Articles | Volume 27, issue 17
https://doi.org/10.5194/hess-27-3265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of precipitation measurement methods using data from a precision lysimeter network
Tobias Schnepper
CORRESPONDING AUTHOR
Institute of Bio- and Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Institute for Geosciences, University of Bonn, Nussallee 8, 53113 Bonn, Germany
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Jannis Groh
Institute of Bio- and Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Research
Area 1 “Landscape Functioning”, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany
Institute of Crop Science and Resource Conservation – Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53113 Bonn, Germany
Horst H. Gerke
Research
Area 1 “Landscape Functioning”, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany
Barbara Reichert
Institute for Geosciences, University of Bonn, Nussallee 8, 53113 Bonn, Germany
Thomas Pütz
Institute of Bio- and Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Related authors
No articles found.
François Rineau, Alexander H. Frank, Jannis Groh, Kristof Grosjean, Arnaud Legout, Daniil I. Kolokolov, Michel Mench, Maria Moreno-Druet, Benoît Pollier, Virmantas Povilaitis, Johanna Pausch, Thomas Puetz, Tjalling Rooks, Peter Schröder, Wieslaw Szulc, Beata Rutkowska, Xander Swinnen, Sofie Thijs, Harry Vereecken, Janna V. Veselovskaya, Mwahija Zubery, Renaldas Žydelis, and Evelin Loit
EGUsphere, https://doi.org/10.5194/egusphere-2025-4188, https://doi.org/10.5194/egusphere-2025-4188, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Spreading crushed rock on farmland soil could help slow climate change by capturing CO2 from the atmosphere and convert it in carbonate ions. We found that this method not only captured carbon in soils but also stimulated natural biological processes that store even more carbon. These results suggest that enhanced weathering can act as a double benefit: removing carbon dioxide from the air while improving the health and resilience of agricultural soils.
Heye Reemt Bogena, Frank Herrmann, Andreas Lücke, Thomas Pütz, and Harry Vereecken
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-185, https://doi.org/10.5194/essd-2025-185, 2025
Preprint under review for ESSD
Short summary
Short summary
The Wüstebach catchment in Germany’s TERENO network underwent partial deforestation in 2013 to support natural regrowth in Eifel National Park. This data paper presents 16 years (2010–2024) of estimated hourly stream-water flux data for nine macro- and micronutrients, dissolved ionic aluminum, and dissolved organic carbon, along with measured solute concentrations and discharge rates from two stations—one affected by clear-cutting and one unaffected.
Belén Martí, Jannis Groh, Guylaine Canut, and Aaron Boone
EGUsphere, https://doi.org/10.5194/egusphere-2025-1783, https://doi.org/10.5194/egusphere-2025-1783, 2025
Short summary
Short summary
The characterization of vegetation at two sites proved insufficient to simulate adequately the evapotranspiration. A dry surface layer was implemented in the land surface model SURFEX-ISBA v9.0. It is compared to simulations without a soil resistance. The application to an alfalfa site and a natural grass site in semiarid conditions results in an improvement in the estimation of the latent heat flux. The surface energy budget and the soil and vegetation characteristics are explored in detail.
Annelie Ehrhardt, Jannis Groh, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 29, 313–334, https://doi.org/10.5194/hess-29-313-2025, https://doi.org/10.5194/hess-29-313-2025, 2025
Short summary
Short summary
Soil water storage (SWS) describes the amount of water in the root zone of plants accessible for crop growth. SWS underlies annual cycles with maximum values in winter and minimum values in summer. For a soil that was transferred from a drier to a more humid climate we found that the maximum peak of SWS occurs earlier every year. This can be explained by an earlier start of the vegetation period. It is a first indication that the ability of soils to store water is affected by different climate.
Joschka Neumann, Nicolas Brüggemann, Patrick Chaumet, Normen Hermes, Jan Huwer, Peter Kirchner, Werner Lesmeister, Wilhelm August Mertens, Thomas Pütz, Jörg Wolters, Harry Vereecken, and Ghaleb Natour
EGUsphere, https://doi.org/10.5194/egusphere-2024-1598, https://doi.org/10.5194/egusphere-2024-1598, 2024
Short summary
Short summary
Climate change in combination with a steadily growing world population and a simultaneous decrease in agricultural land is one of the greatest global challenges facing mankind. In this context, Forschungszentrum Jülich established an "agricultural simulator" (AgraSim), which enables research into the effects of climate change on agricultural ecosystems and the optimization of agricultural cultivation and management strategies with the aid of combined experimental and numerical simulation.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
Cited articles
Adirosi, E., Roberto, N., Montopoli, M., Gorgucci, E., and Baldini, L.:
Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD:
Application to Italian Climatology, Atmosphere, 9, 360, https://doi.org/10.3390/atmos9090360, 2018.
