Articles | Volume 26, issue 20
Research article
27 Oct 2022
Research article |  | 27 Oct 2022

A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records

Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland

Related authors

Estimation of annual runoff by exploiting long-term spatial patterns and short records within a geostatistical framework
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 24, 4109–4133,,, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
On the regional-scale streamflow variability using flow duration curve
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep Mujumdar
Hydrol. Earth Syst. Sci. Discuss.,,, 2023
Revised manuscript accepted for HESS
Short summary
Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323,,, 2023
Short summary
Flood frequency analysis using mean daily flows vs. instantaneous peak flows
Anne Bartens and Uwe Haberlandt
Hydrol. Earth Syst. Sci. Discuss.,,, 2023
Preprint under review for HESS
Short summary
A mixed distribution approach for low-flow frequency analysis – Part 2: Comparative assessment of a mixed probability vs. copula-based dependence framework
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 2019–2034,,, 2023
Short summary
A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701,,, 2023
Short summary

Cited articles

Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J., Krainski, E., Simpson, D., and Lindgren, F.: Spatial modeling with R-INLA: A review, WIREs Computational Statistics, 10, e1443,, 2018. a
Banerjee, S., Gelfand, A., and Carlin, B.: Hierarchical Modeling and Analysis for Spatial Data, vol. 101 of Monographs on Statistics and Applied Probability, Chapman & Hall, ISBN 978-1584884101, 2003. a
Beldring, S., Roald, L. A., and Voksø, A.: Arenningskart for Norge. Årsmiddelverdier for avrenning 1961–1990, Tech. Rep. Oslo: NVE, ISSN 1501-2840, (last access: last access: 19 October 2022), 2002. a, b, c
Beldring, S., Engeland, K., Roald, L. A., Sælthun, N. R., and Voksø, A.: Estimation of parameters in a distributed precipitation-runoff model for Norway, Hydrol. Earth Syst. Sci., 7, 304–316,, 2003. a
Bergström, S.: Development and Application of a Conceptual Runoff Model for Scandinavian Catchments, SMHI, Norrköping, Sweden, RHO 7, 134 pp., 1976. a, b
Short summary
The goal of this work was to make a map of the mean annual runoff for Norway for a 30-year period. We first simulated runoff by using a process-based model that models the relationship between runoff, precipitation, temperature, and land use. Next, we corrected the map based on runoff observations from streams by using a statistical method. We were also able to use data from rivers that only had a few annual observations. We find that the statistical correction improves the runoff estimates.