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Abstract. We present a Bayesian geostatistical model for
mean annual runoff that incorporates simulations from
a process-based hydrological model. The simulations are
treated as a covariate and the regression coefficient is mod-
eled as a spatial field. This way the relationship between the
covariate (simulations from a hydrological model) and the
response variable (observed mean annual runoff) can vary
in the study area. A preprocessing step for including short
records in the modeling is also suggested. We thus obtain a
model that can exploit several data sources. By using state-
of-the-art statistical methods, fast inference is achieved.

The geostatistical model is evaluated by estimating mean
annual runoff for the period 1981–2010 for 127 catchments
in Norway based on observations from 411 catchments. Sim-
ulations from the process-based HBV model on a 1× 1 km
grid are used as input. We found that on average the pro-
posed approach outperformed a purely process-based ap-
proach (HBV) when predicting runoff for ungauged and par-
tially gauged catchments. The reduction in RMSE compared
to the HBV model was 20 % for ungauged catchments and
58 % for partially gauged catchments, where the latter is due
to the preprocessing step. For ungauged catchments the pro-
posed framework also outperformed a purely geostatistical
method with a 10 % reduction in RMSE compared to the
geostatistical method. For partially gauged catchments, how-
ever, purely geostatistical methods performed equally well
or slightly better than the proposed combination approach. In
general, we expect the proposed approach to outperform geo-

statistics in areas where the data availability is low to moder-
ate.

1 Introduction

Runoff is defined as the flow of water that is generated from
excess rainwater or meltwater, and that flows on the ground
surface or within the soil toward a stream (WMO, 1992).
Runoff indices of different types (annual runoff, seasonal
runoff, maximum runoff) are needed for a variety of pur-
poses, e.g., for designing infrastructure, water supply, and
hydropower reservoirs. In spite of the major importance of
accurate runoff estimates, the majority of the catchments in
the world are ungauged, i.e., runoff measurements for deriv-
ing the relevant indices are not available and must be pre-
dicted. This is known as the prediction of runoff in ungauged
basins problem (PUB) and is a key challenge in hydrology
(Blöschl et al., 2013).

There are two main approaches for predicting runoff in un-
gauged basins: process-based approaches and statistical ap-
proaches. In statistical approaches, data from gauged catch-
ments are used to develop a statistical relationship between
the observed runoff and relevant variables such as precipi-
tation, temperature, land use, and elevation. The statistical
relationship is next used to make predictions for ungauged
sites with uncertainty (see, e.g., Viglione et al., 2013; Merz
and Blöschl, 2005; Blöschl et al., 2013; Laaha and Blöschl,
2005). In this paper we propose a geostatistical model for

Published by Copernicus Publications on behalf of the European Geosciences Union.



5392 T. Roksvåg et al.: Geostatistical spatially varying coefficient model

mean annual runoff (see, e.g., Gelfand et al., 2010; Cressie,
1993). In the field of hydrology, several geostatistical ap-
proaches have been suggested (Roksvåg et al., 2020; Sauquet
et al., 2000), but the Top-Kriging method proposed by Skøien
et al. (2006) has been shown to be particularly suitable for
modeling areal referenced runoff data (Viglione et al., 2013).

Process-based hydrological models are different from sta-
tistical models in that they use physical relationships for, e.g.,
conservation of mass and energy to estimate the flow index
of interest. The input variables to the process-based models
are variables such as precipitation, temperature, and land use.
Data from gauged catchments are used for validation and
model calibration (see, e.g., Doherty, 2004; Lawrence et al.,
2009). The HBV model is an example of a process-based
hydrological approach commonly used to estimate runoff in
the Nordic counties (Bergström, 1976). Other process-based
models are discussed in Blöschl et al. (2013); Clark et al.
(2017); Fatichi et al. (2016).

The ability to account for well-known, physical relation-
ships between the variables is a main benefit of using a
process-based model. Geostatistical approaches on the other
hand provide uncertainty quantification and are typically bet-
ter at ensuring a good fit between the runoff data and the
model in areas where observations are available. The draw-
back of the geostatistical approaches is that they often de-
pend on a relatively high gauging density and perform poorly
if the underlying process is complex (Wang et al., 2017). Mo-
tivated by these benefits and drawbacks, we develop a model
that combines geostatistics with a process-based approach.

There is work based on similar ideas in the literature.
In Pannecoucke et al. (2020), the authors used a process-
based model to simulate flow. Next, empirical variograms
were computed based on the simulations and used as input
in Kriging, a class of commonly used geostatistical models
(see, e.g., Cressie, 1993; Gelfand et al., 2010). The goal was
to estimate the contamination level in the soil. In Laaha et al.
(2013), Kriging with external drift was used for interpolation
of streamflow temperatures, where a physical relationship
between mean annual stream temperature and stream gauge
altitude was combined with the Top-Kriging approach. Qiu
et al. (2018) present a model for mean annual runoff where
a Budyko water balance model is combined with a geosta-
tistical approach. In Sauquet (2006) mean annual runoff was
estimated by a geostatistical method that incorporated basin
characteristics through residual Kriging.

In this paper, we suggest a Bayesian model for mean an-
nual runoff where the observed runoff is used as the response
variable and where mean annual simulations from a process-
based hydrological model are used as a covariate. To con-
nect the response variable to the covariate, we use a spatially
varying coefficient (SVC). In a model with an SVC, the re-
lationship between the response variable and the covariate is
allowed to vary within the study area (Gelfand et al., 2003;
Ferguson et al., 2009; Hastie and Tibshirani, 1993; Su et al.,
2017; Finley, 2011; Lu et al., 2009), i.e., differently from a

simple linear regression model where the relationship is re-
stricted to be constant. The motivation behind using an SVC
in this work is that we assume that the process-based model
is more accurate in some areas than others, and that the ac-
curacy follows regional patterns.

There are several ways to implement an SVC. One option
is to simply divide the study area into regions and let a given
coefficient have one value for each region, as in Gamerman
et al. (2003). Alternatively, the regression coefficient can be
modeled as a Gaussian random field (GRF) as described in,
e.g., Gelfand et al. (2003). The GRF regionalizes the regres-
sion coefficient from locations with data to locations without
data according to a spatial dependency structure. In this pa-
per, we adopt the approach from Gelfand et al. (2003). In
addition to the SVC, we include an additive spatial effect
(GRF). This makes our model able to capture two different
dependency structures, e.g., spatial dependency due to both
short-range and long-range hydrological processes.

When constructing a runoff map, we find it important to
exploit all available data, also data from partially gauged
catchments. Partially gauged catchments are catchments that
only have short records of data, from a subset of the tar-
get period. In this work, we propose to use the approach
from Roksvåg et al. (2020) to preprocess the short records
before further analysis with the SVC model. The prepro-
cessing procedure fills in missing annual observations, and
has been shown to work well for flow indices and study ar-
eas that are dominated by runoff patterns that are repeated
over time (Roksvåg et al., 2020). After the preprocessing, the
short records are incorporated into the SVC model through
an observation likelihood that supports data from both fully
and partially gauged catchments with different observation
uncertainties.

The main objective of this paper is to present a frame-
work for mean annual runoff estimation that exploits sev-
eral data sources: precipitation data, temperature data, and
land use through the process-based covariate as well as data
from fully gauged and partially gauged catchments through
the observation likelihood. The framework is made compu-
tationally feasible by using state-of-the-art statistical meth-
ods such as INLA (integrated nested laplace approximations)
and the SPDE (stochastic partial differential equation) ap-
proach to spatial modeling (Rue et al., 2009; Lindgren et al.,
2011). These tools enable fast and approximate inference for
Bayesian spatial models.

To evaluate the model, we estimate mean annual runoff
in Norway. Simulations of mean annual runoff produced by
the process-based HBV model are used as a covariate. The
evaluation assesses the model’s ability to

1. produce a satisfactory gridded map for mean annual
runoff with uncertainty quantification.

