to small amount of observations. Numerical modeling can contribute to understanding these processes, but the lack of knowledge about the physics of ice-ocean interactions limits our ability to realistically reproduce them. The remedy is to correct the model solution by data assimilation.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Cited articles
Arpe, K. and Leroy, S. A.: The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled, Quatern. Int., 173, 144–152, https://doi.org/10.1016/j.quaint.2007.03.008, 2007.
Arpe, K., Leroy, S. A. G., Lahijani, H., and Khan, V.: Impact of the European Russia drought in 2010 on the Caspian Sea level, Hydrol. Earth Syst. Sci., 16, 19–27, https://doi.org/10.5194/hess-16-19-2012, 2012.
Arpe, K., Tsuang, B. J., Tseng, Y. H., Liu, X. Y., and Leroy, S. A.: Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation, Theor. Appl. Climatol., 136, 475–488, https://doi.org/10.1007/s00704-018-2481-x, 2019.
Arslanov, K. A., Yanina, T. A., Chepalyga, A. L., Svitoch, A. A., Makshaev, R. R., Maksimov, F. E., Chernov, S. B., Tertychniy, N. I., and Starikova, A. A.: On the age of the Khvalynian deposits of the Caspian Sea coast according to 14C and U methods, Quatern. Int., 409, 81–87, https://doi.org/10.1016/j.quaint.2015.05.067, 2016.
Borisova, O., Sidorchuk, A., and Panin, A.: Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data, Catena, 66, 53–73, https://doi.org/10.1016/j.catena.2005.07.010, 2006.
Borisova, O. K.: Landscape and Climatic Conditions in the Central East European Plain in the last 22 thousand Years: Reconstruction based on Paleobotanical Data, Water Resour., 48, 886–896, https://doi.org/10.1134/S0097807821060038, 2021.
Borisova, O., Konstantinov, E., Utkina, A., Baranov, D., and Panin, A.: On the existence of a large proglacial lake in the Rostov-Kostroma lowland, north-central European Russia, J. Quaternary Sci., 37, 1442–1459, https://doi.org/10.1002/jqs.3454, 2022.
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Butuzova, E. A., Kurbanov, R. N., Taratunina, N. A., Makeev, A. O., Rusakov, A. V., Lebedeva, M. P., Murray, A. S., and Yanina, T. A.: Shedding light on the timing of the largest Late Quaternary transgression of the Caspian Sea, Quat. Geochronol., 73, 101378, https://doi.org/10.1016/j.quageo.2022.101378, 2022.
Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J. F., and Safarov, E. S.: Long-term Caspian Sea level change, Geophys. Res. Lett., 44, 6993–7001, https://doi.org/10.1002/2017GL073958, 2017.
Chepalyga, A. L.: Late glacial great flood in the Ponto-Caspian basin, in: The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement, edited by: Yanko-Hombach, V., Gilbert, A. S., Panin, N., and Dolukhanov, P. M., Springer, Dordrecht, 119–148, https://doi.org/10.1007/978-1-4020-5302-3_6, 2007.
Fadeev, R., Ushakov, K., Tolstykh, M., and Ibrayev, R.: Design and development of the SLAV-INMIO-CICE coupled model for seasonal prediction and climate research, Rus. J. Numer. Anal. Math. Mod., 33, 333–340, https://doi.org/10.1515/rnam-2018-0028, 2018.
Fedorov, P. V.: Stratigraphy of Quaternary sediments and the history of the development of the Caspian Sea, Proceedings of the Geological Institute of the Academy of Science of the USSR, 2, 1–308, 1957 (in Russian).
Fedorov, P. V. (Ed.): Pleistocene of the Ponto-Caspian, Nauka Press, Moscow, 165 pp., https://www.geokniga.org/books/27062 (last access: 5 January 2024), 1978 (in Russian).