Alter, J. C.: Shielded storage precipitation gages, Mon. Weather Rev., 65, 262–265,
https://doi.org/10.1175/1520-0493(1937)65<262:SSPG>2.0.CO;2, 1937.
Bárdossy, A., Kilsby, C., Birkinshaw, S., Wang, N., and Anwar, F.: Is
Precipitation Responsible for the Most Hydrological Model Uncertainty?, Front. Water, 4, 836554, https://doi.org/10.3389/frwa.2022.836554, 2022.
Bloemink, H. I. and Lanzinger, E.: Precipitation type from the Thies
disdrometer, WMO, Bukarest, https://cdn.knmi.nl/system/data_center_publications/files/000/068/578/original/teco2005_paper_bloemink.pdf?1495621277 (last access: 1 September 2022), 2005.
Bogena, H. R., Montzka, C., Huisman, J. A., Graf, A., Schmidt, M., Stockinger, M., von Hebel, C., Hendricks-Franssen, H. J., van der Kruk, J.,
Tappe, W., Lücke, A., Baatz, R., Bol, R., Groh, J., Pütz, T., Jakobi, J., Kunkel, R., Sorg, J., and Vereecken, H.: The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment Research Platform
for the Advancement of Hydrological Science, Vadose Zone J., 17, 180055, https://doi.org/10.2136/vzj2018.03.0055, 2018.
Calder, I. R. and Kidd, C.: A note on the dynamic calibration of tipping-bucket gauges, J. Hydrol., 39, 383–386, https://doi.org/10.1016/0022-1694(78)90013-6, 1978.
Chen, R., Liu, J., Kang, E., Yang, Y., Han, C., Liu, Z., Song, Y., Qing, W.,
and Zhu, P.: Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau, The Cryosphere, 9, 1995–2008,
https://doi.org/10.5194/tc-9-1995-2015, 2015.
Chvíla, B., Sevruk, B., and Ondrás, M.: The wind-induced loss of
thunderstorm precipitation measurements, Atmos. Res., 77, 29–38,
https://doi.org/10.1016/j.atmosres.2004.11.032, 2005.
Dengel, S., Graf, A., Grünwald, T., Hehn, M., Kolari, P., Löfvenius,
M. O., Merbold, L., Nicolini, G., and Pavelka, M.: Standardized precipitation measurements within ICOS: rain, snowfall and snow depth: a
review, Int. Agrophys., 32, 607–617, https://doi.org/10.1515/intag-2017-0046, 2018.
Duchon, C. E. and Biddle, C. J.: Undercatch of tipping-bucket gauges in high rain rate events, Adv. Geosci., 25, 11–15, https://doi.org/10.5194/adgeo-25-11-2010, 2010.
Duchon, C. E. and Essenberg, G. R.: Comparative rainfall observations from
pit and aboveground rain gauges with and without wind shields, Water Resour.
Res., 37, 3253–3263, https://doi.org/10.1029/2001WR000541, 2001.
DWD: Niederschlag: vieljährige Mittelwerte 1961–1990, Deutscher
Wetterdienst,
https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/nieder_6190_akt_html.html?view=nasPublication&nn=16102 (last access: 8 October 2021), 2021a.
DWD: Temperatur: vieljährige Mittelwerte 1961–1990, Deutscher
Wetterdienst,
https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/temp_6190_akt_html.html?view=nasPublication&nn=16102 (last access: 8 October 2021), 2021b.
Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias correction methods in downscaling meteorological variables for a hydrologic
impact study in an arid area in China, Hydrol. Earth Syst. Sci., 19,
2547–2559, https://doi.org/10.5194/hess-19-2547-2015, 2015.
Fehlmann, M., Rohrer, M., von Lerber, A., and Stoffel, M.: Automated
precipitation monitoring with the Thies disdrometer: biases and ways for
improvement, Atmos. Meas. Tech., 13, 4683–4698,
https://doi.org/10.5194/amt-13-4683-2020, 2020.
