Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-5119-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5119-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ estimation of soil hydraulic and hydrodispersive properties by inversion of electromagnetic induction measurements and soil hydrological modeling
Giovanna Dragonetti
CORRESPONDING AUTHOR
Mediterranean Agronomic Institute of Bari, Valenzano (BA), 70010,
Italy
Mohammad Farzamian
CORRESPONDING AUTHOR
Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, 2780-157, Portugal
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Lisbon, 1749-016, Portugal
Angelo Basile
Institute for Mediterranean Agricultural and Forestry Systems,
National Research Council, Portici (NA), 80055, Italy
Fernando Monteiro Santos
Instituto Dom Luiz, Faculdade de Ciências da Universidade de
Lisboa, Lisbon, 1749-016, Portugal
Antonio Coppola
School of Agricultural, Forestry, Food and Environmental Sciences,
University of Basilicata, Potenza, 85100, Italy
Department of Chemical and Geological Sciences, University of
Cagliari, Cagliari, 09124, Italy
Related authors
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Dario Autovino, Antonio Coppola, Roberto De Mascellis, Mohammad Farzamian, and Angelo Basile
EGUsphere, https://doi.org/10.5194/egusphere-2025-2696, https://doi.org/10.5194/egusphere-2025-2696, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
In this article, we developed a method to better understand how soil water moisture and salt content affect electrical signals measured from the surface by electromagnetic induction technique. This helps farmers manage irrigation, especially in areas using salty water. By combining field and lab data, we could tell how much each factor—water or salt—affected the signal. This technique offers a faster, easier way to track soil health and could improve how we use water in farming.
Binyam Alemu Yosef, Angelo Basile, Antonio Coppola, Fabrizio Ungaro, and Marialaura Bancheri
EGUsphere, https://doi.org/10.5194/egusphere-2025-1927, https://doi.org/10.5194/egusphere-2025-1927, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study investigates the intricate relationship between soil properties and water-related processes, with a focus on their collective impact on ecosystem service provision. Key soil characteristics were analyzed for their role in regulating the overall hydrological balance, in three diverse regions. The study highlights the value of using these properties in predictive models for water management practices to optimize crop performance and soil conservation in different agricultural settings.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Maria Catarina Paz, Mohammad Farzamian, Ana Marta Paz, Nádia Luísa Castanheira, Maria Conceição Gonçalves, and Fernando Monteiro Santos
SOIL, 6, 499–511, https://doi.org/10.5194/soil-6-499-2020, https://doi.org/10.5194/soil-6-499-2020, 2020
Short summary
Short summary
In this study electromagnetic induction (EMI) surveys and soil sampling were repeated over time to monitor soil salinity dynamics in an important agricultural area that faces risk of soil salinization. EMI data were converted to electromagnetic conductivity imaging through a mathematical inversion algorithm and converted to 2-D soil salinity maps until a depth of 1.35 m through a regional calibration. This is a non-invasive and cost-effective methodology that can be employed over large areas.
Antonello Bonfante, Angelo Basile, and Johan Bouma
SOIL, 6, 453–466, https://doi.org/10.5194/soil-6-453-2020, https://doi.org/10.5194/soil-6-453-2020, 2020
Short summary
Short summary
Soil health is an important term in the international policy arena when considering soil contributions to sustainable development. We propose a measurement method, lacking so far, and explore differences within the term soil quality. The latter describes the inherent properties of soils, while soil health focuses on actual health. The procedure is illustrated for three Italian soil types, also showing the effects of climate change, demonstrating that each soil is significantly different.
Cited articles
Abbasi, F., Šimůnek, J., Feyen, J., van Genuchten, M. T., and Shouse,
P. T.: Simultaneous inverse estimation of soil hydraulic and solute transport
parameters from transient field experiments: Homogeneous soil, T. ASAE, 46, 1085, https://doi.org/10.13031/2013.13960, 2003.
Abbaspour, K. C., Sonnleitner, M., and Schulin, R.: Uncertainty in estimation
of soil hydraulic parameters by inverse modeling: example lysimeter
experiments, Soil Sci. Soc. Am. J., 63, 501–509, 1999.