2. predict runoff for partially gauged and ungauged catch-
ments.
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Figure 1. Mean annual runoff for Norwegian catchments (a–b) derived from daily streamflow observations. There are annual runoff data
available from 127 fully gauged catchments and from 284 partially gauged catchments. We plot subcatchments in front of larger, surrounding
catchments in all of our plots. (c) Number of annual observations that are available for each catchment in the study period (1981–2010). If
the number is equal to 0, it means that there is at least one annual observation available from 1980 or earlier years, more specifically between
1965 and 1980. The reference system used is UTM33N EUREF89 with coordinates given in kilometers. (d) Annual observations for all
catchments and years.

As reference models we use a purely process-based model
(the HBV model) and a purely geostatistical model (Top-
Kriging).

In the next section (Sect. 2), we present the available Nor-
wegian runoff data and model input. Here, we describe the
process-based HBV model and how it was used to produce
simulations on a grid. In Sect. 3, we introduce the back-
ground theory, relevant statistical models, and notation. Fur-
ther, in Sect. 4, we present the suggested mean annual runoff
model. The experimental set-up for evaluating the model is
presented in Sect. 5, and in Sects. 6 and 7 we present and
discuss our results. Finally, we summarize and conclude in
Sect. 8.

2 Model input

2.1 Runoff data

To evaluate the proposed approach, we use mean annual
runoff data from Norway from the time period 1981–2010
provided by the Norwegian Water Resources and Energy Di-
rectorate (NVE). The mean annual runoff observations have
the unit mm yr−1 and were derived by aggregating daily mea-
surements of streamflow from Norwegian catchments, for
hydrological years that start 1 September and end 31 August.
If a catchment had less than 365 daily observations for a spe-
cific year, this annual observation was considered missing.

Furthermore, we only use data from catchments where hu-
man activities have had negligible impact. To select catch-
ments, we used the regulation capacity of hydropower reser-
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Figure 2. A mean annual runoff (1981–2010) product simulated by the HBV model (a). The product is delivered on a 1×1 km grid. (b) The
fit between the HBV product and the actually observed streamflow for the fully gauged (orange) and partially gauged catchments (green).

voirs as a criterion, i.e., the ratio between the mean annual
runoff and the reservoir storage capacity. If this ratio was
smaller than 0.2 for a catchment, the catchment was included
in the analysis, assuming that the annual changes in water
storage are small compared to the annual inflow volume. The
assumption was also checked for a subset of the target catch-
ments, and we found that the standard deviation of annual
changes in reservoir storage was less than 2 % of annual in-
flow.

After performing the data-cleaning procedure, there were
data available from 127 catchments that were fully gauged in
the 30-year target period, 1981–2010. The average runoff for
these catchment are shown in Fig. 1a with the unit mm yr−1.
In addition, there were annual observations available from
284 partially gauged catchments. These had at least one an-
nual runoff observation between 1965 and 2010 and their ob-
served mean annual runoff is shown in Fig. 1b. The number
of annual observations for each of these catchments is shown
in Fig. 1c. The average record length is 12 years (median
9.5 years) for the period 1981–2010, but 15 years (median
16 years) if we consider the longer period from 1965 to 2010.

In Fig. 1d we show the annual runoff observations for in-
dividual years. Here, it is apparent that the spatial variability
of the Norwegian annual runoff is large. The mean annual
runoff follows the spatial pattern we see in Fig. 1b, with high
values in the western part of the country and low values in
the eastern part each year. The pattern is mainly caused by
the orographic precipitation that occurs when humid winds
from the Atlantic Ocean are elevated over the mountains in
western Norway. This gives large precipitation amounts in
the western parts of the country, while the eastern parts are
left in the rain shadow.

2.2 Gridded simulations from the HBV model

We use a gridded mean annual runoff product simulated by
the HBV model as a covariate in a geostatistical model. The
first application of the gridded HBV model in Norway is re-
ported in Beldring et al. (2002), and it is applied in several
studies to assess runoff and water balance in Norway (e.g.,
in Borgvang et al., 2006; Skarbøvik et al., 2009; Hanssen-
Bauer et al., 2017). In this case, we use a data product that
was already available from the data provider NVE’s database
(see Fig. 2a). The product covers the whole country of Nor-
way, and smaller parts of its neighboring countries such that
catchments that cross the Norwegian border can be included.
The product is delivered on a 1× 1 km grid and is based on
simulations of daily time series of runoff. Interpolated tem-
perature and precipitation were used as input together with
gridded land use characteristics. Daily simulated time series
of runoff were aggregated to mean annual runoff (mm yr−1)
for our reference period 1981–2010. We refer to Bergström
(1976); Sælthun (1996); Lindström et al. (1997) for detailed
descriptions of the algorithms used in the HBV model, and
to Beldring et al. (2002) for details about the specific product
in Fig. 2a.

To determine the parameters in the HBV model, it is com-
mon to perform a global calibration procedure based on
streamflow observations. The aim is to minimize global bias
and the errors. When producing the map in Fig. 2a, stream-
flow observations from 141 fully gauged catchments were
used for the calibration. It should be noted that since we use
the HBV product that was already available from the data
provider NVE’s database, the calibration catchments are not
necessarily the same catchments we use in our geostatistical
model. See Beldring et al. (2003) for details about the cali-
bration procedure.

As the parameters are calibrated globally, there are still
local biases in the HBV model’s predictions relative to the
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observed streamflow. This can be seen in Fig. 2b where we
depict the difference between the mean annual runoff pro-
vided by the HBV model (Fig. 2a) and the observed mean
annual runoff (Fig. 1). We see that the fit is close to linear
for catchments with low observations of mean annual runoff.
For observations over 2000 mm yr−1, the HBV model tends
to overestimate the mean annual runoff. By using the pro-
posed geostatistical approach, we aim to produce a runoff
map that improves the fit.

3 Methodological background

3.1 Bayesian statistics and hierarchal modeling

We take a Bayesian approach to statistics (see, e.g., Gelman
et al., 2004; Casella and Berger, 1990). In Bayesian statis-
tics, the random variable x is associated with a probability
distribution that expresses what we know about the underly-
ing process of interest. Before the statistical analysis is con-
ducted, our beliefs are expressed mathematically through a
so-called prior distribution, denoted π(x). This can be con-
structed based on expert knowledge about the process un-
der study or based on earlier experiments. The goal of the
Bayesian analysis is to update π(x) based on data y. This
can be done by using Bayes’ formula:

π (x|y)=
π (x)π (y|x)

π (y)
, (1)

where π(y|x) is the observation likelihood that connects the
observed values y = (y1, . . .,ym) to the target variable x. The
resulting distribution π(x|y) is called the posterior distri-
bution, and represents what we know about the underlying
process based on our data. One of the benefits the Bayesian
framework is that a full uncertainty specification for the tar-
get variable x is directly available through the posterior dis-
tribution. If a point prediction is of interest, the median,
mean, or mode of the posterior distribution π(xi |y) can be
used as a summary statistic, for any xi ∈ x.

The geostatistical runoff model we propose is also a hi-
erarchical model. Hierarchical models make it possible to
formulate rather complex models by specifying a set of sim-
pler models (see, e.g., Banerjee et al., 2004). For example,
if we model runoff, we can assume that the true underly-
ing runoff x is observed through data y that are associated
with some measurement uncertainty. Further, we can assume
that the runoff has some spatial or temporal variability that
can be modeled by a statistical distribution with parameters
θ = (θ1, . . .,θk). Mathematically the above model can be ex-
pressed in three stages: the observation likelihood, π(y|x,θ),
the latent model or process model π(x|θ), and the prior dis-
tribution π(θ).

3.2 Gaussian random fields (GRFs)

Random fields (RFs) are often used to model spatial correla-
tion in geostatistical models for hydrological variables (see,
e.g., Sauquet et al., 2000; Skøien et al., 2006; Roksvåg et al.,
2020). In this paper, we use GRFs to model the spatial de-
pendency of runoff. A continuous field {x(u);u ∈D} defined
on a spatial domain D is a GRF if (x(u1), . . .,x(un))

T
∼

N (µ,6), where N (·, ·) is a multivariate normal distribu-
tion with expected values given by vector µ and covariance
given by the covariance matrix 6 (Cressie, 1993). The co-
variance matrix specifies the dependency structure of the
variable of interest. Typically, a matrix element (i,j) is gen-
erated by using a known covariance function C(ui,uj ) that
models the correlation of the target variable between two lo-
cations Cov(x(ui),x(uj ). The covariance function often has
a marginal variance parameter σ 2 and a range parameter ρ
that characterize the underlying spatial field. The marginal
variance describes the spatial variability of the target vari-
able, while the range is a measure of how correlation decays
with distance.