Førland, E. J., Allerup, P., Dahlström, B., Elomaa, E., Jónsson,
T., Madsen, H., Perälä, J., Rissanen, P., Vedin, H., and Vejen, F.:
Manual for Operational Correction of Nordic Precipitation Data, Oslo, https://www.met.no/publikasjoner/met-report/met-report-1996/_/attachment/download/ea2cb006-688a-408f-a60c-9f6306843cc0:e16a138129a1d1896cff764ab3eb2cc42aefb160/MET-report-24-1996.pdf (last access: 1 May 2022), 1996.
Forstner, V., Groh, J., Vremec, M., Herndl, M., Vereecken, H., Gerke, H. H.,
Birk, S., and Pütz, T.: Response of water fluxes and biomass production
to climate change in permanent grassland soil ecosystems, Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, 2021.
Fuchs, T., Rapp, J., Rubel, F., and Rudolf, B.: Correction of synoptic
precipitation observations due to systematic measuring errors with special
regard to precipitation phases, Phys. Chem. Earth Pt. B, 26, 689–693,
https://doi.org/10.1016/S1464-1909(01)00070-3, 2001.
Gebler, S., Hendricks Franssen, H.-J., Pütz, T., Post, H., Schmidt, M.,
and Vereecken, H.: Actual evapotranspiration and precipitation measured by
lysimeters: a comparison with eddy covariance and tipping bucket, Hydrol.
Earth Syst. Sci., 19, 2145–2161, https://doi.org/10.5194/hess-19-2145-2015, 2015.
Gebler, S., Hendricks Franssen, H.-J., Kollet, S. J., Qu, W., and Vereecken,
H.: High resolution modelling of soil moisture patterns with TerrSysMP: A
comparison with sensor network data, J. Hydrol., 547, 309–331,
https://doi.org/10.1016/j.jhydrol.2017.01.048, 2017.
Goodison, B. E., Louie, P., and Yang, D.: WMO Solid Precipitation Measurement Intercomparison, Final Report, Instruments and observing methods, World Meteorological Organization, 67 pp. https://library.wmo.int/index.php?lvl=notice_display&id=6441 (last access: 1 September 2022), 1998.
Goss, M. J. and Ehlers, W.: The role of lysimeters in the development of our
understanding of soil water and nutrient dynamics in ecosystems, Soil Use
Manage., 25, 213–223, https://doi.org/10.1111/j.1475-2743.2009.00230.x, 2009.
Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J., and
Vereecken, H.: Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data, Vadose Zone J., 17, 170168, https://doi.org/10.2136/vzj2017.09.0168, 2018a.
Groh, J., Slawitsch, V., Herndl, M., Graf, A., Vereecken, H., and Pütz,
T.: Determining dew and hoar frost formation for a low mountain range and
alpine grassland site by weighable lysimeter, J. Hydrol., 563, 372–381, https://doi.org/10.1016/j.jhydrol.2018.06.009, 2018b.
Groh, J., Pütz, T., Gerke, H. H., Vanderborght, J., and Vereecken, H.:
Quantification and Prediction of Nighttime Evapotranspiration for Two Distinct Grassland Ecosystems, Water Resour. Res., 55, 2961–2975,
https://doi.org/10.1029/2018WR024072, 2019.
Groh, J., Diamantopoulos, E., Duan, X., Ewert, F., Herbst, M., Holbak, M.,
Kamali, B., Kersebaum, K.-C., Kuhnert, M., Lischeid, G., Nendel, C.,
Priesack, E., Steidl, J., Sommer, M., Pütz, T., Vereecken, H., Wallor,
E., Weber, T. K., Wegehenkel, M., Weihermüller, L., and Gerke, H. H.:
Crop growth and soil water fluxes at erosion-affected arable sites: Using
weighing lysimeter data for model intercomparison, Vadose Zone J., 19, e20058, https://doi.org/10.1002/vzj2.20058, 2020a.
Groh, J., Vanderborght, J., Pütz, T., Vogel, H.-J., Gründling, R.,
Rupp, H., Rahmati, M., Sommer, M., Vereecken, H., and Gerke, H. H.: Responses of soil water storage and crop water use efficiency to changing
climatic conditions: a lysimeter-based space-for-time approach, Hydrol. Earth Syst. Sci., 24, 1211–1225, https://doi.org/10.5194/hess-24-1211-2020, 2020b.
Hagenau, J., Meissner, R., and Borg, H.: Effect of exposure on the water
balance of two identical lysimeters, J. Hydrol., 520, 69–74,
https://doi.org/10.1016/j.jhydrol.2014.11.030, 2015.