Archie, G. E.: The electrical resistivity log as an aid in determining some
reservoir characteristics, T. AIME, 146, 54–62, 1942.
Basile, A., Coppola, A., De Mascellis, R., and Randazzo, L.: Scaling Approach to Deduce Field Unsaturated Hydraulic Properties and Behavior from Laboratory Measurements on Small Cores, Vadose Zone J., 5, 1005–1016,
https://doi.org/10.2136/vzj2005.0128, 2006.
Binley, A., Cassiani, G., Middleton, R., and Winship, P.: Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging, J. Hydrol., 267, 147–159, https://doi.org/10.1016/S0022-1694(02)00146-4, 2002.
Bouksila, F., Persson, M., Bahri, A., and Berndtsson, A.: Electromagnetic
induction prediction of soil salinity and groundwater properties in a Tunisian Saharan oasis, Hydrolog. Sci. J., 57, 1473–1486,
https://doi.org/10.1080/02626667.2012.717701, 2012.
Camporese, M., Cassiani, G., Deiana, R., Salandin, P., and Binley, A.: Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT-monitored tracer test data, Water Resour. Res., 51, 3277–3291, https://doi.org/10.1002/2014WR016017, 2015.
Caputo, M. C., De Carlo, L., Masciopinto, C., and Nimmo, J. R.: Measurement of field-saturated hydraulic conductivity on fractured rock outcrops near
Altamura (Southern Italy) with an adjustable large ring infiltrometer,
Environ. Earth Sci., 60, 583–590, https://doi.org/10.1007/s12665-009-0198-y, 2010.
Caputo, M. C., Maggi, S., and Turturro, A. C.: Calculation of Water Retention
Curves of Rock Samples by Differential Evolution, in: Engineering Geology
for Society and Territory, Volume 5, edited by: Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., and Luino, F., Springer, Cham,
https://doi.org/10.1007/978-3-319-09048-1, 2015.
Coppola, A., Comegna, A., Dragonetti, G., Dyck, M., Basile, A., Lamaddalena,
N., Kassab, M., and Comegna, V.: Solute transport scales in an unsaturated
stony soil, Adv. Water Resour., 34, 747–759, https://doi.org/10.1016/j.advwatres.2011.03.006, 2011.
Coppola, A., Gerke, H., Comegna, A., Basile, A., and Comegna, V.: Dual-permeability model for flow in shrinking soil with dominant horizontal deformation, Water Resour. Res., 48, W08527, https://doi.org/10.1029/2011WR011376, 2012.
Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M. A., and Basile, A.: Measuring and modeling water content in stony
soils, Soil Till. Res., 128, 9–22, https://doi.org/10.1016/j.still.2012.10.006, 2013.
Coppola, A., Chaali, N., Dragonetti, G., Lamaddalena, N., and Comegna, A.:
Root uptake under non-uniform root-zone salinity, Ecohydrology, 8, 1363–1379, https://doi.org/10.1002/eco.1594, 2015.
Coppola, A., Smettem, K., Ajeel, A., Saeed, A., Dragonetti, G., Comegna, A.,
Lamaddalena, N., and Vacca, A.: Calibration of an electromagnetic induction
sensor with time-domain reflectometry data to monitor rootzone electrical
conductivity under saline water irrigation, Eur. J. Soil Sci., 67, 737–748,
https://doi.org/10.1111/ejss.12390, 2016.
Coppola, A., Dragonetti, G., Sengouga, A., Lamaddalena, N., Comegna, A., Basile, A., Noviello, N., and Nardella, L.: Identifying Optimal Irrigation
Water Needs at District Scale by Using a Physically Based Agro-Hydrological
Model, Water, 11, 841, https://doi.org/10.3390/w11040841, 2019.
Corwin, D. L. and Lesch, S. M.: Apparent soil electrical conductivity measurements in agriculture, Comput. Electron. Agr., 46, 11–43,
https://doi.org/10.1016/j.compag.2004.10.005, 2005.
Dane, J. H. and Topp, C. G. (Eds.): Methods of soil analysis, Part 4: Physical methods, in: Vol. 20, John Wiley & Sons, ISBN 9780891188414, 2020.
