Articles | Volume 28, issue 7
https://doi.org/10.5194/hess-28-1653-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-1653-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Department of Earth Sciences, University of Bergen, Allegaten 41, 5020, Bergen, Norway
Bjerknes Centre for Climate Research, Allegaten 70, 5020, Bergen, Norway
7Analytics, Innovation District Solheimsviken 7c, 5054, Bergen, Norway
Roger Sayre
U.S. Geological Survey, 516 National Center, Reston, VA 20192, USA
Elco Luijendijk
Department of Earth Sciences, University of Bergen, Allegaten 41, 5020, Bergen, Norway
Related authors
No articles found.
Mikhail Tsypin, Viet Dung Nguyen, Mauro Cacace, Guido Blöcher, Magdalena Scheck-Wenderoth, Elco Luijendijk, and Charlotte Krawczyk
EGUsphere, https://doi.org/10.5194/egusphere-2025-4335, https://doi.org/10.5194/egusphere-2025-4335, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Shallow groundwater temperatures are increasing as a consequence of global warming. At the same time, climate models project substantial changes in future groundwater recharge, with impacts on groundwater levels. We investigated the combined effects of these two processes. Our modeling results suggest that decreased annual recharge or increased cold recharge in winter can locally slow groundwater warming, but not sufficiently to stop or reverse the overall warming trend.
Christoph Behrens, Elco Luijendijk, Phillip Kreye, Florian Panitz, Merle Bjorge, Marlene Gelleszun, Alexander Renz, Shorash Miro, and Wolfram Rühaak
Adv. Geosci., 58, 109–119, https://doi.org/10.5194/adgeo-58-109-2023, https://doi.org/10.5194/adgeo-58-109-2023, 2023
Short summary
Short summary
The mathematical basics of a numerical code developed specifically for the search of a site for high-level radioactive waste in Germany is presented.
The code is developed in accordance to the specific regulations. First tests of the code are shown.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Elco Luijendijk
Earth Surf. Dynam., 10, 1–22, https://doi.org/10.5194/esurf-10-1-2022, https://doi.org/10.5194/esurf-10-1-2022, 2022
Short summary
Short summary
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has indicated that subsurface groundwater flow may be important for drainage density. Here, I present a new model that combines subsurface and surface water flow and erosion, and demonstrates that groundwater exerts an important control on drainage density. Streams that incise rapidly can capture the groundwater discharge of adjacent streams, which may cause these streams to become dry and stop incising.
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Cited articles
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams, Science, 361, 585–588, https://doi.org/10.1126/science.aat0636, 2018.
Baker, J. P., Van Sickle, J., Gagen, C. J., DeWalle, D. R., Sharpe, W. E., Carline, R. F., Baldigo, B. P., Murdoch, P. S., Bath, D. W., Krester, W. A., Simonin, H. A., and Wigington Jr., P. J.: Episodic Acidification of Small Streams in the Northeastern United States: Effects on Fish Populations, Ecol. Appl., 6, 422–437, https://doi.org/10.2307/2269380, 1996.
Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C., and Pattnayak, K. C.: Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation, Sci. Adv., 4, eaat8785, https://doi.org/10.1126/sciadv.aat8785, 2018.
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, 2004GB002238, https://doi.org/10.1029/2004GB002238, 2004.
Briggs, M. A., Harvey, J. W., Hurley, S. T., Rosenberry, D. O., McCobb, T., Werkema, D., and Lane Jr., J. W.: Hydrogeochemical controls on brook trout spawning habitats in a coastal stream, Hydrol. Earth Syst. Sci., 22, 6383–6398, https://doi.org/10.5194/hess-22-6383-2018, 2018.
Donchyts, G., Winsemius, H., Baart, F., Dahm, R., Schellekens, J., Gorelick, N., Iceland, C., and Schmeier, S.: High-resolution surface water dynamics in Earth's small and medium-sized reservoirs, Sci. Rep., 12, 13776, https://doi.org/10.1038/s41598-022-17074-6, 2022.
Feng, D., Gleason, C. J., Yang, X., Allen, G. H., and Pavelsky, T. M.: How Have Global River Widths Changed Over Time?, Water Resour. Res., 58, e2021WR031712, https://doi.org/10.1029/2021WR031712, 2022.
Garcia, D. J. and You, F.: The water-energy-food nexus and process systems engineering: A new focus, Comput. Chem. Eng., 91, 49–67, https://doi.org/10.1016/j.compchemeng.2016.03.003, 2016.
Gleeson, T., Wang-Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F., Gerten, D., Fetzer, I., Cornell, S. E., Piemontese, L., Gordon, L. J., Rockström, J., Oki, T., Sivapalan, M., Wada, Y., Brauman, K. A., Flörke, M., Bierkens, M. F. P., Lehner, B., Keys, P., Kummu, M., Wagener, T., Dadson, S., Troy, T. J., Steffen, W., Falkenmark, M., and Famiglietti, J. S.: Illuminating water cycle modifications and Earth system resilience in the Anthropocene, Water Resour. Res., 56, e2019WR024957, https://doi.org/10.1029/2019WR024957, 2020.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., Van Soesbergen, A., and Zarfl, C.: Mapping the world's free-flowing rivers, Nature, 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.