Hannes, M., Wollschläger, U., Schrader, F., Durner, W., Gebler, S.,
Pütz, T., Fank, J., von Unold, G., and Vogel, H.-J.: A comprehensive
filtering scheme for high-resolution estimation of the water balance components from high-precision lysimeters, Hydrol. Earth Syst. Sci., 19,
3405–3418, https://doi.org/10.5194/hess-19-3405-2015, 2015.
Haselow, L., Meissner, R., Rupp, H., and Miegel, K.: Evaluation of
precipitation measurements methods under field conditions during a summer
season: A comparison of the standard rain gauge with a weighable lysimeter
and a piezoelectric precipitation sensor, J. Hydrol., 575, 537–543, https://doi.org/10.1016/j.jhydrol.2019.05.065, 2019.
Heinrich, I., Balanzategui, D., Bens, O., Blasch, G., Blume, T., Böttcher, F., Borg, E., Brademann, B., Brauer, A., Conrad, C., Dietze,
E., Dräger, N., Fiener, P., Gerke, H. H., Güntner, A., Heine, I.,
Helle, G., Herbrich, M., Harfenmeister, K., Heußner, K.-U., Hohmann, C.,
Itzerott, S., Jurasinski, G., Kaiser, K., Kappler, C., Koebsch, F., Liebner,
S., Lischeid, G., Merz, B., Missling, K. D., Morgner, M., Pinkerneil, S.,
Plessen, B., Raab, T., Ruhtz, T., Sachs, T., Sommer, M., Spengler, D.,
Stender, V., Stüve, P., and Wilken, F.: Interdisciplinary Geo-ecological
Research across Time Scales in the Northeast German Lowland Observatory
(TERENO-NE), Vadose Zone J., 17, 180116, https://doi.org/10.2136/vzj2018.06.0116, 2018.
Herbrich, M. and Gerke, H. H.: Autocorrelation analysis of high resolution
weighing lysimeter time series as a basis for determination of precipitation, Z. Pflanzenernähr. Bodenk., 179, 784–798,
https://doi.org/10.1002/jpln.201600169, 2016.
Hertel, C. and von Unold, G.: Third-generation lysimeters: scientific
engineered monitoring systems, in: Novel measurement and assessment tools
for monitoring and management of land and water resources in agricultural
landscapes of central Asia, edited by: Mueller, L., Saparov, A., and Lischeid, G., Springer International Cham, Heidelberg, New York, Dordrecht,
London, 175–184, https://doi.org/10.1007/978-3-319-01017-5_9, 2013.
Heyn, K., Lönnqvist, J., and Linna, T.: Uncertainty sources that limit
the precipitation identification / quantification ad extinction coefficient
determination capabilities of optical present weather and visibility
sensors, in: WMO Technical Conference on Meteorological and Environmental
Instruments and Methods of Observation, 8–11 October 2018, Amsterdam, the Netherlands, https://www.wmocimo.net/wp-content/uploads/O2_13_Heyn_TECO-2018-K.Heyn-O2-13.pdf (last access: 1 September 2022), 2018.
Hoffmann, M., Schwartengräber, R., Wessolek, G., and Peters, A.:
Comparison of simple rain gauge measurements with precision lysimeter data,
Atmos. Res., 174–175, 120–123, https://doi.org/10.1016/j.atmosres.2016.01.016, 2016.
Johannsen, L. L., Zambon, N., Strauss, P., Dostal, T., Neumann, M., Zumr, D., Cochrane, T. A., Blöschl, G., and Klik, A.: Comparison of three
types of laser optical disdrometers under natural rainfall conditions, Hydrolog. Sci. J., 65, 524–535, https://doi.org/10.1080/02626667.2019.1709641, 2020.
Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno, J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, A., and Poikonen, A.: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, 2017a.
Kochendorfer, J., Rasmussen, R., Wolff, M., Baker, B., Hall, M. E., Meyers,
T., Landolt, S., Jachcik, A., Isaksen, K., Brækkan, R., and Leeper, R.:
The quantification and correction of wind-induced precipitation measurement
errors, Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, 2017b.
Kohfahl, C. and Saaltink, M. W.: Comparing precision lysimeter rainfall
measurements against rain gauges in a coastal dune belt, Spain, J. Hydrol., 591, 125580, https://doi.org/10.1016/j.jhydrol.2020.125580, 2020.