In our work we use a stationary Matérn covariance func-
tion to model the covariance of mean annual runoff. The
Matérn covariance function is defined as

C
(
ui,uj

)
=

σ 2

2ν−10(ν)

(
κ||uj −ui ||

)ν
Kν
(
κ||uj −ui ||

)
,

(2)

whereKν is the modified Bessel function of second kind and
order ν > 0, 0(·) is the gamma function, and ||uj−ui || is the
Euclidean distance between the two locations ui,uj ∈Rd .
Further, σ 2 is the marginal variance and κ is a scale param-
eter (Guttorp and Gneiting, 2006). Empirically, it has been
shown that the parameters ν and κ can be used to express the
spatial range as

ρ =
√

8ν/κ , (3)

where ρ is defined as the distance at which the correlation
between two locations has dropped to 0.1 (Rue et al., 2009).

The reason for using a Matérn covariance function in our
work is that it makes it possible to use the stochastic partial
differential equation (SPDE) approach to spatial modeling
(Lindgren et al., 2011). The SPDE approach is described in
Sect. 4.6 and is used to make the proposed model computa-
tionally feasible. In addition, the Matérn class of covariance
functions has many useful properties and Stein (1999) ad-
vises its use. In the runoff model that follows, the σ 2 and ρ
parameters are estimated, while the parameter ν is fixed and
set equal to 1. The reason is that ν is often hard to identify
in typical applications, and ν = 1 is the default choice in the
INLA software that is used to fit our model (Lindgren et al.,
2011; Blangiardo and Cameletti, 2015).
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Figure 3. Time series of annual runoff for eight catchments in Nor-
way that are located in the same region. The time series are almost
parallel, indicating that the spatial patterns of runoff are repeated
over time.

3.3 Existing geostatistical models used for runoff
interpolation

3.3.1 Top-Kriging

Kriging approaches are commonly used for spatial inter-
polation. In Kriging approaches, the variable of interest is
modeled as a random field x(u), and an estimate of the
random field x(u0) at an unobserved location u0 ∈R2 can
be expressed as the weighted sum of a set of observations
x(ui), . . .,x(un), i.e., as

x̂(u0)=

n∑
i=1

λix(ui) , (4)

where λi for i = 1, . . .,n are interpolation weights that must
be determined (Cressie, 1993). The interpolation weights are
found by minimizing the mean squared error between the es-
timate x̂(u0) and the true x(u0), and assuming zero mean
expected error.

The estimation of the Kriging weights requires evalua-
tions of the covariance function (or variogram). The Top-
Kriging approach (Skøien et al., 2006) treats runoff obser-
vations as areal referenced when computing the covariance,
unlike other standard Kriging approaches. This way, obser-
vations from a subcatchment can be weighted more than ob-
servations from a nearby, non-overlapping catchment. Top-
Kriging is one of the leading methods for interpolation of
runoff (Viglione et al., 2013; Blöschl et al., 2013), and we
hence use it as a geostatistical reference method.

3.3.2 Geostatistical method for exploiting short records

To include short records in our model, we use the method
from Roksvåg et al. (2020) as a preprocessing step. The
method is a Bayesian hierarchical geostatistical model that is
particularly suitable for filling in missing data for catchments

that have short records of data relative to neighboring catch-
ments. It models several years of (annual) runoff simultane-
ously through two GRFs: one that describes the long-term
spatial variability, and one that describes year-dependent spa-
tial effects. The method weights the two GRFs relative to
each other. If long-term effects dominate, the potential infor-
mation stored in short records is large.

The method from Roksvåg et al. (2020) has its benefits
when runoff follows spatial patterns that are repeated over
time. This is the case for our target variable, Norwegian an-
nual runoff, that is driven by orographic precipitation caused
by repeated wind patterns from the Atlantic Ocean (Stohl
et al., 2008). Example data from Norway are shown in Fig. 3.
The repeated spatial pattern is recognized in that the ranking
of the catchments, from wet to dry, is approximately con-
stant. For variables and areas that are not driven by such
characteristic spatial patterns, the method in Roksvåg et al.
(2020) provides a more classic form of spatial interpolation,
similar to Kriging.

The method from Roksvåg et al. (2020) is available for
both point and areal referenced data. In this application, we
use it as a point referenced model to save computational time,
and the catchments centroids are used as the observation lo-
cations. We expect the point referenced model to be suffi-
ciently good for our study for two reasons: (1) We are only
using the model to make predictions for catchments where
we have at least one annual observation and (2) we are not
going to use the posterior uncertainty of the model. The re-
sults in Roksvåg et al. (2020) show that the point referenced
model gives results that are similar to the areal referenced
model for partially gauged catchments when we are only in-
terested in posterior means and not posterior standard devia-
tions.

4 An SVC model for incorporating process-based
simulations and short records

We now present our proposed geostatistical Bayesian hier-
archical model for mean annual runoff and its three stages: a
process model, an observation model, and prior distributions.

4.1 Process model for true mean annual runoff

4.1.1 Point model

Assume that mean annual runoff (mm yr−1) is a continuous
process that occurs for any point u ∈R2 in the landscape. We
model the true mean annual runoff q(u) at a point location
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or a (small) grid cell u as

q(u)= β0+ (β1+α(u)) ·h(u)+ x(u) ; (5)
x(u)|(ρx,σx)∼ GRF(ρx,σx) ,
α(u)|(ρα,σα)∼ GRF(ρα,σα) ,

where β0 is an intercept parameter, the variable h(u) is a
covariate that contains the simulated value generated by a
process-based hydrological model at point location or a grid
cell u, and (β1+α(u)) defines an SVC. The SVC consists
of one component β1 that is fixed in space and one compo-
nent α(u) that is location dependent. The spatial variability
of α(u) is introduced by modeling it as a stationary Matérn
GRF field given a range parameter ρα and a marginal stan-
dard deviation parameter σα . This way the relationship be-
tween the true mean annual runoff q(u) and the simulations
made by the hydrological model h(u) can vary in the study
area. The α(u)h(u) component also ensures a model where
the mean and the variance of runoff can be inhomogeneous
in space. We use mean annual runoff simulations from the
HBV model as input in h(u), but gridded simulations from
any relevant hydrological model can be applied.

The SVC β1+α(u) in Eq. (5) models a similar depen-
dency structure as we would get from ratio interpolation, i.e.,
interpolation of the ratio between the observed runoff and
a process-based covariate. Ratio interpolation is a method
that has been used before in, e.g., Beldring et al. (2002) to
improve the results of a process-based model. In our runoff
model, we also include an additional spatial effect x(u) that
is assumed to be conditionally independent of α(u) a pri-
ori, given the underlying model parameters. Like α(u), x(u)
is modeled as a GRF with a stationary Matérn covariance
structure, but with range and marginal standard deviation ρx
and σx , respectively. The GRF x(u) models a dependency
structure similar to what we would get from residual inter-
polation. Residual interpolation was used in, e.g., Merz and
Blöschl (2005) to improve the results from an initial multiple
linear regression model.

4.1.2 Areal model

In Eq. (5) we modeled runoff as a point referenced process,
but in practice, runoff is observed through streamflow obser-
vations that are linked to catchment areas. We thus introduce
a model for the true runoff inside a catchment area A. This is
given by

Q(A)=
1
|A|

∫
u∈A

q(u)du , (6)

where q(u) is the mean annual point runoff from Eq. (5) and
|A| is the area of the target catchment. The true areal runoff is
given by the average point runoff integrated over the catch-
ment area. In practice, it is not computationally feasible to
perform the integration in Eq. (6). Our solution is to approx-

imate the integral in Eq. (6) by a sum. This is done by dis-
cretizing catchment A into a regular grid LA and defining
the mean annual runoff in catchment A as

Q(A)≈
1
nA

∑
u∈LA

q(u) , (7)

where nA is the number of grid nodes in the discretization
of catchment A. The areal formulation in Eq. (7) assumes a
linear aggregation of runoff over the grid nodes included in
the catchment discretization. This is reasonable for variables
that are approximately mass conservative over catchment ar-
eas, like the mean annual runoff.