Forte, A. M. and Cowgill, E.: Late Cenozoic base-level variations of the Caspian Sea: a review of its history and proposed driving mechanisms, Palaeogeogr. Palaeocl., 386, 392–407, https://doi.org/10.1016/j.palaeo.2013.05.035, 2013.
Frolov A. V. (Ed.): Modeling of long-term fluctuations of the Caspian Sea level: theory and applications, GEOS Publ., Moscow, 174 pp., ISBN 5-89118-298-X, 2003 (in Russian).
Frolov, A. V.: Dynamic-Stochastic Modeling of the Paleo-Caspian Sea Long-Term Level Variations (14–4 Thousand Years BC), Water Resour., 48, 854–863, https://doi.org/10.1134/S0097807821060051, 2021.
Gelfan, A., Gustafsson, D., Motovilov, Y., Arheimer, B., Kalugin, A., Krylenko, I., and Lavrenov, A.: Climate change impact on the water regime of two great Arctic rivers: Modeling and uncertainty issues, Clim. Chang., 141, 499–515, https://doi.org/10.1007/s10584-016-1710-5, 2017.
Gelfan, A. N. and Kalugin, A. S.: Permafrost in the Caspian Basin as a Possible Trigger of the Late Khvalynian Transgression: Testing Hypothesis Using a Hydrological Model, Water Resour., 48, 831–843, https://doi.org/10.1134/S0097807821060063, 2021.
Golitsyn, G. S., Ratkovich, D. Ya., Fortus, M. I., and Frolov, A. V.: On the present_day rise in the Caspian Sea level, Water Resour., 25, 117–122, 1998.
Grosswald, M. G.: Late Weichselian ice sheet of Northern Eurasia, Quat. Res., 13, 1–32, https://doi.org/10.1016/0033-5894(80)90080-0, 1980.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 5.1, Los Alamos National Laboratory, https://svn-ccsm-models.cgd.ucar.edu/cesm1/alphas/branches/cesm1_5_alpha04c_timers/components/cice/src/doc/cicedoc.pdf, (last access date: 8 January 2024), 2015.
Ibrayev, R. A., Khabeev, R. N., and Ushakov, K. V.: Eddy-resolving ∘ model of the World Ocean, Izv. Atmos. Ocean Phys., 48, 37–46, https://doi.org/10.1134/S0001433812010045, 2012.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Kakroodi, A. A., Kroonenberg, S. B., Hoogendoorn, R. M., Mohammadkhani, H., Yamani, M., Ghassemi, M. R., and Lahijani, H. A. K.: Rapid Holocene sea-level changes along the Iranian Caspian coast, Quatern. Int., 263, 93–103, https://doi.org/10.1016/j.quaint.2011.12.021, 2012.
Kalinin, G. P., Markov, K. K., and Suetova, I. A.: Fluctuations in the level of the Earth's water bodies in the geological past. Part I, Oceanology, 6, 737–746, 1966 (in Russian).
Kalmykov, V. V., Ibrayev, R. A., Kaurkin, M. N., and Ushakov, K. V.: Compact Modeling Framework v3.0 for high-resolution global ocean–ice–atmosphere models, Geosci. Model Dev., 11, 3983–3997, https://doi.org/10.5194/gmd-11-3983-2018, 2018.
Kalnitskii, L. Y., Kaurkin, M. N., Ushakov, K. V., and Ibrayev, R. A.: Seasonal Variability of Water and Sea-Ice Circulation in the Arctic Ocean in a High-Resolution Model, Izv. Atmos. Ocean. Phys., 56, 522–533, https://doi.org/10.1134/S0001433820050060, 2020.
Kalugin, A.: Hydrological and meteorological variability in the Volga River basin under global warming by 1.5 and 2 degrees, Climate, 10, 107, https://doi.org/10.3390/cli10070107, 2022.