Deidda, G. P., Fenu, C., and Rodriguez, G.: Regularized solution of a nonlinear problem in electromagnetic sounding, Inverse Probl., 30, 125014,
https://doi.org/10.1088/0266-5611/30/12/125014, 2014.
Dragonetti, G., Comegna, A., Ajeel, A., Deidda, G. P., Lamaddalena, N.,
Rodriguez, G., Vignoli, G., and Coppola, A.: Calibrating electromagnetic
induction conductivities with time-domain reflectometry measurements, Hydrol. Earth Syst. Sci., 22, 1509–1523, https://doi.org/10.5194/hess-22-1509-2018, 2018.
Ellsworth, T. R., Shaouse, P. J., Jobes, J. A., Fargerlund, J., and Skaggs,
T. H.: Solute transport in unsaturated soil: Experimental design, parameter
estimation, and model discrimination, Soil Sci. Soc. Am. J., 60, 397–407,
https://doi.org/10.2136/sssaj1996.03615995006000020010x, 1996.
Farzamian, M., Paz, M. C., Paz, A. M., Castanheira, N. L., Gonçalves, M.
C., Monteiro Santos, F. A., and Triantafilis, J.: Mapping soil salinity
using electromagnetic conductivity imaging – A comparison of regional and
location-specific calibrations, Land. Degrad. Dev., 30, 1393–1406,
https://doi.org/10.1002/ldr.3317, 2019a.
Farzamian, M., Ribeiro, J. A., Monteiro Santos, F. A., and Khalil, M. A.:
Application of Transient Electromagnetic and Audio-Magnetotelluric Methods
for Imaging the Monte Real Aquifer in Portugal, Pure Appl. Geophys., 176, 719–735, https://doi.org/10.1007/s00024-018-2030-7, 2019b.
Farzamian, M., Autovino, D., Basile, A., De Mascellis, R., Dragonetti, G.,
Monteiro Santos, F., Binley, A., and Coppola, A.: Assessing the dynamics of
soil salinity with time-lapse inversion of electromagnetic data guided by
hydrological modelling, Hydrol. Earth Syst. Sci., 25, 1509–1527,
https://doi.org/10.5194/hess-25-1509-2021, 2021.
Gómez Flores, J. L., Ramos Rodríguez, M., González Jiménez, A., Farzamian, M., Herencia Galán, J. F., Salvatierra Bellido, B.,
Cermeño Sacristan, P., and Vanderlinden, K.: Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils, Remote Sens., 14, 3389,
https://doi.org/10.3390/rs14143389, 2022.
Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J., and
Vereecken, H.: Inverse estimation of soil hydraulic and transport parameters
of layered soils from water stable isotope and lysimeter data, Vadose Zone J., 17, 1–19, https://doi.org/10.2136/vzj2017.09.0168, 2018.
Hansen, S., Abrahamsen, P., Petersen, C. T., and Styczen, M.: Daisy: model
use, calibration and validation, T. ASABE, 55, 1315–1333, 2012.
Hendrickx, J. M. H., Borchers, B., Corwin, D. L., Lesch, S. M., Hilgendorf,
A. C., and Schlue, J.: Inversion of soil conductivity profiles from
electromagnetic induction measurements, Soil Sci. Soc. Am. J., 66, 673–685,
https://doi.org/10.2136/sssaj2002.6730, 2002.
Hinnell, A. C., Ferre, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey, S., Rings, J., and Kowalsky, M. B.: Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion, Water Resour. Res., 46, W00D40, https://doi.org/10.1029/2008WR007060, 2010.
Huang, J., Monteiro Santos, F. A., and Triantafilis, J.: Mapping soil water
dynamics and a moving wetting front by spatiotemporal inversion of electromagnetic induction data, Water Resour. Res., 52, 9131–9145,
https://doi.org/10.1002/2016WR019330, 2016.
Inoue, M., Šimuunek, J., Shiozawa, S., and Hopmans, J. W.: Simultaneous
estimation of soil hydraulic and solute transport parameters from transient
infiltration experiments, Adv. Water Resour., 23, 677–688,
https://doi.org/10.1016/S0309-1708(00)00011-7, 2000.