We have now defined our final process model for runoff,
which is an areal model (Eq. 7) that builds on a point speci-
fication of the underlying process (Eq. 5). From Eqs. (5) and
(7), we see that in order to calculate Q(A) we need the sim-
ulated values produced by the hydrological product, h(u),
for all grid nodes inside A. Consequently, the catchment dis-
cretization should follow the same discretization as the grid-
ded hydrological product. In our case the HBV product came
on a regular grid with 1 km spacing. The selected grid should
be dense enough to ensure an accurate approximation for the
true areal runoff in Eq. (7).

4.2 Observation model for mean annual runoff

The true mean annual Q(A) runoff is not observed directly,
but through areal referenced streamflow observations with
uncertainty. We model the observed mean annual runoff in
catchment Ai as

yi =Q(Ai)+ εi , (8)

whereQ(Ai) is the areal referenced true mean annual runoff
from Eq. (7), and the εi values are independent and iden-
tically distributed error terms with prior N (0, siσ 2

y ). The
parameter σy describes the underlying standard deviation,
while the si values are fixed, predetermined scales that al-
low each observation to have its own measurement uncer-
tainty. This way heteroscedasticity can be introduced in a
simple way. The values of the scales si are further specified
in Sect. 4.3.

In Eqs. (5) and (8), runoff is modeled through Gaussian
components, which means that there is a risk of obtaining
negative runoff predictions. To avoid negative runoff predic-
tions, we could log transform the runoff data before perform-
ing the analysis, but this requires that we model the runoff
observations as point referenced instead of areal referenced.
The reason is that the sum in Eq. (7) does not make sense
for log-transformed runoff data. Another option is to use a
log-Gaussian likelihood and log-GRFs for x(u) and α(u),
such that predictions for x(u) and α(u) are always positive.
In this work, however, we keep the areal formulation and
the more interpretive versions of the spatial fields. For Nor-
wegian mean annual runoff, negative predictions are quite
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unlikely anyway, since the observations are far from zero.
The areal formulation also gives a more realistic uncertainty
model and lets us constrain the mean annual runoff not only
at certain gauging points, but over catchment areas.

4.3 Prior distributions for model parameters

The third stage of the proposed hierarchical model for mean
annual runoff consists of the prior distributions of the seven
model parameters, (β0,β1,ρα,σα,ρx,σx,σy). In this section
we specify the prior distributions we have used. Most of the
priors are constructed such that they are suitable for model-
ing Norwegian mean annual runoff, and should be revised if
the model is used for other flow indices and/or study areas.

We start by constructing a prior for the measurement un-
certainty siσ 2

y . As stated in the previous subsection, the vari-
ance parameter σ 2

y is scaled with a fixed an predetermined
scale si such that each observation of mean annual runoff
can have its own measurement uncertainty. A variance that
changes with the observed value is reasonable when model-
ing Norwegian mean annual runoff, because the variability
of runoff across the country is large. The observed annual
runoff varies from around 500 to 4000 mm yr−1. With this
in mind, we specify the scales si under the assumption that
larger observations of mean annual runoff have larger mea-
surement uncertainties than smaller observations of mean an-
nual runoff. This is obtained by modeling the scales as

si = (0.025 · yi/1000)2 , (9)

where yi is the observed mean annual runoff in catchment
Ai in mm yr−1. The number 0.025 was chosen based on ex-
pert opinions from the data provider NVE. A standard devi-
ation around 2.5 % is assumed to be reasonable. The scales
are divided by a factor of 1000 to get suitable values for the
quantity si · σ 2

y .
We next specify a prior distribution for the standard devi-

ation parameter σy . For this, we use a penalized complexity
(PC) prior as suggested by Simpson et al. (2017). The PC
prior is chosen because it has convenient mathematical prop-
erties. It controls for overfitting by penalizing the increased
complexity that arises when a model deviates from a simpler,
less flexible base model. The PC prior for the precision τ (or
the inverse variance) of a Gaussian effect N (0,τ−1) is given
by

π(τ)=
λ

2
τ−3/2 exp(−λτ−1/2),τ > 0,λ > 0 , (10)

where λ controls the deviation penalty. The parameter λ
can easily be specified through a probability α and a quan-
tile u as Prob(σ > σ0)= α, where σ0 > 0, 0< α < 1 and
λ=− ln(α)/u, where σ = 1/

√
τ is the standard deviation of

the Gaussian effect. For our application, we let α = 0.1 and
σ0 = 1500 mm yr−1, and define the PC prior for σy as fol-
lows:

Prob(σy > 1500mm)= 0.1 . (11)

This means that the prior probability that σy is larger than
1500 mm yr−1 is 10 %. However, recall that the measurement
variance of yi is determined by siσ 2

y and not by σ 2
y alone.

With the scales in Eq. (9) and the PC prior for σy in Eq. (11),
a prior 95 % credibility interval for the observation standard
deviation for the mean annual runoff is (0.04,6)% of the cor-
responding observed value yi for a catchment Ai , with prior
mean centered around 2.5%. Values in this range are reason-
able and reflect the data provider NVE assumptions about
the uncertainty of the Norwegian mean annual runoff obser-
vations. By creating a relatively narrow prior for siσ 2

y , we in-
fluence the model to reproduce the actually observed runoff
for catchments where we have data.

In Fuglstad et al. (2019) the PC prior framework is used
to develop an informative, joint prior for the range and the
marginal variance of a GRF. We use this prior for the spatial
marginal standard deviation σα and the spatial range ρα for
the SVC component α(u). The prior is specified through the
following probabilities and quantiles:

Prob(ρα < 20km)= 0.1 ,

Prob(σα > 2)= 0.1 , (12)

where we a priori assume that the spatial range of the SVC
is larger than 20 km. This is a reasonable assumption, as it is
likely that locations that are closer than 20 km are correlated
when it comes to annual runoff. Based on Fig. 2b we assume
a priori that the ratio between the response variable Q(·) and
the covariate h(·) varies with a factor that has a standard de-
viation smaller than 2.

Likewise, we use the PC prior from Fuglstad et al. (2019)
to specify a joint prior for the marginal standard deviation σx
and the spatial range ρx of the spatial field x(u). We use the
following probabilities and quantiles:

Prob(ρx < 20km)= 0.1 ,

Prob(σx > 2000mmyr−1)= 0.1 . (13)

Here, we again assume a priori that the range is larger than
20 km by taking the size of the study area into account. The
prior probability that the standard deviation of the Norwegian
mean annual runoff is larger than 2000 mm yr−1 is set to a
low probability. We find this reasonable as most of the mean
annual observations are between 500 and 4000 mm yr−1.

For the two parameters β0 and β1 we use weakly infor-
mative normal prior distributions, with 0 mean and standard
deviation 10 000.

4.4 Preprocessing step for incorporating short records
(PP)

We now present an extension of the model that makes it pos-
sible to include short records in the proposed mean annual
runoff model. The extension is based on using the geostatis-
tical model described in Sect. 3.3.2 to fill in missing annual
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observations and/or augment short records for the partially
gauged catchments. After filling in the missing years, we get
a preliminary estimate of the mean annual runoff for these
catchments. These estimates are next used as observations
yi in the SVC model together with data from fully gauged
catchments.

The observations yi we obtain from the preprocessing step
are probably more uncertain than the data from the fully
gauged catchments. To reflect this, we use a different prior
for the observation uncertainty for the preprocessed data
compared to that of the fully gauged catchments. Recall that
the prior observation variance for a fully gauged catchment
was given by siσ 2

y where si was a fixed predetermined scale
given by si = (0.025 · yi/1000). For partially gauged catch-
ments we replace this scale by

sPP
i = (0.10 · yi/1000) , (14)

where PP denotes that observation yi from catchment Ai is
preprocessed. In practice, each partially gauged catchment
could have its own scaling factor, e.g., one that depends on
record length, but in this demonstration we use the same scal-
ing factor for all partially gauged catchments for simplicity.
With the scales in Eq. (14), a 95 % credible interval for the
prior standard deviation

√
siσ 2

y becomes (0.1,24)% of the
observed value for the partially gauged catchments, while it
is only (0.04,6) % for data from fully gauged catchments.