Kaplin, P. A., Leontiev, O. K., Parunin, O. B., Rychagov, G. I., and Svitoch, A. A.: On the time of Khvalyn transgressions of the Caspian Sea (according to radiocarbon analyses of mollusk shells), Doklady Acad. Nauk SSSR, 206, 735–740, 1972 (in Russian).
Kaplin, P. A., Parunin, O. B., Svitoch, A. A., Faustov, S. S., and Shlyukov, A. I.: Some results of studying Pleistocene sediments by methods of nuclear chronology and palaeomagnetism, in: Noveyshaya tektonika, noveyshiye otlozheniya i chelovek, Vol. 4, edited by: Kaplin, P. A., MSU Press, Moscow, 156–163, https://www.geokniga.org/books/23950 (last access: 5 January 2024), 1973 (in Russian).
Kapsch, M.-L., Mikolajewicz, U., Ziemen, F., and Schannwell, C.: Ocean response in transient simulations of the last deglaciation dominated by underlying ice-sheet reconstruction and method of meltwater distribution, Geophys. Res. Lett., 49, e2021GL096767, https://doi.org/10.1029/2021GL096767, 2022.
Kislov, A. and Toropov, P.: East European River runoff and Black Sea and Caspian Sea level changes as simulated within the Paleoclimate Modeling Intercomparison Project, Quatern. Int., 167, 40–48, https://doi.org/10.1016/j.quaint.2006.10.005, 2007.
Kislov, A. V., Panin, A. V., and Toropov, P.: Current status and palaeostages of the Caspian Sea as a potential evaluation tool for climate model simulations, Quatern. Int., 345, 48–55, https://doi.org/10.1016/j.quaint.2014.05.014, 2014.
Koriche, S. A., Singarayer, J. S., Cloke, H. L., Valdes, P. J., Wesselingh, F. P., Kroonenberg, S. B., Wickert, A. D., and Yanina, T. A.: What are the drivers of Caspian Sea level variation during the late Quaternary?, Quaternary Sci. Rev., 283, 107457, https://doi.org/10.1016/j.quascirev.2022.107457, 2022.
Krijgsman, W., Tesakov, A., Yanina, T., Lazarev, S., Danukalova, G., Van Baak, C. G. C., Agustí, J., Alçiçek, M. C., Aliyeva, E., Bista, D., Bruch, A., Büyükmeriç, Y., Bukhsianidze, M., Flecker, R., Frolov, P., Hoyle, T. M., Jorissen, E. L., Kirscher, U., Koriche, S. A., Kroonenberg, S. B., Lordkipanidze, D., Oms, O., Rausch, L., Singarayer, J., Stoica, M., van de Velde, S., Titov, V. V., and Wesselingh, F. P.: Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution., Earth-Sci. Rev., 188, 1–40, https://doi.org/10.1016/j.earscirev.2018.10.013, 2019.
Kroonenberg, S. B., Badyukova, E. N., Storms, J. E. A., Ignatov, E. I., and Kasimov, N. S.: A full sea level cycle in 65 years: barrier dynamics along Caspian shores, Sediment. Geol., 134, 257–274, https://doi.org/10.1016/S0037-0738(00)00048-8, 2000.
Kurbanov, R., Murray, A., Thompson, W., Svistunov, M., Taratunina, N., and Yanina, T.: First reliable chronology for the Early Khvalynian Caspian Sea transgression in the Lower Volga River valley, Boreas, 50, 134–146, https://doi.org/10.1111/bor.12478, 2021.
Kurbanov, R. N., Buylaert, J.-P., Stevens, T., Taratunina, N. A., Belyaev, V. R., Makeev, A. O., Lebedeva, M. P., Rusakov, A. V., Solodovnikov, D., Költringer, C., Rogov, V. V., Streletskay, I. D., Murray, A. S., and Yanina, T. A.: A detailed luminescence chronology of the Lower Volga loess-palaeosol sequence at Leninsk, Quat. Geochronol., 73, 101376, https://doi.org/10.1016/j.quageo.2022.101376, 2022.