Kaufman, A. A. and Keller, G. V.: Frequency and Transient Sounding Methods
Geochemistry and Geophysics, Elsevier Science Ltd, New York, ISBN 13:978-0444420329, ISBN 10:0444420320, 1983.
Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H.: Imaging and
characterization of subsurface solute transport using electrical resistivity
tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125–146, https://doi.org/10.1016/S0022-1694(02)00145-2, 2002.
Kroes, J. G., van Dam, J. C., Bartholomeus, R. P., Groenendijk, P., Heinen, M., Hendriks, R. F. A., Mulder, H. M., Supit, I., and van Walsum, P. E. V.: SWAP version 4; Theory description and user manual, Report 2780, Wageningen
Environmental Research, Wageningen, 244 pp., https://doi.org/10.18174/416321, 2017.
Lavoué, F., van der Kruk, J., Rings, J., André, F., Moghadas, D.,
Huisman, J. A., Lambot, S., Weihermüller, L., Vanderborght, J., and Vereecken, H..: Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography, Near Surf. Geophys., 8, 553–561, 2010.
Malicki, M. A. and Walczak, R. T.: Evaluating soil salinity status from bulk
electrical conductivity and permittivity, Eur. J. Soil Sci., 50, 505–514,
https://doi.org/10.1046/j.1365-2389.1999.00245.x, 1999.
McLachlan, P., Blanchy, G., and Binley, A.: EMagPy: Open-source standalone
software for processing, forward modeling and inversion of electromagnetic
induction data, Comput. Geosci., 146, 104561, https://doi.org/10.1016/j.cageo.2020.104561, 2020.
McNeill, J. D.: Electromagnetic Terrain Conductivity Measurement at Low
Induction Numbers, Technical note TN-06, Geonics Limited, Ontario, Canada,
1–15, http://www.geonics.com/pdfs/technicalnotes/tn6.pdf (last access: 8 October 2022), 1980.
Moghadas, D.: Probabilistic Inversion of Multiconfiguration Electromagnetic
Induction Data Using Dimensionality Reduction Technique: A Numerical Study,
Vadose Zone J., 18, 1–16, https://doi.org/10.2136/vzj2018.09.0183, 2019.
Monteiro Santos, F. A.: 1D laterally constrained inversion of EM34 profiling
data, J. Appl. Geophys., 56, 123–134, https://doi.org/10.1016/j.jappgeo.2004.04.005, 2004.
Paz, M. C., Farzamian, M., Paz, A. M., Castanheira, N. L., Gonçalves, M.
C., and Monteiro Santos, F.: Assessing soil salinity using time-lapse
electromagnetic conductivity imaging, SOIL, 6, 499–511,
https://doi.org/10.5194/soil-6-499-2020, 2020.
PC-Progress: Hydrus-1D for Windows, Version 4.xx, https://www.pc-progress.com/en/Default.aspx?hydrus-1d, last access: 8 October 2022.
Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., and Friedman, S. P.: A
Review of Advances in Dielectric and Electrical Conductivity Measurement in
Soils Using Time Domain Reflectometry, Vadose Zone J., 2, 444–475, https://doi.org/10.2136/vzj2003.4440, 2003.
Saeed A., Comegna, A., Dragonetti, G., Lamaddalena, N., and Coppola, A.: Soil surface electrical conductivity estimated by TDR and EMI sensors: Accounting for the different sensor observation volumes, J. Agricult. Eng., 48, 223–234, https://doi.org/10.4081/jae.2017.716, 2017.
Sasaki, Y.: Full 3-D inversion of electromagnetic data on PC, J. Appl. Geophys., 46, 45–54, https://doi.org/10.1016/S0926-9851(00)00038-0, 2001.
Severino, G., Comegna, A., Coppola, A., Sommella, A., and Santini, A.: Stochastic analysis of a field-scale unsaturated transport experiment, Adv.
Water Resour., 33, 1188–1198, https://doi.org/10.1016/j.advwatres.2010.09.004, 2010.
Šimůnek, J., Angulo-Jaramillo, R., Schaap, M. G., Vandervaere, J. P.,
and van Genuchten, M. T.: Using an inverse method to estimate the hydraulic
properties of crusted soils from tension-disc infiltrometer data, Geoderma,
86, 61–81, https://doi.org/10.1016/S0016-7061(98)00035-4, 1998.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., and van Genuchten, M. T.: The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.17, HYDRUS Software Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, 342 pp.,
https://www.pc-progress.com/Downloads/Pgm_hydrus1D/HYDRUS1D-4.17.pdf (last access: 8 October 2022), 2013.
