Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5391-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5391-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Department of Mathematical Sciences, Norwegian University of Science and Technology, NTNU, Høgskoleringen 1, 7491 Trondheim, Norway
Norwegian Computing Center, NR, Postboks 114, Blindern, 0314 Oslo, Norway
Ingelin Steinsland
Department of Mathematical Sciences, Norwegian University of Science and Technology, NTNU, Høgskoleringen 1, 7491 Trondheim, Norway
Kolbjørn Engeland
The Norwegian Water Resources and Energy Directorate, NVE, Middelthuns gate 29, 0368 Oslo, Norway
Related authors
Michael Scheuerer, Emilie Byermoen, Julia Ribeiro de Oliveira, Thea Roksvåg, and Dagrun Vikhamar Schuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1603, https://doi.org/10.5194/egusphere-2025-1603, 2025
Short summary
Short summary
Our project partner Statkraft requires streamflow projections several decades into the future to plan hydropower investments. Since in-house hydrological models are not available for all regions, we have developed an interpretable machine learning approach to link streamflow to precipitation and temperature. We demonstrate our method in connection with climate model simulations to obtain projections of future streamflow in Brazil.
Michael Scheuerer, Emilie Byermoen, Julia Ribeiro de Oliveira, Thea Roksvåg, and Dagrun Vikhamar Schuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1603, https://doi.org/10.5194/egusphere-2025-1603, 2025
Short summary
Short summary
Our project partner Statkraft requires streamflow projections several decades into the future to plan hydropower investments. Since in-house hydrological models are not available for all regions, we have developed an interpretable machine learning approach to link streamflow to precipitation and temperature. We demonstrate our method in connection with climate model simulations to obtain projections of future streamflow in Brazil.
Danielle M. Barna, Kolbjørn Engeland, Thomas Kneib, Thordis L. Thorarinsdottir, and Chong-Yu Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2335, https://doi.org/10.5194/egusphere-2023-2335, 2023
Preprint archived
Short summary
Short summary
Estimating flood quantiles at data-scarce sites often involves single-duration regression models. However, floodplain management and reservoir design, for example, need estimates at several durations, posing challenges. Our flexible generalized additive model (GAM) enhances accuracy and explanation, revealing that single-duration models may underperform elsewhere, emphasizing the need for adaptable approaches.
Trine J. Hegdahl, Kolbjørn Engeland, Ingelin Steinsland, and Andrew Singleton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-13, https://doi.org/10.5194/hess-2021-13, 2021
Manuscript not accepted for further review
Short summary
Short summary
To provide improved and reliable flood forecasts we have evaluated ensemble forecasts for 119 catchments. We applied correction (processing) schemes to temperature, precipitation, and streamflow. The performance of the corrections schemes depends on catchments, season, and lead time. Postprocessing streamflow was less important for floods. Spring floods had a longer predictability than autumn floods, and the study revealed regions and seasons with potential for improvements.
Kolbjørn Engeland, Anna Aano, Ida Steffensen, Eivind Støren, and Øyvind Paasche
Hydrol. Earth Syst. Sci., 24, 5595–5619, https://doi.org/10.5194/hess-24-5595-2020, https://doi.org/10.5194/hess-24-5595-2020, 2020
Short summary
Short summary
We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring.