Kurbanov, R. N., Belyaev, V. R., Svistunov, M. I., Butuzova, E. A., Solodovnikov, D. A., Taratunina, N. A., and Yanina, T. A.: New data on the age of the Early Khvalynian transgression of the Caspian Sea, Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 87, 403−-419, https://doi.org/10.31857/S2587556623030081, 2023 (in Russian).
Kvasov, D. D. (Ed.): The Late Quaternary history of large lakes and inland seas of Eastern Europe, Suomalainen tiedeakad., Helsinki, 71 pp., ISSN 1239632X, 1979.
Larsen, E., Kjar, K. H., Demidov, I., Funder, S., Grosfjeld, K., Houmark-Nielsen, M., Jensen, M., Linge, H., and Lysa, A.: Late Pleistocene glacial and lake history of northwestern Russia, Boreas, 35, 394–424, https://doi.org/10.1080/03009480600781958, 2006.
Leontiev, O. K., Rychagov, G. I., Kaplin, P. A., Svitoch, A. A., Parunin, O. B., and Shlyukov, A. I.: Chronology and palaeogeography of Ponto-Caspian (based on result of radiocarbon dating), Pleistocene Palaeogeography and Sediments of Southern Seas of the USSR, 26–38, https://www.geokniga.org/books/28639 (last access: 5 January 2024), 1977 (in Russian).
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, 2000.
Lyså, A., Jensen, M. A., Larsen, E., Fredin, O. L. A., and Demidov, I. N.: Ice-distal landscape and sediment signatures evidencing damming and drainage of large proglacial lakes, NW Russia, Boreas, 40, 481–497, https://doi.org/10.1111/j.1502-3885.2010.00197.x, 2011.
Makshaev, R. R.: Paleogeography of the Middle and Lower Volga Region during the Early Khvalynian Transgression of the Caspian Sea, Ph.D. thesis, Lomonosov Moscow State University, Moscow, 160 pp., https://istina.msu.ru/download/250565929/1rLjrq:njwG3FX41ADPaPUiywWnIwexlxs/ (last access: 5 January 2024), 2019 (in Russian).
Makshaev, R. R. and Svitoch, A. A.: Chocolate Clays of the northern Caspian Sea region: distribution, structure, and origin, Quatern. Int., 409, 44–49, https://doi.org/10.15356/0435-4281-2015-1-101-112, 2016.
Makshaev, R. R. and Tkach, N. T.: Chronology of Khvalynian stage of the Caspian Sea according to radiocarbon dating, Doklady Earth Sciences, 507, S51−-S60, https://doi.org/10.1134/S1028334X22601341, 2022.
Morozova P. A.: Influence of the Scandinavian Ice Sheet on the climate conditions of the East European Plain according to the numerical modeling data of the project PMIP II, Ice and Snow, 54, 113–124, https://doi.org/10.15356/2076-6734-2014-1-113-124, 2014 (in Russian).
Morozova P. A., Ushakov K. V., Semenov V. A., and Volodin E. M.: Water budget of the Caspian Sea in the Last Glacial Maximum by data of experiments with mathematical models, Water Resour., 48, 823–830, https://doi.org/10.1134/S0097807821060130, 2021.
Motovilov, Y.: Hydrological simulation of river basins at different spatial scales: 1. Generalization and averaging algorithms, Water Resour., 43, 429–437, https://doi.org/10.1134/S0097807816030118, 2016.
Motovilov, Y., Gottschalk, L., Engeland, K., and Rodhe, A.: Validation of a distributed hydrological model against spatial observations, Agr. Forest. Meteorol., 98–99, 257–277, https://doi.org/10.1016/S0168-1923(99)00102-1, 1999.
Naderi Beni, A., Lahijani, H., Mousavi Harami, R., Arpe, K., Leroy, S. A. G., Marriner, N., Berberian, M., Andrieu-Ponel, V., Djamali, M., Mahboubi, A., and Reimer, P. J.: Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea, Clim. Past, 9, 1645–1665, https://doi.org/10.5194/cp-9-1645-2013, 2013.