Singha, K. and Gorelick, S. M.: Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial
moment analysis, Water Resour. Res., 41, W05023, https://doi.org/10.1029/2004WR003460, 2005.
Sisson, J. and van Genuchten, M. T.: An improved analysis of gravity drainage experiments for estimating the unsaturated soil hydraulic functions, Water Resour. Res., 27, 569–575, 1991.
Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic determination of
soil water content: Measurements in coaxial transmission lines, Water Resour. Res., 16, 574–582, 1980.
Vanderborght, J. and Vereecken, H.: Review of Dispersivities for Transport
Modeling in Soils. Vadose Zone J., 6, 29–52, https://doi.org/10.2136/vzj2006.0096, 2007.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898,
1980.
van Genuchten, M. T., Leij, F. J., and Wu, L.: Characterization and measurement of the hydraulic properties of unsaturated porous media (parts 1 and 2), in: Proceedings of the International Workshop, 22–24 October 1999, Riverside, California, https://www.pc-progress.com/Documents/RVGenugten/1999_vG_Workshop_Proc_Contents.pdf (last access: 8 October 2022), 1999.
van't Veen, K. M., Ferré, T. P. A., Iversen, B. V., and Børgesen, C. D.: Using machine learning to predict optimal electromagnetic induction
instrument configurations for characterizing the shallow subsurface, Hydrol.
Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022, 2022.
Visconti, F. and de Paz, J. M.: Sensitivity of soil electromagnetic induction measurements to salinity, water content, clay, organic matter and bulk density, Precis. Agricult., 22, 1559–1577, https://doi.org/10.1007/s11119-021-09798-8, 2021.
von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., and van der Kruk, J.: Three-dimensional imaging of subsurface
structural patterns using quantitative large-scale multiconfiguration
electromagnetic induction data, Water Resour. Res., 50, 2732–2748,
https://doi.org/10.1002/2013WR014864, 2014.
von Hebel, C., van der Kruk, J., Huisman, J. A., Mester, A., Altdorff, D.,
Endres, A.L., Zimmermann, E., Garré, S., and Vereecken, H.: Calibration,
Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom
Electromagnetic Induction Data, Sensors, 19, 4753, https://doi.org/10.3390/s19214753, 2019.
Watson, K. K.: An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials, Water Resour. Res., 2, 709–715, 1966.
Wessolek, G., Plagge, R. Leij, F. J., and van Genuchten, M. T.: Analysing
problems in describing field and laboratory measured soil hydraulic properties, Geoderma, 64, 93–110, https://doi.org/10.1016/0016-7061(94)90091-4, 1994.
Whalley, W. R., Binley, A. M., Watts, C. W., Shanahan, P., Dodd, I. C.,
Ober, E. S., Ashton, R. W., Webster, C. P., White, R. P., and Hawkesford, M.
J.: Methods to estimate changes in soil water for phenotyping root activity
in the field, Plant Soil, 415, 407–422, https://doi.org/10.1007/s11104-016-3161-1, 2017.
Zare, E., Li, N., Khongnawang, T., Farzamian, M., and Triantafilis, J.:
Identifying Potential Leakage Zones in an Irrigation Supply Channel by
Mapping Soil Properties Using Electromagnetic Induction, Inversion Modelling
and a Support Vector Machine, Soil Syst., 4, 25–39, https://doi.org/10.3390/soilsystems4020025, 2020.
Short summary
Soil hydraulic and hydrodispersive properties are necessary for modeling water and solute fluxes in agricultural and environmental systems. Despite the major efforts in developing methods (e.g., lab-based, pedotransfer functions), their characterization at applicative scales remains an imperative requirement. Thus, this paper proposes a noninvasive in situ method integrating electromagnetic induction and hydrological modeling to estimate soil hydraulic and transport properties at the plot scale.
Soil hydraulic and hydrodispersive properties are necessary for modeling water and solute fluxes...