Cited articles
Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J.,
Krainski, E., Simpson, D., and Lindgren, F.: Spatial modeling with R-INLA: A
review, WIREs Computational Statistics, 10, e1443, https://doi.org/10.1002/wics.1443, 2018. a
Banerjee, S., Gelfand, A., and Carlin, B.: Hierarchical Modeling and Analysis
for Spatial Data, vol. 101 of Monographs on Statistics and Applied
Probability, Chapman & Hall, ISBN 978-1584884101, 2003. a
Beldring, S., Engeland, K., Roald, L. A., Sælthun, N. R., and Voksø, A.: Estimation of parameters in a distributed precipitation-runoff model for Norway, Hydrol. Earth Syst. Sci., 7, 304–316, https://doi.org/10.5194/hess-7-304-2003, 2003. a
Borgvang, S., Stålnacke, P., Skarbøvik, E., Beldring, S., Selvik, J.,
Tjomsland, T., and Harsten, S.: Riverine inputs and direct discharges to
Norwegian coastal waters –2004. OSPAR Commission for the Protection of the
Marine Environment of the North-East Atlantic., Norwegian Institute for Water
Research, Report no. 5135-2006, 159 pp., https://www.miljodirektoratet.no/globalassets/publikasjoner/klif2/publikasjoner/overvaking/2147/ta2147.pdf
(last access: 19 October 2022), 2006. a
Brenner, S. and Scott, L.: The Mathematical Theory of Finite Element
Methods, 3rd edn., vol. 15 of Texts in Applied Mathematics,
Springer, ISBN 978-0-387-75934-0, 2008. a
Casella, G. and Berger, R.: Statistical Inference, Duxbury Press Belmont, ISBN 978-0534243128, 1990. a
Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism, Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, 2017. a
Doherty, J.: PEST: Model Independent Parameter Estimation, Fifth edition of
user manual, Watermark Numerical Computing, Brisbane, Australia, https://www.nrc.gov/docs/ML0923/ML092360221.pdf
(last access 19.10.2022), 2004. a
Fatichi, S., Vivoni, E., Ogden, F., Ivanov, V., Mirus, B., Gochis, D., Downer,
C., Camporese, M., Davison, J., Ebel, B., Jones, N., Kim, J., Mascaro, G.,
Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton,
D.: An overview of current applications, challenges, and future trends in
distributed process-based models in hydrology, J. Hydrol., 537, 45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016. a
Ferguson, C. A., Bowman, A. W., Scott, E. M., and Carvalho, L.: Multivariate
varying-coefficient models for an ecological system, Environmetrics, 20,
460–476, https://doi.org/10.1002/env.945, 2009. a
Finley, A. O.: Comparing spatially-varying coefficients models for analysis of
ecological data with non-stationary and anisotropic residual dependence,
Methods Ecol. Evol., 2, 143–154,
https://doi.org/10.1111/j.2041-210X.2010.00060.x, 2011. a
Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H.: Constructing Priors
that Penalize the Complexity of Gaussian Random Fields, J. Am. Stat. Assoc., 114, 445–452,
https://doi.org/10.1080/01621459.2017.1415907, 2019. a, b
Gamerman, D. and Lopes, H. F.: Markov chain Monte Carlo: stochastic simulation
for Bayesian inference, Chapman and Hall/CRC, ISBN 9781584885870, 2006. a
Gamerman, D., Moreira, A., and Rue, H.: Space-varying regression models:
specifications and simulation, Computational Statistics and Data Analysis,
Computational Econometrics, 42, 513–533, https://doi.org/10.1016/S0167-9473(02)00211-6, 2003. a
Gelfand, A., Hyon-Jung, K., Sirmans, C., and Banerjee, S.: Spatial Modeling
With Spatially Varying Coefficient Processes, J. Am. Stat. Assoc., 98, 387–396, https://doi.org/10.1198/016214503000170, 2003. a, b, c
Gelfand, A., Diggle, P., Fuentes, M., and Guttorp, P.: Handbook of Spatial
Statistics, Chapman & Hall, 619 pp., https://doi.org/10.1201/9781420072884, 2010. a, b
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian Data
Analysis, Chapman and Hall/CRC, 2nd edn., ISBN 978-1584883883, 2004. a
Gneiting, T. and Raftery, A. E.: Strictly Proper Scoring Rules,