Kunkel, R., Sorg, J., Klump, J., Kolditz, O., Rink, K., Gasche, R., and
Neidl, F.: TEODOOR - A Spatial Data Infrastructure for terrestrial
observation data, in: 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC 2013): Evry, Evry, France, 10–12 April 2013, 242–245, https://doi.org/10.1109/ICNSC.2013.6548744, 2013.
La Barbera, P., Lanza, L. G., and Stagi, L.: Tipping bucket mechanical errors and theirs influence on rainfall statistics and extremes, Water Sci. Technol., 45, 1–9, https://doi.org/10.2166/wst.2002.0020, 2002.
Lanza, L. G. and Vuerich, E.: The WMO Field Intercomparison of Rain Intensity Gauges, Atmos. Res., 94, 534–543, https://doi.org/10.1016/j.atmosres.2009.06.012, 2009.
Lanzinger, E., Theel, M., and Windolph, H.: Rainfall Amount and Intensity
measured by the Thies Laser Precipitation Monitor, TECO-2006, Geneva,
Switzerland, https://api.semanticscholar.org/CorpusID:898320 (last access: 1 September 2022), 2006.
Liu, X. C., Gao, T. C., and Liu, L.: A comparison of rainfall measurements from multiple instruments, Atmos. Meas. Tech., 6, 1585–1595,
https://doi.org/10.5194/amt-6-1585-2013, 2013.
Marek, G., Evett, S., Gowda, P. H., Howell, T. A., Copeland, K. S., and
Baumhardt, R. L.: Post-Processing Techniques for Reducing Errors in Weighing
Lysimeter Evapotranspiration (ET) Datasets, T. ASABE, 499–515,
https://doi.org/10.13031/trans.57.10433, 2014.
McGuiness, J. L.: A comparison of lysimeter catch and rain gage catch,
Agricultural Research Service, 124 pp. ARS 41-124, 1966.
Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., and Borg, H.: Measurement
of dew, fog, and rime with a high-precision gravitation lysimeter, Z.
Pflanzenernähr. Bodenk., 170, 335–344, https://doi.org/10.1002/jpln.200625002, 2007.
Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T., and
Lane, J. E.: Precipitation: Measurement, remote sensing, climatology and
modeling, Atmos. Res., 94, 512–533, https://doi.org/10.1016/j.atmosres.2009.08.017, 2009.
Michelson, D. B.: Systematic correction of precipitation gauge observations
using analyzed meteorological variables, J. Hydrol., 290, 161–177, https://doi.org/10.1016/j.jhydrol.2003.10.005, 2004.
Monteith, J. L. and Unsworth, M. H.: Principles of environmental physics:
Plants, animals, and the atmosphere, in: 4th Edn., Elsevier/Acad. Press,
Amsterdam, 401 pp., ISBN 978-0-12-386910-4, 2013.
Morgan, D. L. and Lourence, F. J.: Comparison Between Rain Gage and Lysimeter Measurements, Water Resour. Res., 5, 724–728,
https://doi.org/10.1029/WR005i003p00724, 1969.
Niemczynowicz, J.: The Dynamic Calibration of Tipping-Bucket Raingauges,
Hydrol. Res., 17, 203–214, https://doi.org/10.2166/nh.1986.0013, 1986.
Nipher, F. E.: On the determination of the true rainfall, by elevated
gages, in: Proceedings of the American Association for the Advancement of
Science, August 1878, St. Louis, Missouri, USA, 103–108, 1878.
Nolz, R., Kammerer, G., and Cepuder, P.: Interpretation of lysimeter weighing data affected by wind, Z. Pflanzenernähr. Bodenk., 176,
200–208, https://doi.org/10.1002/jpln.201200342, 2013.
Peters, A., Nehls, T., Schonsky, H., and Wessolek, G.: Separating
precipitation and evapotranspiration from noise – a new filter routine for
high-resolution lysimeter data, Hydrol. Earth Syst. Sci., 18, 1189–1198,
https://doi.org/10.5194/hess-18-1189-2014, 2014.
Peters, A., Nehls, T., and Wessolek, G.: Technical note: Improving the AWAT
filter with interpolation schemes for advanced processing of high resolution data, Hydrol. Earth Syst. Sci., 20, 2309–2315,
https://doi.org/10.5194/hess-20-2309-2016, 2016.
Peters, A., Groh, J., Schrader, F., Durner, W., Vereecken, H., and Pütz,
T.: Towards an unbiased filter routine to determine precipitation and
evapotranspiration from high precision lysimeter measurements, J. Hydrol., 549, 731–740, https://doi.org/10.1016/j.jhydrol.2017.04.015, 2017.