Panin, A., Adamiec, G., Buylaert, J.-P., Matlakhova, E., Moska, P., and Novenko, E.: Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain, Quaternary Sci. Rev., 166, 266–288, https://doi.org/10.1016/j.quascirev.2016.12.002, 2017.
Panin, A. V. and Matlakhova, E. Y.: Fluvial chronology in the East European plain over the last 20 ka and its palaeohydrological implications, Catena, 130, 46–61, https://doi.org/10.1016/j.catena.2014.08.016, 2015.
Panin, A. V., Sidorchuk, A. Y., and Borisova, O. K.: Fluvial processes and river runoff in the Russian Plain in the end of the Late Valdai epoch, in: Geography Perspectives: to the 100th anniversary of K. K. Markov, Geogr. Dep. MSU, Moscow, 114–127, http://www.fluvial-systems.net/papers_rus/119.pdf (last access: 5 January 2024), 2005 (in Russian).
Panin, A. V., Sidorchuk, A. Y., and Vlasov, M. V.: High Late Valdai (Vistulian) runoff in the Don River basin, Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 1, 118–129, 2013 (in Russian).
Panin, A. V., Astakhov, V. I., Lotsari, E., Komatsu, G., Lang, J., and Winsemann, J.: Middle and Late Quaternary glacial lakeoutburst floods, drainage diversions and reorganization of fluvial systems in northwestern Eurasia, Earth-Sci. Rev., 201, 103069, https://doi.org/10.1016/j.earscirev.2019.103069, 2020.
Panin, A. V., Sidorchuk, A. Y., and Ukraintsev, V. Y.: The Contribution of Glacial Melt Water to Annual Runoff of River Volga in the Last Glacial Epoch, Water Resour., 48, 877–885, https://doi.org/10.1134/S0097807821060142, 2021.
Panin, A. V., Sorokin, A. N., Bricheva, S. S., Matasov, V. M., Morozov, V. V., Smirnov, A. L., Solodkov, N. N., and Uspenskaia, O. N.: Landscape development history of the Zabolotsky peat bog in the context of initial settlement of the Dubna River lowland (Upper Volga basin), Vestnik Archeologii, Antropologii i Etnografii, 2, 85–100. https://doi.org/10.20874/2071-0437-2022-57-2-7, 2022.
Panin, G. N. and Dianskii, N. A.: On the correlation between oscillations of the Caspian Sea level and the North Atlantic climate, Izvestiya, Atmospheric and Oceanic Physics, 50, 266–278, https://doi.org/10.1134/S000143381402008X, 2014.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Ratkovich, D. Ya.: Modern variations of the Caspian Sea level, Water Resour., 20, 160–171, 1993.
Rychagov, G. I.: Late Pleistocene history of the Caspian Sea, in: Comprehensive studies of the Caspian Sea, edited by: Leontiev, O. K. and Maev, E. G., MSU Press, Moscow, 18–29, https://drive.google.com/file/d/1Ueahhl1TH952echxDYtVgQ4tuNOwIb9a/view?usp=sharing (last access: 9 January 2024), 1974 (in Russian).
Rychagov, G. I. (Ed.): Pleistocene History of the Caspian Sea, MSU Press, Moscow, 267 pp., ISBN 5-211-03828-2, 1997 (in Russian).
Semikolennykh, D. V., Kurbanov, R. N., and Yanina, T. A.: Age of the Khvalyn Strait in the Late Pleistocene history of the Manych Depression, Vestnik Mos. Univ. Seria 5 Geogr., 5, 103–112, 2022 (in Russian).
Sidorchuk, A. Y., Panin, A. V., and Borisova, O. K.: Climate-induced changes in surface runoff on the North-Eurasian plains during the late glacial and Holocene, Water Resour., 35, 386–396, https://doi.org/10.1134/S0097807808040027, 2008.