Prediction, and Estimation, J. Am. Stat. Assoc., 102, 359–378, https://doi.org/10.1198/016214506000001437, 2007. a
Guillot, G., Vitalis, R., le Rouzic, A., and Gautier, M.: Detecting correlation
between allele frequencies and environmental variables as a signature of
selection, A fast computational approach for genome-wide studies, Spatial
Statistics, 8, 145–155, https://doi.org/10.1016/j.spasta.2013.08.001, 2014. a
Guttorp, P. and Gneiting, T.: Studies in the history of probability and
statistics XLIX On the Matérn correlation family, Biometrika, 93,
989–995, https://doi.org/10.1093/biomet/93.4.989, 2006. a
Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H., Mayer, S.,
Nesje, A., and Sorteberg, A.: Climate in Norway 2100 – a knowledge base for
climate adaption, NCCS Report 1/2017, Retrieved from Oslo, Norway, https://www.miljodirektoratet.no/globalassets/publikasjoner/M741/M741.pdf
(last access: 19 October 2022), 2017. a
Hastie, T. and Tibshirani, R.: Varying-Coefficient Models, J. Roy. Stat. Soc. B Met., 55, 757–779,
https://doi.org/10.1111/j.2517-6161.1993.tb01939.x, 1993. a
Khan, D. and Warner, M.: A Bayesian spatial and temporal modeling approach to
mapping geographic variation in mortality rates for subnational areas with
r-inla, J. Data Sci., 18, 147–182, 2018. a
Laaha, G. and Blöschl, G.: Low flow estimates from short stream flow records
– a comparison of methods, J. Hydrol., 306, 264–286,
https://doi.org/10.1016/j.jhydrol.2004.09.012, 2005. a
Laaha, G., Skøien, J., Nobilis, F., and Blöschl, G.: Spatial Prediction of
Stream Temperatures Using Top-Kriging with an External Drift, Environ.
Model. Assess., 18, 671–683, 2013. a
Lawrence, D., Haddeland, I., and Langsholt, E.: Calibration of HBV hydrological
models using PEST parameter estimation, Tech. Rep. Oslo: NVE, report no. 1, ISBN 978-82-410-0680-7, 2019. a
Lindgren, F., Rue, H., and Lindström, J.: An explicit link between Gaussian
fields and Gaussian Markov random fields: the stochastic partial
differential equation approach, J. Roy. Stat. Soc.
B Stat. Met., 73, 423–498, https://doi.org/10.1111/j.1467-9868.2011.00777.x, 2011. a, b, c, d
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, M.:
Development and test of the distributed HBV-96 hydrological model, J.
Hydrol., 201, 272–288, https://doi.org/10.1016/S0022-1694(97)00041-3, 1997. a
Lu, Z., Steinskog, D. J., Tjøstheim, D., and Yao, Q.: Adaptively
varying-coefficient spatiotemporal models, J. Roy. Stat. Soc. B Stat. Met., 71, 859–880, https://doi.org/10.1111/j.1467-9868.2009.00710.x, 2009. a
Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and Andersen, J.: seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day, Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018, 2018. a
Merz, R. and Blöschl, G.: Flood frequency regionalisation – Spatial proximity
vs. catchment attributes, J. Hydrol., 302, 283–306,
https://doi.org/10.1016/j.jhydrol.2004.07.018, 2005. a, b
Myrvoll-Nilsen, E., Sørbye, S. H., Fredriksen, H.-B., Rue, H., and Rypdal, M.: Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling, Earth Syst. Dynam., 11, 329–345, https://doi.org/10.5194/esd-11-329-2020, 2020. a
Opitz, T., Huser, R., Bakka, H., and Rue, H.: INLA goes extreme: Bayesian tail
regression for the estimation of high spatio-temporal quantiles, Extremes,
21, 441–462, https://doi.org/10.1007/s10687-018-0324-x, 2018. a
Pannecoucke, L., Le Coz, M., Freulon, X., and de Fouquet, C.: Combining
geostatistics and simulations of flow and transport to characterize
contamination within the unsaturated zone, Sci. Total Environ., 699, 134216, https://doi.org/10.1016/j.scitotenv.2019.134216, 2020. a
Qiu, N., Chen, X., Hu, Q., Liu, J., Huang, R., and Gao, M.: Hydro-stochastic interpolation coupling with the Budyko approach for prediction of mean annual runoff, Hydrol. Earth Syst. Sci., 22, 2891–2901, https://doi.org/10.5194/hess-22-2891-2018, 2018. a