Pollock, M. D., O'Donnell, G., Quinn, P., Dutton, M., Black, A., Wilkinson,
M. E., Colli, M., Stagnaro, M., Lanza, L. G., Lewis, E., Kilsby, C. G., and
O'Connell, P. E.: Quantifying and Mitigating Wind-Induced Undercatch in Rainfall Measurements, Water Resour. Res., 54, 3863–3875,
https://doi.org/10.1029/2017WR022421, 2018.
Porporato, A. and Rodriguez-Iturbe, I.: Ecohydrology – a challenging
multidisciplinary research perspective, Hydrolog. Sci. J., 47, 811–821, https://doi.org/10.1080/02626660209492985, 2002.
Pütz, T., Kiese, R., Wollschläger, U., Groh, J., Rupp, H., Zacharias, S., Priesack, E., Gerke, H. H., Gasche, R., Bens, O., Borg, E.,
Baessler, C., Kaiser, K., Herbrich, M., Munch, J.-C., Sommer, M., Vogel,
H.-J., Vanderborght, J., and Vereecken, H.: TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity
influenced by climate change, Environ. Earth Sci., 75, 1242, https://doi.org/10.1007/s12665-016-6031-5, 2016.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (last access: 1 September 2022), 2020.
Richter, D.: Ergebnisse methodischer Untersuchungen zur Korrektur des
systematischen Meßfehlers des Hellmann-Niederschlagmessers, Berichte
des Deutschen Wetterdienstes, Selbstverlag des Deutschen Wetterdienstes,
Offenbach am Main, 194 pp. ISBN 9783881483094, 1995.
Ross, A., Smith, C. D., and Barr, A.: An improved post-processing technique for automatic precipitation gauge time series, Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020, 2020.
Ryu, S., Lee, G., Nitu, R., Smith, C., Lim, E., and Kim, H. L.: Quantitative
comparison of two types of working field reference systems for the
measurement of precipitation amount (R2), in: Proceedings of the WMO
Technical Conference on Meteorological and Environmental Instruments and
Methods of Observation, September 2016, Madrid, Spain, 2016.
Salmi, A. and Ikonen, J.: Piezoelectic precipitation sensor from Vaisala,
in: WMO Technical Conference on Instruments and Methods of Observation
(TECO-2005), https://library.wmo.int/index.php?lvl=notice_display&id=11280 (last access: 1 September 2022), Bucharest, Romania, 4–7 May 2005, 2005.
Schneider, J., Groh, J., Pütz, T., Helmig, R., Rothfuss, Y., Vereecken,
H., and Vanderborght, J.: Prediction of soil evaporation measured with
weighable lysimeters using the FAO Penman–Monteith method in combination
with Richards' equation, Vadose Zone J., 20, 1, https://doi.org/10.1002/vzj2.20102, 2021.
Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M.,
and Wollschläger, U.: Estimating Precipitation and Actual Evapotranspiration from Precision Lysimeter Measurements, Proced. Environ. Sci., 19, 543–552, https://doi.org/10.1016/j.proenv.2013.06.061, 2013.
Seibert, J. and Morén, A.-S.: Reducing systematic errors in rainfall
measurements using a new type of gauge, Agr. Forest Meteorol., 98–99, 341–348, https://doi.org/10.1016/S0168-1923(99)00107-0, 1999.
Sevruk, B.: Correction for the wetting loss of a Hellmann precipitation
gauge, Hydrolog. Sci. Bull., 194, 549–559, 1974.
Sevruk, B.: Methods of correction for systematic error in point precipitation measurement for operational use, Operational hydrology report 21, WMO, Geneva, 91 pp., https://library.wmo.int/doc_num.php?explnum_id=1238 (last access: 1 September 2022), 1982.
Sevruk, B.: Point precipitation measurements: why are they not corrected?,
in: Water for the future: Proceedings, edited by: Rodda, J. C., IAHS Pr.
Inst. of Hydrology, Wallingford, 477–486, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ed8fec51c8bcdac8f8128cccea655235346ffbe1 (last access: 1 May 2022), 1987.
Sevruk, B. and Chvíla, B.: Error sources of precipitation measurements
using electronic weight systems, Atmos. Res., 77, 39–47,
https://doi.org/10.1016/j.atmosres.2004.10.026, 2005.
Sevruk, B. and Hamon, W. R.: International Comparison of National Precipitation Gauges with a Reference Pit Gauge, WMO Instrument and
Observing Methods Report No. 17, Geneva, https://library.wmo.int/index.php?lvl=notice_display&id=9875 (last access: 1 September 2022), 1984.
