Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Sebastian Uhlemann
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Maya Franklin
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Nicola Falco
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Nicholas J. Bouskill
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Michelle E. Newcomer
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Baptiste Dafflon
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Erica R. Siirila-Woodburn
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Burke J. Minsley
U.S. Geological Survey, Denver, CO 80225, USA
Kenneth H. Williams
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
Susan S. Hubbard
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Related authors
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341, https://doi.org/10.5194/egusphere-2025-2341, 2025
Short summary
Short summary
We studied how Arctic landscapes change as the ground thaws by comparing measurements taken ten years apart. We found that some areas sank and new ponds formed, with different patterns depending on the shape of the land. These changes affect how water and carbon flow and cycle through the environment. The results help understand how and where the Arctic is shifting, and highlight the need for repeated observations to track long-term changes.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Lena Wang, Sharon Billings, Li Li, Daniel Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro Flores, Kenneth Williams, and Pamela Sullivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-70, https://doi.org/10.5194/egusphere-2025-70, 2025
Short summary
Short summary
Our study looked at how different forest types and conditions affected soil microbes, and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025, https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Short summary
Warming in montane systems is affecting the snowmelt input amount. At the global scale, this will impact subalpine forests that rely on spring snowmelt to support their water demands. We use a network of sensors across a hillslope in the Upper Colorado Basin to show that the changing spring snowpack has a more pronounced impact on dense forest stands, while open stands show a higher reliance on summer rain and are less sensitive to significant changes in snow.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022, https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Short summary
In this work, we assess the effects of end-of-century extreme dry and wet conditions on the hydrology of California. Our results, derived from cutting-edge and high-resolution climate and hydrologic models, highlight that (1) water storage will be larger and increase earlier in the year, yet the summer streamflow will decrease as a result of high evapotranspiration rates, and that (2) groundwater and lower-order streams are very sensitive to decreases in snowmelt and higher evapotranspiration.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Cited articles
Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I.: Nitrogen saturation in temperate forest ecosystems,
BioScience, 48, 921–934, https://doi.org/10.2307/1313296,
1998.
Abrahamsen, G. and Stuanes, A. O.: Retention and leaching of N in
Norwegian coniferous forests, Nutr. Cycl. Agroecosyst., 52,
171–178, 1998.
Anderson, B. T., McNamara, J. P., Marshall, H. P., and Flores, A. N.:
Insights into the physical processes controlling correlations between snow
distribution and terrain properties, Water Resour. Res., 50,
4545–4563, 2014.
Arora, B., Burrus, M., Newcomer, M. E., Steefel, C. I., Carroll, R. W. H., Dwivedi, D., Dong, W., Williams., K. H., and Hubbard, S. S.: Differential C-Q Analysis: A New Approach to Inferring
Lateral Transport and Hydrologic Transients Within Multiple Reaches of a
Mountainous Headwater Catchment, Frontiers in Water, 2, 24, https://doi.org/10.3389/frwa.2020.00024, 2020.
Asner, G. P., Martin, R. E., Anderson, C. B., and Knapp, D. E.: Quantifying
forest canopy traits: Imaging spectroscopy versus field survey, Remote
Sens. Environ., 158, 15–27, https://doi.org/10.1016/j.rse.2014.11.011, 2015.
Aytaç, E.: Unsupervised learning approach in defining the similarity of
catchments: Hydrological response unit based k-means clustering, a
demonstration on Western Black Sea Region of Turkey, Int. Soil
Water Conserv. Res., 8, 321–331, 2020
Ball, L. B., Davis, T. A., Minsley, B. J., Gillespie, J. M., and Landon, M.
K.: Probabilistic categorical groundwater salinity mapping from airborne
electromagnetic data adjacent to California's Lost Hills and Belridge oil
fields, Water Resour. Res., 56, e2019WR026273, https://doi.org/10.1029/2019WR026273, 2020.
Band, L. E.: Spatial aggregation of complex terrain, Geogr. Anal.,
21, 279–293, 1989.
Band, L. E., Peterson, D. L., Running, S. W., Coughlan, J., Lammers, R.,
Dungan, J., and Nemani, R.: Forest ecosystem processes at the watershed
scale: basis for distributed simulation, Ecol. Model., 56, 171–196,
1991.
Band, L. E., Patterson, P., Nemani, R., and Running, S. W.: Forest
ecosystem processes at the watershed scale: incorporating hillslope
hydrology, Agric. Forest Meteorol., 63, 93–126, 1993.
Barfod, A. A. S., Møller, I., Christiansen, A. V., Høyer, A.-S., Hoffimann, J., Straubhaar, J., and Caers, J.: Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods, Hydrol. Earth Syst. Sci., 22, 3351–3373, https://doi.org/10.5194/hess-22-3351-2018, 2018.
Brantley, S. L., McDowell, W. H., Dietrich, W. E., White, T. S., Kumar, P., Anderson, S. P., Chorover, J., Lohse, K. A., Bales, R. C., Richter, D. D., Grant, G., and Gaillardet, J.: Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth, Earth Surf. Dynam., 5, 841–860, https://doi.org/10.5194/esurf-5-841-2017, 2017.
Buck, J. R. and Clair, S. B. S.: Aspen increase soil moisture, nutrients,
organic matter and respiration in Rocky Mountain forest communities, PLoS One, 7,
e52369, https://doi.org/10.1371/journal.pone.0052369, 2012.
Burke, A. R. and Kasahara, T.: Subsurface lateral flow generation in aspen
and conifer-dominated hillslopes of a first order catchment in northern
Utah, Hydrol. Process., 25, 1407–1417, 2011.