Hao, X., Ruihong, Y., Zhuangzhuang, Z., Zhen, Q., Xixi, L., Tingxi, L., and Ruizhong, G.: Greenhouse gas emissions from the water–air interface of a grassland river: a case study of the Xilin River, Sci. Rep., 11, 2659, https://doi.org/10.1038/s41598-021-81658-x, 2021.
Keller, P. S., Catalán, N., Von Schiller, D., Grossart, H.-P., Koschorreck, M., Obrador, B., Frassl, M. A., Karakaya, N., Barros, N., Howitt, J. A., Mendoza-Lera, C., Pastor, A., Flaim, G., Aben, R., Riis, T., Arce, M. I., Onandia, G., Paranaíba, J. R., Linkhorst, A., Del Campo, R., Amado, A. M., Cauvy-Fraunié, S., Brothers, S., Condon, J., Mendonça, R. F., Reverey, F., Rõõm, E.-I., Datry, T., Roland, F., Laas, A., Obertegger, U., Park, J.-H., Wang, H., Kosten, S., Gómez, R., Feijoó, C., Elosegi, A., Sánchez-Montoya, M. M., Finlayson, C. M., Melita, M., Oliveira Junior, E. S., Muniz, C. C., Gómez-Gener, L., Leigh, C., Zhang, Q., and Marcé, R.: Global CO2 emissions from dry inland waters share common drivers across ecosystems, Nat. Commun., 11, 2126, https://doi.org/10.1038/s41467-020-15929-y, 2020.
Khandelwal, A., Karpatne, A., Ravirathinam, P., Ghosh, R., Wei, Z., Dugan, H. A., Hanson, P. C., and Kumar, V.: ReaLSAT, a global dataset of reservoir and lake surface area variations, Sci. Data, 9, 356, https://doi.org/10.1038/s41597-022-01449-5, 2022.
Lancaster, J. and Hildrew, A. G.: Flow Refugia and the Microdistribution of Lotic Macroinvertebrates, J. N. Am. Benthol. Soc., 12, 385–393, https://doi.org/10.2307/1467619, 1993.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, EoS Transactions, 89, 93–94, https://doi.org/10.1029/2008EO100001, 2008.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Liu, S., Wang, P., Huang, Q., Yu, J., Pozdniakov, S. P., and Kazak, E. S.: Seasonal and spatial variations in riverine DOC exports in permafrost-dominated Arctic river basins, J. Hydrol., 612, 128060, https://doi.org/10.1016/j.jhydrol.2022.128060, 2022.
Lowe, W. H.: Amphibians, in: Encyclopedia of Inland Waters, edited by: Likens, G. E., Academic Press, Oxford, 439–445, https://doi.org/10.1016/B978-012370626-3.00190-3, 2009.
Matthews, E., Johnson, M. S., Genovese, V., Du, J., and Bastviken, D.: Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions, Sci. Rep., 10, 12465, https://doi.org/10.1038/s41598-020-68246-1, 2020.
Mekonnen, M. M. and Hoekstra, A. Y.: Four billion people facing severe water scarcity, Sci. Adv., 2, e1500323, https://doi.org/10.1126/sciadv.1500323, 2016.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global prevalence of non-perennial rivers and streams, Nature, 594, 391–397, https://doi.org/10.1038/s41586-021-03565-5, 2021.
Micklin, P.: The Aral Sea Disaster, Annu. Rev. Earth Pl. Sc., 35, 47–72, https://doi.org/10.1146/annurev.earth.35.031306.140120, 2007.
Mirza, M. M. Q.: Climate change, flooding in South Asia and implications, Reg. Environ. Change, 11, 95–107, https://doi.org/10.1007/s10113-010-0184-7, 2011.
Neumann, K., Sietz, D., Hilderink, H., Janssen, P., Kok, M., and Van Dijk, H.: Environmental drivers of human migration in drylands – A spatial picture, Appl. Geogr., 56, 116–126, https://doi.org/10.1016/j.apgeog.2014.11.021, 2015.
Ngor, P. B., Oberdorff, T., Phen, C., Baehr, C., Grenouillet, G., and Lek, S.: Fish assemblage responses to flow seasonality and predictability in a tropical flood pulse system, Ecosphere, 9, e02366, https://doi.org/10.1002/ecs2.2366, 2018.
Nyberg, B.: Global Channel Belt (GCB) (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7680163, 2022.
Nyberg, B. and Howell, J.: Is the present the key to the past? A global characterization of modern sedimentary basins, Geology, 43, 643–646, https://doi.org/10.1130/G36669.1, 2015.