The preprocessing step lets us exploit streamflow obser-
vations from catchments that have down to one annual ob-
servation, and the short record could also be from the period
before the study period starts. As explained in Sect. 3.3.2,
the preprocessing step is expected to contribute positively to
the model if the flow index of interest is driven by repeated
spatial patterns over time. If this is not the case, the prepro-
cessing step only performs classic geostatistical spatial inter-
polation and can be skipped to save time.

4.5 Full model specification

We have proposed a model for mean annual runoff that can
incorporate process-based simulations and data from fully
gauged and partially gauged catchments. The full model can
be specified in a hierarchical model with three levels, where
the first level is the observation likelihood,

π
(
y|x,σy

)
=

n∏
i=1
(I {Catchment Ai is fully gauged}

·N
(
Q(Ai) ,siσ

2
y

)
+ I {Catchment Ai is partially gauged}

·N
(
Q(Ai) ,s

PP
i σ

2
y

))
, (15)

the second level is the latent field,

π(x|θ)= π (x(u1), . . .,x(um)|ρx,σx)

·π (α(u1), . . .,α(um)|ρα,σα) , (16)

Figure 4. Workflow for estimating runoff for grid nodes q(u) and
for catchment areas Q(A).

and the third level is the prior model,

π(σy,θ)= π(ρx,σx) ·π(ρα,σα) ·π(σy) ·π(β0) ·π(β1) . (17)

In Eqs. (15–17), y is a vector containing all observations
yi, . . .,yn of mean annual runoff for catchments A1, . . .,An.
The function I (·) is an indicator function that is equal to
1 if its argument is true and 0 otherwise, allowing for data
from both fully gauged and partially gauged catchments. We
see that the likelihood specification for the fully and partially
gauged catchments is the same, except for the difference in
measurement uncertainty expressed through si and sPP

i . The
variable x is a vector that contains all the latent variables, i.e.,
the two GRFs x(u1), . . .,x(um) and α(u1), . . .,α(um) for all
grid nodes u1, . . .,um that are used in the discretization of the
catchment areas. Finally, θ is a parameter vector that contains
β0, β1, ρx,σx,ρα , and σα .

In Fig. 4 we depict the proposed approach in a flow chart.
We emphasize that the SVC model can be applied with or
without incorporating preprocessed short records. To mark
results where preprocessed data are involved, we will use the
subscript PP in the remainder of the paper.

4.6 Approximate inference

To make runoff predictions q(u) and Q(A), we need to
estimate x and θ given data y. Traditionally, inference
on Bayesian hierarchical models has been done by using
Markov chain Monte Carlo (MCMC) methods (Gamerman
and Lopes, 2006). However, the computational complexity
of carrying out an MCMC procedure is large when the di-
mension of x is large. To make the proposed model compu-
tationally feasible, we use integrated nested Laplace approx-
imations (INLA). The INLA methodology was suggested by
Rue et al. (2009) and is developed for making approximate
Bayesian inference on latent Gaussian models (LGMs), i.e.,
hierarchical models where the latent field x is Gaussian. As
the latent variables contained in x are given Gaussian prior
distributions considering the underlying model parameters,
this requirement is fulfilled for our SVC model. The INLA
methodology is based on Laplace approximations, sparse
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matrix calculations, and numerical integration schemes, and
we refer to Rue et al. (2009) for details.

Furthermore, it is computationally challenging to make
statistical inference on spatial models. The reason is that it
takes time to perform matrix operations on the covariance
matrices of GRFs when there are many target locations. To
ensure fast inference for our two-field model, we use the
SPDE approach to spatial modeling, as suggested by Lind-
gren et al. (2011). The approach is based on the fact that a
GRF with Matérn covariance matrix can be expressed as the
solution of a stochastic partial differential equation (Whittle,
1954, 1963). An approximate solution of the SPDE can be
obtained by using the finite element method (see, e.g., Bren-
ner and Scott, 2008), where the resulting approximation is
given on a triangular mesh. This mesh approximation gives
computational benefits compared to the exact GRF solution,
and enables fast inference for spatial models (Rue and Held,
2005; Rue et al., 2009).

The INLA and SPDE methodologies are implemented in
the R-package INLA, which since its introduction has been
used within a range of different fields. See Opitz et al. (2018);
Guillot et al. (2014); Myrvoll-Nilsen et al. (2020); Bakka
et al. (2018); Blangiardo and Cameletti (2015); Khan and
Warner (2018) and https://www.r-inla.org/ (last access: 18
October 2022) for some examples. The approximations used
in the SPDE and INLA framework are in general accurate
and reliable when the likelihood is Gaussian, as in this appli-
cation, and as long as the triangular mesh used in the finite
element computations is dense enough relative to the spatial
variability of the target variable. A mesh that is too coarse
could lead to unrealistic results such as negative runoff.

5 Experimental set-up and evaluation scores

5.1 Making a gridded mean annual runoff map for
1981–2010

To evaluate the proposed approach for runoff estimation, we
use the SVC model to produce a gridded mean annual runoff
map for the period 1981–2010 for the same 1× 1 km grid
as the HBV model was delivered on (Fig. 2a). For the fully
gauged catchments, we use the data from 1981 to 2010 to
compute the mean annual runoff yi , while for the partially
gauged catchments we use the preprocessing step on the
short records (PP) before further analysis. In the preprocess-
ing step, data from 1965 to 2010 were used to estimate the
mean annual runoff for the period 1981–2010.

We evaluate the model in terms of whether the new map
represents an improvement compared to the original HBV
map. This is done by investigating how well the new map fits
with the observed runoff from the fully gauged and partially
gauged catchments.

In addition to the experiment described above, we repeated
the experiment, but omitted partially gauged catchments and

short records from the analysis. This was done to show that
the SVC model works regardless of the preprocessing step.
See Appendix A for the results.

5.2 Cross-validation for ungauged and partially
gauged catchments

We next evaluate the framework’s ability to perform accurate
mean annual runoff for ungauged and partially gauged catch-
ments. This is done by a cross-validation assessment, where
we make predictions for the 127 fully gauged catchments in
Fig. 1a. The 127 fully gauged catchments are divided into
five groups or folds. The first four folds have 25 target catch-
ments, while the fifth fold has 27 target catchments. In turn,
the streamflow data corresponding to each fold are removed
from the dataset, while the remaining observations are used
to predict the mean annual runoff for these catchments for the
period 1981–2010. The likelihood consists of preprocessed
observations from partially gauged catchments and observa-
tions from fully gauged catchments, i.e., around 400 obser-
vation catchments in total. Recall that we do not calibrate
the HBV model for each cross-validation fold, as the HBV
product was a pre-made product.

In our evaluation, we compare the predictive performance
of the SVC model with the process-based HBV model. The
original simulations from the HBV model shown in Fig. 2a
are hence used as they are. For evaluation purposes, the val-
ues in Fig. 2a are aggregated and averaged to catchment
runoff for the catchments in Fig. 1.

We also compare our approach with the purely geostatisti-
cal Top-Kriging (TK) approach described in Sect. 3.3. Here,
we fit a covariance model based on a multiplication of a mod-
ified exponential and fractal variogram model to the mean
annual runoff data. This is the default variogram model in
the R-package rtop (Skøien, J.O., 2018). As for the SVC
model, data from both fully gauged catchments and prepro-
cessed partially gauged catchments are used as input, and we
mark the TK results by TKPP to emphasize that preprocessed
data are used. For fully gauged catchments, the standard de-
viation of the observations is set to 2.5 % of the observed
value yi in the TK approach, while for partially gauged catch-
ments the standard deviation is set to 10 % of the observed
value. The aim is to make the TK results as comparable as
possible to the SVC model results.