Sidorchuk, A. Y., Panin, A. V., and Borisova, O. K.: Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period, Geomorphology, 113, 137–157, https://doi.org/10.1016/j.geomorph.2009.03.007, 2009.
Sidorchuk, A., Panin, A., and Borisova, O.: Surface runoff to the Black Sea from the East European Plain during Last Glacial Maximum–Late Glacial time, in: Geology and Geoarchaeology of the Black Sea Region: Beyond the Flood Hypothesis, edited by: Buynevich, I., Yanko–Hombach, V., Gilbert, A. S., and Martin, R. E., Geological Society of America Special Paper 473, 1–25, https://doi.org/10.1130/2011.2473(01), 2011.
Sidorchuk, A. Y., Ukraintsev, V. Y., and Panin, A. V.: Estimating Annual Volga Runoff in the Late Glacial Epoch from the Size of River Paleochannels, Water Resour., 48, 864–876, https://doi.org/10.1134/S0097807821060178, 2021.
Simakova, A. N.: Evolution of vegetation of the Russian Plain and Western Europe in the Late Neopleistocene-Middle Holocene (33–4.8 thousand years BP) (from palynological data), Ph.D. thesis, Geological Institute of the Russian Academy of Sciences, Moscow, 34 pp., https://www.dissercat.com/content/razvitie-rastitelnogo-pokrova-russkoi-ravniny-i-zapadnoi-evropy-v-pozdnem-neopleistotsene-sr/read (last access: 5 January 2024), 2008 (in Russian).
Smith, M. and Riseborough, D.: Climate and the limits of permafrost: A zonal analysis, Permafrost Periglac., 13, 1–15, https://doi.org/10.1002/ppp.410, 2002.
Svitoch, A. A.: Khvalynian transgression of the Caspian Sea was not a result of water overflow from the Siberian proglacial lakes, nor a prototype of the Noachian flood, Quatern. Int., 197, 115–125, https://doi.org/10.1016/j.quaint.2008.02.006, 2009.
Svitoch, A. A. (Ed.): The Big Caspian: Structure and History of Development, MSU Press, Moscow, 270 pp., ISBN 978-5-19-010904-7, 2014 (in Russian).
Svitoch, A. A. and Parunin, O. B.: On the rate of formation of mollusk complexes in ancient Caspian sediments, Vestnik Mos. Univ. Seria 5. Geogr., 3, 41–48, 1973 (in Russian).
Svitoch, A. A. and Yanina, T. A.: On the time of the Khvalyn transgression of the Caspian Sea (based on absolute dating data), in: Geologo-geomorfologicheskiye issledovaniya Kaspiyskogo morya, edited by: Voropayev, G. I., Lebedev, L. I., and Leontiev, O. K. MSU Press, Moscow, 156–163, 1983 (in Russian).
Svitoch, A. A. and Yanina, T. A.: Quaternary Deposits of the Caspian Sea Coasts, MSU Press, Moscow, 267 pp., https://www.geokniga.org/books/14816 (last access: 5 January 2024), 1997 (in Russian).
Svitoch, A. A., Parunin, O. B., and Yanina, T. A.: Radiocarbon chronology of the deposits and events of late Pleistocene of the Ponto-Caspian region, in: Quaternary Geochronology, edited by: Murzaev, V. E., Puning, Y.-M. K., Chichagova, O. A., Nauka, Moscow, pp. 72–80, ISBN 5-02-003826-1, 1992 (in Russian).