Sevruk, B. and Nespor, V.: The Effect of Dimensions and Shape of Precipitation Gauges on the Wind-Induced Error, in: Global Precipitations
and Climate Change, edited by: Desbois, M. and Désalmand, F., Springer,
Berlin, Heidelberg, 231–246, https://doi.org/10.1007/978-3-642-79268-7_14, 1994.
Sevruk, B., Hertig, A. H., and Spiess, R.: Wind Field Deformation Above
Precipitation Gage Orifices, in: IAHS-AGU Symposium on Atmospheric
Deposition, edited by: Delleur, J. W. and Miller, J. M., May 1989, Baltimore, Maryland, USA, ISBN 0-947571-86-8, 65–70, 1989.
Shedekar, V. S., King, K. W., Fausey, N. R., Soboyejo, A. B., Harmel, R. D.,
and Brown, L. C.: Assessment of measurement errors and dynamic calibration
methods for three different tipping bucket rain gauges, Atmos. Res., 178–179, 445–458, https://doi.org/10.1016/j.atmosres.2016.04.016, 2016.
Sugiura, K., Yang, D., and Ohata, T.: Systematic error aspects of gauge-measured solid precipitation in the Arctic, Barrow, Alaska, Geophys.
Res. Lett., 30, 4, https://doi.org/10.1029/2002GL015547, 2003.
Sugiura, K., Ohata, T., and Yang, D.: Catch Characteristics of Precipitation
Gauges in High-Latitude Regions with High Winds, J. Hydrometeorol., 7, 984–994, https://doi.org/10.1175/JHM542.1, 2006.
Tapiador, F. J., Navarro, A., Levizzani, V., García-Ortega, E., Huffman, G. J., Kidd, C., Kucera, P. A., Kummerow, C. D., Masunaga, H., Petersen, W. A., Roca, R., Sánchez, J.-L., Tao, W.-K., and Turk, F. J.:
Global precipitation measurements for validating climate models, Atmos. Res., 197, 1–20, https://doi.org/10.1016/j.atmosres.2017.06.021, 2017.
TERENO: Data Discovery Portal, TERENO [data set], https://teodoor.icg.kfa-juelich.de/ddp/index.jsp (last access: 1 September 2022), 2023.
Vaughan, P. J. and Ayars, J. E.: Noise Reduction Methods for Weighing
Lysimeters, J. Irrig. Drain Eng., 135, 235–240,
https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(235), 2009.
von Unold, G. and Fank, J.: Modular Design of Field Lysimeters for Specific
Application Needs, Water Air Soil Pollut., 8, 233–242,
https://doi.org/10.1007/s11267-007-9172-4, 2008.
Vuerich, E., Monesi, C., Lanza, L., Stagi, L., and Lanzinger, E.: WMO Field
Intercomparison of Rainfall Intensity Gauges, Instruments and Observing Methods Rep. No. 99, WMO/TD No. 1504, World Meteorological Organisation, https://library.wmo.int/index.php?lvl=notice_display&id=1552 (last access: 1 September 2022), 2009.
Watson, S., Smith, C. D., Lassi, M., and Misfeldt, J.: An Evaluation of the
Effectiveness of the Double Alter Wind Shield for Increasing the Catch Efficiency of the Geonor T-200B Precipitation Gauge, CMOS Bulletin SCMO, 36, 168–175, 2008.
Wickham, H.: ggplot2: Elegant graphics for data analysis, in: 2nd Edn., Use R!, Springer, Switzerland, 260 pp., https://doi.org/10.1007/978-0-387-98141-3, 2016.
Winder, P. and Paulson, K. S.: The measurement of rain kinetic energy and
rain intensity using an acoustic disdrometer, Meas. Sci. Technol., 23,
15801, https://doi.org/10.1088/0957-0233/23/1/015801, 2012.
WMO: Guide to hydrological practices, in: 6th Edn., World Meteorological
Organization, Geneva, 2 pp., https://library.wmo.int/index.php?lvl=notice_display&id=21815 (last access: 1 September 2022), 2008.
WMO: Guide to Meteorological Instruments and Methods of Observation: Volume I – Measurement of Meteorological Variables, WMO, 8, World Meteorological Organization, Geneva, 1177 pp., https://library.wmo.int/index.php?id=12407&lvl=notice_display (last access: 1 September 2022), 2018.
Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan,
T., and Brækkan, R.: Derivation of a new continuous adjustment function
for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrol. Earth Syst. Sci., 19, 951–967,
https://doi.org/10.5194/hess-19-951-2015, 2015.
Wong, K. and Nitu, R.: CIMO Survey On National Summaries Of Methods And Instruments For Solid Precipitation Measurement At Automatic Weather Stations, Instruments And Observing Methods Report No. 102, WMO, Swizerland, https://library.wmo.int/index.php?lvl=notice_display&id=15528 (last access: 1 September 2022), 2010.
Xiao, H., Meissner, R., Seeger, J., Rupp, H., and Borg, H.: Effect of
vegetation type and growth stage on dewfall, determined with high precision
weighing lysimeters at a site in northern Germany, J. Hydrol., 377, 43–49, https://doi.org/10.1016/j.jhydrol.2009.08.006, 2009a.
Xiao, H., Meissner, R., Seeger, J., Rupp, H., and Borg, H.: Testing the
precision of a weighable gravitation lysimeter, Z. Pflanzenernähr.
Bodenk., 172, 194–200, https://doi.org/10.1002/jpln.200800084, 2009b.
Yang, D.: Double Fence Intercomparison Reference (DFIR) vs. Bush Gauge for
“true” snowfall measurement, J. Hydrol., 509, 94–100,
https://doi.org/10.1016/j.jhydrol.2013.08.052, 2014.
Yang, D., Goodison, B. E., Ishida, S., and Benson, C. S.: Adjustment of daily precipitation data at 10 climate stations in Alaska: Application of
World Meteorological Organization intercomparison results, Water Resour. Res., 34, 241–256, https://doi.org/10.1029/97WR02681, 1998.
Yang, D., Goodison, B. E., Metcalfe, J. R., Louie, P., Leavesley, G., Emerson, D., Hanson, C. L., Golubev, V. S., Elomaa, E., Gunther, T., Pangburn, T., Kang, E., and Milkovic, J.: Quantification of precipitation
measurement discontinuity induced by wind shields on national gauges, Water
Resour. Res., 35, 491–508, https://doi.org/10.1029/1998WR900042, 1999a.
Yang, D., Ishida, S., Goodison, B. E., and Gunther, T.: Bias correction of
daily precipitation measurements for Greenland, J. Geophys. Res., 104,
6171–6181, https://doi.org/10.1029/1998JD200110, 1999b.
Yang, D., Kane, D. L., Hinzman, L. D., Goodison, B. E., Metcalfe, J. R.,
Louie, P. Y. T., Leavesley, G. H., Emerson, D. G., and Hanson, C. L.: An
evaluation of the Wyoming Gauge System for snowfall measurement, Water Resour. Res., 36, 2665–2677, https://doi.org/10.1029/2000WR900158, 2000.
Yang, D., Goodison, B., Metcalfe, J., Louie, P., Elomaa, E., Hanson, C.,
Golubev, V., Gunther, T., Milkovic, J., and Lapin, M.: Compatibility
evaluation of national precipitation gage measurements, J. Geophys. Res.,
106, 1481–1491, https://doi.org/10.1029/2000JD900612, 2001.
Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz,
T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens, O.,
Borg, E., Brauer, A., Dietrich, P., Hajnsek, I., Helle, G., Kiese, R.,
Kunstmann, H., Klotz, S., Munch, J. C., Papen, H., Priesack, E., Schmid, H.
P., Steinbrecher, R., Rosenbaum, U., Teutsch, G., and Vereecken, H.: A
Network of Terrestrial Environmental Observatories in Germany, Vadose Zone J., 10, 955–973, https://doi.org/10.2136/vzj2010.0139, 2011.
Zhang, Q., Wang, S., Yue, P., and Wang, S.: Variation characteristics of
non-rainfall water and its contribution to crop water requirements in China's summer monsoon transition zone, J. Hydrol., 578, 124039,
https://doi.org/10.1016/j.jhydrol.2019.124039, 2019.
Short summary
We compared hourly data from precipitation gauges with lysimeter reference data at three sites under different climatic conditions. Our results show that precipitation gauges recorded 33–96 % of the reference precipitation data for the period under consideration (2015–2018). Correction algorithms increased the registered precipitation by 9–14 %. It follows that when using point precipitation data, regardless of the precipitation measurement method used, relevant uncertainties must be considered.
We compared hourly data from precipitation gauges with lysimeter reference data at three sites...