In addition to evaluating TK and the HBV model, we
include prediction results from the preprocessing step (PP)
alone, without performing any further analysis. The PP pre-
dictions come from the purely geostatistical method de-
scribed in Sect. 3.3.2 and can be used to make predictions
in both ungauged and partially gauged catchments. We in-
clude the PP results to make the TK and SVC results more
transparent. These two methods use the PP results as input
data for the partially gauged catchments (see Sect. 4.4).
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The described cross-validation procedure is first per-
formed when the 127 target catchments are treated as un-
gauged. We have the following setting:

Ungauged catchments (UG): The target catchments
in each cross-validation fold are treated as totally un-
gauged (UG) in the time period of interest (1981–2010)
and their observations are removed from the dataset.
Observations from fully gauged catchments from other
cross-validation groups (1981–2010) and observations
from partially gauged catchments (1965–2010) are used
to make predictions.

We also evaluate the predictive performance of the model
when the 127 target catchments are treated as partially
gauged by conducting the following experiment:

Partially gauged catchments (PG): The target catch-
ments in each cross-validation are allowed to have three
annual observations in the study period (1981–2010).
These are randomly drawn from the period 1981–2010.
The remaining 27 observations are removed (and obser-
vations from before 1981). Observations from nearby
fully gauged catchments (1981–2010) and partially
gauged neighboring catchments (1965–2010) are in-
cluded in the likelihood as before.

The same cross-validation groups are used for all experi-
ments, such that the results become comparable across meth-
ods. The randomly drawn short records of 3 annual observa-
tions are also the same for TK and the SVC approach.

In addition to the above experiments, we carried out a
cross-validation for the UG setting when omitting catch-
ments with short records and preprocessed data. These re-
sults can be found in Appendix A.

5.3 Evaluation scores

To evaluate the accuracy of the predictions obtained from the
cross-validation, we use three evaluation scores. These are
the root mean square error (RMSE), the absolute normalized
error (ANE), and the Nash–Sutcliffe model efficiency coeffi-
cient (NSE), which are defined as

RMSE=

√√√√1
n

n∑
i=1
(yi − Q̂(Ai))

2 , (18)

ANEi =
|yi − Q̂(Ai)|

yi
, (19)

and

NSE= 1−
∑n
i=1(Q̂(Ai)− yi)

2∑n
i=1(yi − y)

2 . (20)

Here, Q̂(Ai) is the predicted mean annual runoff in catch-
ment Ai , yi is the corresponding observed value, and y de-
notes the average observed mean annual runoff over all study

catchments i = 1, . . .n. For the suggested SVC model, we use
the posterior mean of Q(Ai) as the predicted value (Eq. 7).
As a summary statistic for ANEi , we use the average ANEi
over all catchments i = 1, . . .,n. A low average ANEi or a
low RMSE corresponds to accurate predictions. The NSE
on the other hand takes values between −∞ and 1, and
the closer the model efficiency is to 1, the more accurate
the model is. The ANE and the NSE are different from the
RMSE in being scale-independent evaluation scores.

The three aforementioned scores are suitable for evaluat-
ing prediction bias, but they do not evaluate the models’ un-
certainty quantification. For this reason we introduce two ad-
ditional evaluation scores: the continuous ranked probability
score (CRPS) and the 90 % coverage. The CRPS is generally
given by

CRPS(F,y)=

∞∫
−∞

(F (s)− 1{y ≤ s})2ds ,

where y is the observed value and F(·) is the predictive
cumulative distribution (Gneiting and Raftery, 2007). The
CRPS takes the whole posterior distribution F(·) into ac-
count, unlike RMSE, ANE, and NSE that only consider point
values. A low CRPS corresponds to an accurate prediction,
and the CRPS increases if the observed value y falls outside
the posterior predictive distribution F(·). In this application,
we assume F(·) to be Gaussian distributed with the expected
value given by the predicted mean annual runoff and standard
deviation equal to the corresponding predictive standard de-
viation. The Gaussian assumption should be reasonable, as
the posterior distributions of the predicted runoff typically
are symmetric with light tails. We use the average CRPS over
the 127 fully gauged catchments as a summary score.

The 90 % coverage is defined as the probability that 90 %
of the observed values are covered by the corresponding
90 % posterior prediction intervals. This probability is com-
puted empirically based on the predictions for the 127 fully
gauged catchments, assuming that the SVC and TK predic-
tions follow a Gaussian distribution with mean and standard
deviation from the SVC or TK model. If the empirical proba-
bility is close to 90 %, it suggests that the model provides an
appropriate uncertainty quantification.

6 Results

6.1 Gridded mean annual runoff map for 1981–2010

In Fig. 5a we present the runoff map produced by the SVCPP
approach. The difference between the new map and the orig-
inal HBV product is depicted in Fig. 5b, while the map’s un-
certainty is shown in Fig. 5c. Figure 5b shows that the SVCPP
map gives lower values of mean annual runoff in western
Norway compared to the original HBV map. The difference
is around 700–1500 mm yr−1. In eastern Norway, the original
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Figure 5. Posterior mean of q(u) for all grid nodes u (a), difference between the new map and the original HBV map (new–old, b) and
posterior standard deviation of q(u) (c).

Table 1. Posterior median (0.025 quantile, 0.975 quantile) for the
parameters of the SVCPP model.

Parameter [unit] SVCPP

β0 [mm yr−1] 153 (110, 196)
β1 [1] 0.83 (0.78, 0.90)
ρx [km] 10.7 (5.4, 26.1)
σx [mm yr−1] 117 (33.8, 292)
ρα [km] 39.2 (29.4, 51.9)
σα [1] 0.24 (0.21, 0.27)
σy [mm yr−1] 205 (177, 1000)

HBV map and the SVCPP map are quite similar, both in the
southeast and northeast. In the area around the glacier Svar-
tisen, located by y-coordinate 7400 on the map, the mean
annual runoff of the SVCPP map is lower than the mean an-
nual runoff of the original HBV map. The difference here is
around 1500 mm yr−1.

We see from Fig. 5a that the SVCPP map preserves most
of the details provided by the original gridded HBV product
in Fig. 2a. The runoff map produced by SVCPP also looks
visually good without, e.g., unrealistic jumps or obvious dis-
continuities. One exception is a line or discontinuity close
to the Finnish border, northeast in Fig. 5a, but this line was
already present in the original HBV product in Fig. 2a.

The covariate h(u) makes a large contribution to the final
model with a regression coefficient β1 that is estimated to
be 0.83. This can be seen in Table 1 where we present the
parameter estimates of the SVC model. In Table 1 we also
see that the marginal standard deviations σα and σx of the
two spatial fields α(u) and x(u) are of considerable magni-
tude, confirming that there indeed is a regional trend in the
fit between the original HBV product and the observed mean
annual runoff. The regional trend can be studied in Fig. 6
where we show the two spatial fields α(u) and x(u). We see
that the spatial pattern in Fig. 5a mostly originates from the
SVC component α(u) for SVCPP (Fig. 6a). The other GRF
x(u) contributes with more local adjustments in the mean an-

nual runoff (Fig. 6b). The spatial fields have hence picked up
both long-range and short-range processes.

The posterior standard deviation of the SVCPP in Fig. 5c
shows that the uncertainty is decreased in areas where there
are observations, particularly around the centroids of the
gauged catchments. This is typical behavior for spatial mod-
els. In addition, the uncertainty follows the pattern we see in
the original HBV map in Fig. 2a. The latter comes from the
SVC component α(u)h(u), which allows for a variance that
is inhomogeneous in space given the process-based product
h(u). Figure 5c further shows that the SVC model gives rel-
atively high posterior standard deviations in a small area in
western Norway, south of Sognefjorden (around y-coordinate
6800). This can be explained by the fact that this is an area
where we have few observations (see Fig. 1b) and also that
the original HBV map performs poorly here.

In Fig. 7 we present a scatter plot that shows the fit be-
tween the runoff map in Fig. 5a and the observed catchment
mean annual runoff. The results show that the SVCPP map
corresponds considerably better to the observed runoff for
the fully gauged catchments than in the original HBV map
(Fig. 2b). The original HBV map gave a correlation of 0.933
between the predictions and the observations for the fully
gauged catchments, while the corrected SVCPP map gives
a correlation approximately equal to 1.