Nyberg, B., Henstra, G., Gawthorpe, R. L., Ravnås, R., and Ahokas, J.: Global scale analysis on the extent of river channel belts, Nat. Commun., 14, 2163, https://doi.org/10.1038/s41467-023-37852-8, 2023a.
Nyberg, B., Luijendijk, E., and Sayre, R.: Surface Area of River and Lakes (SARL), Zenodo [data set], https://doi.org/10.5281/zenodo.6895820, 2023b.
Nyberg, B., Luijendijk, E., and Sayre, R.: Surface Area of Rivers and Lakes (SARL), Earth Engine Apps [data set], https://bjornburrnyberg.users.earthengine.app/view/waterchange, last access: 10 October 2023c.
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
OpenStreetMap contributors: https://www.openstreetmap.org/, last access: 1 June 2022.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016a.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: Global Surface Water – Data Access, JRC Publications Repository [data set] https://doi.org/10.1038/nature20584, 2016b.
Power, M. E., Parker, M. S., and Dietrich, W. E.: Seasonal Reassembly of a River Food Web: Floods, Droughts, and Impacts of Fish, Ecological Monographs, 78, 263–282, 2008.
Repasch, M., Scheingross, J. S., Hovius, N., Lupker, M., Wittmann, H., Haghipour, N., Gröcke, D. R., Orfeo, O., Eglinton, T. I., and Sachse, D.: Fluvial organic carbon cycling regulated by sediment transit time and mineral protection, Nat. Geosci., 14, 842–848, https://doi.org/10.1038/s41561-021-00845-7, 2021.
Sakai, M., Wakiya, R., and Hoshi, G.: Flood-induced interspecific interactions in spring-fed tributary as an ecosystem function of heterogeneous river networks, Landsc. Ecol. Eng., 17, 555–561, https://doi.org/10.1007/s11355-021-00465-8, 2021.
Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer, S., Butler, K., Graafeiland, K. V., Frye, C., Karagulle, D., Hopkins, D., Stephens, D., Kelly, K., Basher, Z., Burton, D., Cress, J., Atkins, K., Sistine, D. P. V., Friesen, B., Allee, R., Allen, T., Aniello, P., Asaad, I., Costello, M. J., Goodin, K., Harris, P., Kavanaugh, M., Lillis, H., Manca, E., Muller-Karger, F., Nyberg, B., Parsons, R., Saarinen, J., Steiner, J., and Reed, A.: A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units, J. Oper. Oceanogr., 12, S47–S56, https://doi.org/10.1080/1755876X.2018.1529714, 2019.
Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., and Verbist, K.: Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions, Water Resour. Res., 54, 9724–9758, https://doi.org/10.1029/2017WR022437, 2018.
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T.: Groundwater use for irrigation – a global inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, 2010.
Song, C., Huang, B., Richards, K., Ke, L., and Hien Phan, V.: Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?, Water Resour. Res., 50, 3170–3186, https://doi.org/10.1002/2013WR014724, 2014.
Spearman, C.: The Proof and Measurement of Association between Two Things, Am. J. Psychol., 100, 441–471, https://doi.org/10.2307/1422689, 1987.
United Nations: System of Environmental-Economic Accounting – Ecosystem Accounting (SEEA EA), White cover publication, pre-edited text subject to official editing, https://seea.un.org/ecosystem-accounting (last access: 1 August 2023), 2021.
van Dijk, A. I. J. M. and Renzullo, L. J.: Water resource monitoring systems and the role of satellite observations, Hydrol. Earth Syst. Sci., 15, 39–55, https://doi.org/10.5194/hess-15-39-2011, 2011.
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A. J.: Drought in the Anthropocene, Nat. Geosci., 9, 89–91, https://doi.org/10.1038/ngeo2646, 2016.
Wada, Y., De Graaf, I. E. M., and Van Beek, L. P. H.: High-resolution modeling of human and climate impacts on global water resources, J. Adv. Model Earth Sy., 8, 735–763, https://doi.org/10.1002/2015MS000618, 2016.
Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y., Allen, G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations, Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, 2022.
Zemtsov, V. A., Vershinin, D. A., Khromykh, V. V., and Khromykh, O. V.: Long-term dynamics of maximum flood water levels in the middle course of the Ob River, IOP Conf. Ser.-Earth Environ. Sci., 400, 012004, https://doi.org/10.1088/1755-1315/400/1/012004, 2019.
Short summary
Understanding the spatial and temporal distribution of surface water is crucial for effective water resource management, maintaining ecosystem health and assessing flood risks. This study examined permanent and seasonal rivers and lakes globally over 38 years, uncovering a statistically significant expansion in seasonal extent captured in the new SARL database. The findings offer valuable resources for assessing the impact of changing river and lake extents on ecosystems and human livelihoods.
Understanding the spatial and temporal distribution of surface water is crucial for effective...