Svitoch, A. A., Yanina, T. A., Novikova, N. G., Sobolev, V. M., and Khomenko, A. A.: The Pleistocene of the Manych (structure and evolution): Questions of Structure and Development, MSU Press, Moscow, 135 pp., ISBN 978-5-89-575-183-1, 2010 (in Russian). (English language abstract and introduction are available via https://www.researchgate.net/publication/288838522_THE_PLEISTOCENE_OF_THE_MANYCH_structure_and_evolution_Plejstocen_Manyca_voprosy_stroenia_i_razvitia, last access: 13 January 2024)
Taratunina, N. A., Buylaert, J. P., Kurbanov, R. N., Yanina, T. A., Makeev, A. O., Lebedeva, M. P., Utkina, A. O., and Murray, A. S.: Late Quaternary evolution of lower reaches of the Volga River (Raygorod section) based on luminescence dating, Quat. Geochronol., 72, 101369, https://doi.org/10.1016/j.quageo.2022.101369, 2022.
Toropov, P. A. and Morozova, P. A.: Evaluation of the Caspian Sea level fluctuations during the Late Pleistocene cryochrone epoch based on the results of the numerical climate modeling, Vestn. Mosc. Univ. Ser. 5 Geogr. 2, 55–61, 2011 (in Russian).
Tudryn, A., Leroy, S. A. G., Toucanne, S., Gibert-Brunet, E., Tucholka, P., Lavrushin, Y. A., Dufaure, O., Miska, S., and Bayon, G.: The Ponto-Caspian basin as a final trap for southeastern Scandinavian Ice-Sheet meltwater, Quaternary Sci. Rev., 148, 29–43, https://doi.org/10.1016/j.quascirev.2016.06.019, 2016.
Ukraintsev, V. Y.: Geomorphological Evidence of High River Runoff in the Volga Basin during the Late Glacial, Doklady Earth Sciences, 506, S1−-S6, https://doi.org/10.1134/S1028334X2260030X, 2022.
Ushakov, K. V. and Ibrayev, R. A.: Assessment of mean world ocean meridional heat transport characteristics by a high-resolution model, Russ. J. Earth Sci., 18, ES1004, https://doi.org/10.2205/2018ES000616, 2018.
Varuschenko, S. I., Varuschenko, A. N., and Klige, R. K.: Changes in the Regime of the Caspian Sea and Closed Basins in Paleotime, Nauka, Moscow, 239 pp., https://www.geokniga.org/books/27988 (last access: 5 January 2024), 1987 (in Russian).
Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov, V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., Iakovlev, N. G., Shestakova, A. A., and Emelina, S. V.: Simulation of the modern climate using the INMCM48 climate model, Russ. J. Numer. Anal. M., 33, 367–374, https://doi.org/10.1515/rnam-2018-0032, 2018.
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N., Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM INM-CM4-8 model output prepared for CMIP6 PMIP lgm, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5075, 2019a.
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N., Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM INM-CM4-8 model output prepared for CMIP6 PMIP midHolocene, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5077, 2019b.
Water balance and level fluctuations of the Caspian Sea. Modeling and prediction, edited by: Gruzinov, V., Moscow, Rosgidromet., 375 pp., ISBN 978-5-9908623-0-2, 2016 (in Russian).
Yanina, T. A.: Correlation of the Late Pleistocene paleogeographical events of the Caspian Sea and Russian plain, Quatern. Int., 271, 120–129, https://doi.org/10.1016/j.quaint.2012.06.003, 2012.
Yanina, T., Sorokin, V., Bezrodnykh, Y., and Romanyuk, B.: Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data), Quatern. Int., 465, 130–141, https://doi.org/10.1016/j.quaint.2017.08.003, 2018.
Yanko-Hombach, V. and Kislov, A.: Late Pleistocene and Holocene sea-level dynamics in the Caspian and Black seas: Data synthesis and paradoxical interpretations, Quatern. Int., 465, 63–71, https://doi.org/10.1016/j.quaint.2017.11.030, 2018.
Zekster, I. S.: Groundwater discharge into lakes: a review of recent studies with particular regard to large saline lakes in central Asia, Int. J. Salt Lake Res., 4, 233–249, https://doi.org/10.1007/BF02001493, 1995.
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current...