We also investigated the correlation between the map
and the observed runoff for the partially gauged catchments
where we only have 1–29 years of measurements in the 30-
year period of interest (Fig. 7). For these catchments, the
original HBV model gave an overall correlation of 0.917.
The SVCPP map gives correlation 0.986. The correlations
and Fig. 7 indicate that the SVCPP map provides a better fit
for the partially gauged catchments than the original HBV
map. Here, we cannot be entirely sure because the underlying
observations from the partially gauged catchments in Fig. 7
are only approximations of the true runoff between 1981 and
2010, computed based on 1–29 annual observations from this
period. It is, however, a positive sign that the fit for the par-
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Figure 6. Posterior means for the two GRFs x(u) and α(u) for SVCPP for the Norwegian mainland.

Figure 7. Scatter plot showing the predicted mean annual runoff
for SVCPP and the observed mean annual runoff from fully gauged
(orange) and partially gauged catchments (green).

tially gauged catchments (green) is not as good as for the
fully gauged catchments (orange).

6.2 Cross-validation for ungauged and partially
gauged catchments

In Table 2 we present the results from the cross-validation
assessment described in Sect. 5.2. For ungauged catchments
(UG), we find that the RMSE of our SVCPP method is 20 %
lower than the RMSE of the HBV model. Compared to TK,
the SVCPP model gives 10 % lower RMSE. The ranking be-
tween the models is the same also for the ANE, NSE, and
CRPS. When it comes to uncertainty quantification, TK gives
the best uncertainty representation for ungauged catchments
according to the 90 % coverage, with 91 % coverage. How-

ever, SVCPP also performs acceptably with 83 % coverage
on a cross-validation performed on (only) 127 catchments.

In Table A1 in the Appendix, we include the methods’ pre-
dictive performance for ungauged catchments when not us-
ing the preprocessing step and short records (SVC and TK).
These results give the same ranking between the methods as
before, but with one exception. SVC performs approximately
as good as TK in terms of 90% coverage, with coverages of
87 % and 94 %, respectively. From Table A1 we also notice
that the difference in performance between the SVC model
and TK is larger for this setting, where we had fewer obser-
vations. This is reasonable as we can expect the SVC model
to be more robust than a purely data-driven model if the data
availability is poorer.

Further, we compared the predictive performance for un-
gauged catchments (UG) for the SVCPP approach, the HBV
model, and TK (TKPP) across the study area and across
catchment attributes in terms of the ANE. The results are
shown for selected catchment attributes in Fig. 8. We see that
the HBV model in general tends to overestimate the mean
annual runoff. It gives the highest ANE values in the south-
western part of the country, and particularly for catchments
at higher elevations (800–1400 m a.s.l.). The latter might be
due to the interpolated precipitation product used as input in
the HBV model, where orographic enhancement of precip-
itation is accounted for by an elevation gradient. Since pre-
cipitation gauging stations are seldom located at high eleva-
tions (Lussana et al., 2018), the precipitation is extrapolated
to the highest altitudes giving rise to biases in the precip-
itation field. Figure 8 further shows that the two geostatis-
tical approaches (SVCPP and TKPP) perform better than the
HBV model for catchments with mean elevations in the range
800–1400 m a.s.l. This demonstrates that the SVC approach
is able to compensate for its poor HBV input in these areas.

The lines in Fig. 8 next show that TK and SVCPP in
general tend to follow the same trends across catchment
attributes. For example, both perform well for catchments
with large drainage areas, supporting existing results from
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Table 2. Predictive performance for the cross-validation experiments when the target catchments are treated as ungauged (UG) and partially
gauged (PG) for the HBV model, the suggested SVC model, and for Top-Kriging (TK). Subscript PP refers to the geostatistical preprocessing
step. The results from the geostatistical preprocessing method (PP) are also included as reference (without any further analysis) for a better
understanding of the other results. The best method for each evaluation criterion is marked in bold.

Ungauged target (UG) Partially gauged target (PG)

HBV SVCPP TKPP PP SVCPP TKPP PP

RMSE (mm yr−1) 394 315 350 389 166 181 134
ANE 0.180 0.111 0.125 0.192 0.054 0.053 0.047
NSE 0.815 0.881 0.854 0.771 0.968 0.961 0.978
CRPS (mm yr−1) 235 145 173 209 73 77 71
Coverage (%) – 83 % 91 % 96 % 95 % 94 % 100 %

Figure 8. Predictive performance of the methods (HBV, SVCPP, and TKPP) for predictions in ungauged catchments (UG) performed by
cross-validation. The first plot shows the fit between the predictions and the observations for the methods. The remaining plots show the
ANE for each of the 127 cross-validation catchments plotted against selected catchment attributes; i.e., the observed runoff, catchment area,
median catchment elevation, UTM33 north, and UTM33 east. The fitted curves are regression splines (made by geom_smooth() in R).

Viglione et al. (2013) regarding the predictive performance
of TK. For catchments with large drainage areas, there are
typically data from overlapping subcatchments available,
which makes areal referenced geostatistical models particu-
larly appropriate. The two geostatistical approaches also per-
form well for catchments located in the eastern parts of Nor-
way. In southeastern Norway we find catchments with larger
drainage areas and most of them are located at relatively low
elevations. The data availability is also good in the southeast-
ern parts of Norway, suitable for geostatistical modeling. It
is hard to see a clear trend when SVCPP performs better than
TK from Fig. 8, but we note that TK (and the HBV model)
in general produces more extreme ANE values than the SVC
model.

We next consider the performance of the models for pre-
dictions in partially gauged (PG) catchments. The results in

Table 2 show that we obtain a large reduction in the pre-
dictive performance for the SVCPP, PG case compared to
the case when we have no data from the target catchments
(SVCPP, UG). The reduction in RMSE is 47 %. The im-
provement for SVCPP, PG compared to the HBV model is
58%. Compared to TK, the SVCPP approach is slightly bet-
ter in terms of RMSE, but approximately equally good in
terms of ANE, NSE, CRPS, and 90 % coverage. Table 2 also
shows that the TK estimates are substantially improved when
including preprocessed short records from the target catch-
ments in the likelihood (PG compared to UG for TKPP).

The improved performance of TKPP and SVCPP for the
PG case is mainly caused by the preprocessing procedure’s
ability to perform (very) accurate predictions of Norwegian
mean annual runoff when a few annual observations are
available. In Table 2 we see that the input data provided
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by the preprocessing step (PP) alone give predictions that
are better than the predictions of the SVCPP and TKPP ap-
proaches. The improved results for TKPP and SVCPP, how-
ever, show that the two geostatistical methods are able to ex-
ploit the good performance of PP, and that the SVC approach
indeed can be used to combine both process-based data and
data from fully gauged and partially gauged catchments.

7 Discussion

We have presented a geostatistical model for mean annual
runoff that incorporates simulations from a process-based
model through an SVC and shown how short records can
be included by using the methodology from Roksvåg et al.
(2020) for filling in missing values.

In a preliminary study we tested models with only one
spatial field, i.e., only x(u) or α(u) was included in Eq. (5).
These models performed quite well in terms of both posterior
mean and posterior uncertainty for the Norwegian dataset,
which indicates that it might be satisfactory to use a model
with only one spatial field for many study areas. However,
our preliminary experiments also showed that a model with
two spatial fields often gave a more realistic spatial distribu-
tion of uncertainty than a model with only one spatial field.
Further, Fig. 6 showed that the model was able to capture
both short- and long-range processes through its two fields,
which can be a useful model property that can avoid ex-
cessive smoothing out of the process-based covariate by the
model. In general, the importance of x(u) compared to α(u)
depends on the study area, the data availability, and the qual-
ity of the process-based input model.