Rue, H. and Held, L.: Gaussian Markov Random Fields: Theory and
Applications, vol. 104 of Monographs on Statistics and Applied
Probability, Chapman & Hall, London, ISBN 9781584884323, 2005. a
Sauquet, E.: Mapping mean annual river discharges: geostatistical developments
for incorporating river network dependencies, J. Hydrol., 331,
300–314, https://doi.org/10.1016/j.jhydrol.2006.05.018, 2006. a
Sauquet, E., Gottschalk, L., and Lebois, E.: Mapping average annual runoff: A
hierarchical approach applying a stochastic interpolation scheme,
Hydrol. Sci. J., 45, 799–815, https://doi.org/10.1080/02626660009492385, 2000. a, b
Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H.:
Penalising Model Component Complexity: A Principled, Practical
Approach to Constructing Priors, Stat. Sci., 32, 1–28,
https://doi.org/10.1214/16-STS576, 2017. a
Skarbøvik, E., Stålnacke, P., Kaste, ø., Selvik, J., Tjomsland, T.,
Høgåsen, T., Aakerøy, P., Haaland, S., and Beldring, S.: Riverine inputs
and direct discharges to Norwegian coastal waters –2008, Norwegian Pollution Control Authority, Report no. TA-2569-2009, 75 pp., ISBN 978-82-577-5788-5, 2009. a
Skøien, J.O.: Package “rtop”, CRAN [software], https://cran.r-project.org/web/packages/rtop/rtop.pdf (last access: 25 October 2021), 2018. a
Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging – geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10, 277–287, https://doi.org/10.5194/hess-10-277-2006, 2006. a, b, c
Sælthun, N.: The Nordic HBV model, Technical Report 07, Norwegian Water
Resources and Energy Directorate, https://publikasjoner.nve.no/publication/1996/publication1996_07.pdf (last access: last access: 19 October 2022), 1996. a
Stein, M.: Interpolation of spatial data. Some theory for kriging, Springer
series in statistics, Springer, New York, ISBN 978-1-4612-1494-6, 1999. a
Stohl, A., Forster, C., and Sodemann, H.: Remote sources of water vapor forming
precipitation on the Norwegian west coast at 60∘ N – a tale of
hurricanes and an atmospheric river, J. Geophys. Res.-Atmos., 113, D5, https://doi.org/10.1029/2007JD009006, 2008.
a
Su, S., Lei, C., Li, A., Pi, J., and Cai, Z.: Coverage inequality and quality
of volunteered geographic features in Chinese cities: Analyzing the
associated local characteristics using geographically weighted regression,
Appl. Geogr., 78, 78–93, https://doi.org/10.1016/j.apgeog.2016.11.002, 2017. a
Viglione, A., Parajka, J., Rogger, M., Salinas, J. L., Laaha, G., Sivapalan, M., and Blöschl, G.: Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria, Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013, 2013. a, b, c, d
Wang, Y., Akeju, O. V., and Zhao, T.: Interpolation of spatially varying but
sparsely measured geo-data: A comparative study, Engin. Geol., 231,
200–217, https://doi.org/10.1016/j.enggeo.2017.10.019, 2017. a
Whittle, P.: On stationary processes in the plane, Biometrika, 41, 434–49,
1954. a
Whittle, P.: Stochastic processes in several dimensions, Bull.
Int. Stat. Inst., 40, 974–994, 1963. a
WMO: International meteorological vocabulary, ISBN 978-92-63-02182-3, 1992. a
Short summary
The goal of this work was to make a map of the mean annual runoff for Norway for a 30-year period. We first simulated runoff by using a process-based model that models the relationship between runoff, precipitation, temperature, and land use. Next, we corrected the map based on runoff observations from streams by using a statistical method. We were also able to use data from rivers that only had a few annual observations. We find that the statistical correction improves the runoff estimates.
The goal of this work was to make a map of the mean annual runoff for Norway for a 30-year...