Table 2 shows that TKPP and SVCPP performed slightly
poorer than the preprocessing input model alone for the par-
tially gauged catchments (PG). When constructing the mod-
els, we did not want the SVC approach and TK to put
too much weight on the more uncertain preprocessed short
records. The latter was included in the model by specify-
ing a larger (prior) observation uncertainty for the partially
gauged catchments (0 %–23 % of the observed value) com-
pared to the fully gauged catchments (0 %–6 % of the ob-
served value). We have not tested how this uncertainty spec-
ification affects the results, but in future work, the SVCPP
model and TKPP could be improved by selecting the obser-
vation uncertainty for the preprocessed data more carefully.
The observation uncertainty for the partially gauged catch-
ments can, e.g., be set independently of the fully gauged
catchments and based on the record length of the short
records. An option could also be to use the predictive un-
certainty of the preprocessing method to specify the (prior)
measurement uncertainty for the partially gauged catchments
in the SVC model and TK.

In the paper, we presented a framework for estimating
mean annual runoff, which is one of several key flow indices.
The SVC framework can be used for other flow indices as

well, but the computational complexity makes it most suit-
able for flow indices of longer temporal scale or for model-
ing long-term averages. In Eq. (7), we also assume a linear
aggregation of runoff which is particularly appropriate for
mass conservative variables like annual runoff. If the mod-
eler wants to avoid this assumption, two simple model mod-
ifications are possible:

1. Make the runoff observations point referenced by let-
ting Q(A)= q(uA) in Eq. (7), where uA is the cen-
troid of catchment A and q(·) is point runoff as defined
in Eq. (5). This modification also enables inference on
log-transformed data.

2. Add more covariates or random noise outside the inte-
gral in Eq. (7). This way the areal representation is pre-
served, but it becomes easier to violate the water bal-
ance constraints.

A potential weakness of the proposed model is that it con-
sists of Gaussian components which can result in negative
runoff estimates. Negative estimates can occur if the flow in-
dex and the corresponding study area have runoff observa-
tions close to 0. This is another argument for using the SVC
model mainly for flow indices of a longer temporal scale.
Negative predictions can also occur if the discretization of
the study area and/or the SPDE mesh is too coarse relative
to the spatial variability of the target variable. In the study
presented here, no negative values were produced.

Figure 7 shows that the SVCPP gave a very good fit for the
127 fully gauged catchments, almost entirely reproducing the
actual observed mean annual runoff in the resulting gridded
map. We emphasize that the proposed method is not guar-
anteed to reproduce the observed value with the precision we
saw in this case study. How good the fit is for the fully gauged
catchments depends on the data quality, the gauging density,
and the complexity of the spatial variability of the underly-
ing hydrological process. Obtaining a correlation around 1
for the gauged catchments, as in Fig. 7, is not necessarily de-
sirable either, as it might affect the fit for the ungauged catch-
ments negatively. This might explain the over-confidence of
the SVCPP model, expressed through the 83 % coverage for
the UG case, in Table 2. It is possible to influence the model
fit by making the prior observation uncertainty of si ·σ 2

y wider
or narrower.

In Norway the gauging density is moderate. We expect
the suggested SVC model to outperform purely geostatisti-
cal methods such as TK for gauging densities that are low
to moderate. For data-sparse areas, the process-based infor-
mation provided by the HBV model is probably more im-
portant. This claim is based on intuition about the models
under discussion, but is also indicated by our results. TK is
closer to the SVC model in predictive performance for the
dataset where we use data from 411 catchments (UG in Ta-
ble 2) than for the reduced dataset where we only use data
from 127 catchments (Table A1 in the Appendix).
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Whether the suggested framework performs better than a
purely geostatistical method is of course also connected to
the quality of the process-based input model and the calibra-
tion procedures performed on it. However, our results have
clearly demonstrated that it is possible to improve a process-
based hydrological product by using the suggested frame-
work. All experiments showed that the SVC approach im-
proved the predictions compared to the original HBV simu-
lations. The SVC model can hence be considered as an objec-
tive approach for correcting the simulations from a process-
based model, and can reduce the need for subjective, manual
corrections.

8 Conclusions

We have presented a Bayesian geostatistical model for an-
nual runoff estimation that incorporates simulations from a
process-based hydrological model through a covariate whose
regression coefficient is allowed to vary in the study area ac-
cording to a GRF. A preprocessing step for including short
records was also suggested such that the model could exploit
data from both fully gauged and partially gauged catchments.

The model was evaluated by estimating mean annual
runoff for Norway (1981–2010), and simulations from the
process-based HBV model were used as a covariate. The re-
sults showed that the suggested framework outperforms a
purely process-based model when predicting runoff in un-
gauged and partially gauged catchments. The reduction in
RMSE was 20 % for ungauged catchments and 58 % for par-
tially gauged catchments. The increased predictive perfor-
mance obtained compared to a purely process-based model is
connected to the quality of the process-based product and the
calibration procedures performed on it. However, all results
show that the suggested framework is able to improve the
predictions from a process-based model. The approach can
hence be used as a objective method for correcting process-
based runoff maps relative to data. The large reduction in
RMSE for partially gauged catchments demonstrates that the
preprocessing method from Roksvåg et al. (2020) can be in-
corporated into the proposed model to exploit short records.

The suggested model gave a 10 % lower RMSE than a
purely geostatistical method (TK) when predicting runoff
in ungauged catchments. Particularly if the gauging density
is low to moderate, the suggested framework is expected
to outperform purely geostatistical models. For catchments
that had a few annual streamflow observations available, a
purely geostatistical method performed equally well (TK)
or slightly better (PP) than the proposed approach. Since
most study areas consist of a mix of ungauged, fully gauged,
and partially gauged catchments, the proposed SVC model
stands out as a good approach for making a consistent grid-
ded runoff map for a larger area.
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Appendix A: Results when omitting short records

We repeat the experiments from Sect. 5.1 and 5.2 for un-
gauged catchments, but we only use observations from the
127 fully gauged catchments in Fig. 1a. The runoff data from
the partially gauged catchments are simply removed from the
analysis. The experiments are included to show that the SVC
model works regardless of preprocessing.

Figure A1. Posterior mean of q(u) for all grid nodes, difference between the new map and the original HBV map, and posterior standard
deviation of q(u). The model is fitted without including short records.

Figure A2. Scatter plot showing the predicted mean annual runoff
(posterior mean of Q(A)) for SVC and the observed streamflow
from fully gauged and partially gauged catchments when short
records are omitted from the likelihood.

The runoff map provided by the SVC model, when not
using short records, is shown in Fig. A1a. The maps look
similar to the maps in Fig. 5a, but the posterior uncertainty
is larger in western Norway in Fig. A1c. The reasons are that
there are fewer observations available from western Norway
in the dataset consisting only of fully gauged catchments and
that this is an area with large deviance between the original
HBV map and the observed streamflow.

In Fig. A2 we show the fit between the observed runoff and
the runoff predicted by the map in Fig. A1a. The fit is good
for the fully gauged catchments, as before. The fit is also
improved for the partially gauged catchments compared to
the original HBV map in Fig. 2a. Here, the original HBV
model gave a correlation of 0.917 between observed and pre-
dicted values, while the map in Fig. A1a gives a correla-
tion of 0.924. However, when short records and preprocess-
ing were included in the analysis, the correlation was 0.986
(SVCPP in Fig. 7). This illustrates the reduced predictive per-
formance when omitting short records from the analysis in
Norway and in countries with similar spatiotemporal trends
in annual runoff.

Table A1. Predictive performance for cross-validation when the tar-
get catchments are treated as ungauged (UG) for the HBV model,
the suggested SVC model, and for Top-Kriging (TK). Short records
are omitted from the observation likelihood and the preprocessing
step is not performed. The best method for each evaluation criterion
is marked in bold.

UG

HBV SVC TK

RMSE (mm yr−1) 394 320 381
ANE 0.180 0.135 0.176
NSE 0.815 0.878 0.827
CRPS (mm yr−1) 235 156 211
Coverage (%) – 87 % 94 %
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The cross-validation results for the experiments where we
omit the short records are summarized in Table A1. Again
the SVC model performs considerably better than the HBV
model and TK in terms of RMSE, ANE, NSE, and CRPS.
Recall that the difference in performance from TK is larger
for this dataset (for UG) compared to when using the larger
dataset (Table 2).
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