Burt, T. P. and Pinay, G.: Linking hydrology and biogeochemistry in
complex landscapes, Prog. Phys. Geogr., 29, 297–316, 2005.
Carroll, R. W., Bearup, L. A., Brown, W., Dong, W., Bill, M., and Williams, K.
H.: Factors Controlling Seasonal Groundwater and Solute Flux from
Snow-Dominated Basins, Hydrol. Process., 32, 1–16, https://doi.org/10.1002/hyp.13151, 2018.
Chadwick, K. D., Brodrick, P. G., Grant, K., Goulden, T., Henderson, A., Falco, N., Brodie, E. L., Steltzer, H., Rick Williams, C. F., Blonder, B., Chen, J., Dafflon, D., Damerow, J., Hancher, M., Khurram,A., Lamb, L., Lawrence, C. R., McCormick, M., Musinsky, J., Pierce, S., Polussa, A., Porro, M. H., Scott, A., Singh, H. W., Sorensen, P. O., Varadharajan, C., Whitney, B., and Maher, K.: Integrating airborne remote sensing and
field campaigns for ecology and Earth system science, Methods Ecol.
Evol., 11, 1492–1508, 2020.
Chaney, N. W., Wood, E. F., McBratney, A. B., Hempel, J. W., Nauman, T. W.,
Brungard, C. W., and Odgers, N. P.: POLARIS: A 30-meter probabilistic soil
series map of the contiguous United States, Geoderma, 274, 54–67, 2016.
Chaney, N. W., Van Huijgevoort, M. H. J., Shevliakova, E., Malyshev, S., Milly, P. C. D., Gauthier, P. P. G., and Sulman, B. N.: Harnessing big data to rethink land heterogeneity in Earth system models, Hydrol. Earth Syst. Sci., 22, 3311–3330, https://doi.org/10.5194/hess-22-3311-2018, 2018.
Chaney, N. W., Minasny, B., Herman, J. D., Nauman, T. W., Brungard, C. W., Morgan, C. L., McBratney, A. B., Wood, E. F., and Yimam, Y.: POLARIS soil properties: 30-m probabilistic maps
of soil properties over the contiguous United States, Water Resour.
Res., 55, 2916–2938, https://doi.org/10.1029/2018WR022797,
2019.
Clarke, B. A. and Burbank, D. W.: Bedrock fracturing, threshold
hillslopes, and limits to the magnitude of bedrock landslides, Earth
Planet. Sci. Lett., 297, 577–586, 2010.
Colombo, R., Meroni, M., Marchesi, A., Busetto, L., Rossini, M., Giardino,
C., and Panigada, C.: Estimation of leaf and canopy water content in poplar
plantations by means of hyperspectral indices and inverse modeling, Remote
Sens. Environ., 112, 1820–1834, 2008.
DeByle, N. V.: Water and watershed, in: Aspen: Ecology and management in the western United States, edited by: DeByle, N. V. and Winokur, R.
P.,
USDA Forest Service General Technical Report RM-119, Rocky Mountain Forest
and Range Experiment Station, Fort Collins, CO, 119, 153–160, 1985.
de Pasquale, G., Linde, N., and Greenwood, A.: Joint probabilistic
inversion of DC resistivity and seismic refraction data applied to
bedrock/regolith interface delineation, J. Appl. Geophys., 170,
103839, https://doi.org/10.1016/j.jappgeo.2019.103839, 2019.
Devadoss, J., Falco, N., Dafflon, B., Wu, Y., Franklin, M., Hermes, A., Hinckley, E. L., and Wainwright, H.: Remote Sensing-Informed Zonation for Understanding
Snow, Plant and Soil Moisture Dynamics within a Mountain Ecosystem, Remote
Sens., 112, 2733, https://doi.org/10.3390/rs12172733, 2020.
Duncan, J. M., Groffman, P. M., and Band, L. E.: Towards closing the
watershed nitrogen budget: Spatial and temporal scaling of denitrification,
J. Geophys. Res.-Biogeo., 118, 1105–1119, 2013.
Engstrom, R., Hope, A., Kwon, H., Stow, D., and Zamolodchikov, D.: Spatial
distribution of near surface soil moisture and its relationship to
microtopography in the Alaskan Arctic coastal plain, Hydrol. Res.,
36, 219–234, 2015.
Falco, N., Wainwright, H., Dafflon, B., Léger, E., Peterson, J., Stelzer, H., Wilmer, C., Rowland, J. C., Williams, K. H., and Hubbard, S. S.: Remote sensing and geophysical characterization
of a floodplain-hillslope system in the East River watershed, Colorado.
Watershed Functionality Scientific Focus Area, 2019.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope hydrology in global change research and Earth system
modeling, Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Feilhauer, H., Asner, G. P., and Martin, R. E.: Multi-method ensemble
selection of spectral bands related to leaf biochemistry, Remote Sens.
Environ., 164, 57–65, https://doi.org/10.1016/j.rse.2015.03.033, 2015.
Flugel, W. A.: Combining GIS with regional hydrological modelling
usinghydrological response units (HRUs): An application from
Germany, Math. Comput. Simulat., 43,
297e304, https://doi.org/10.1016/S0378-4754(97)00013-X, 1997.
Foster, L. M., Williams, K. H., and Maxwell, R. M.: Resolution matters when
modeling climate change in headwaters of the Colorado River, Environ.
Res. Lett., 15, 104031, https://doi.org/10.1088/1748-9326/aba77f, 2020.
Gaskill, D. L., Mutschler, F. E., Kramer, J. H., Thomas, J. A., and Zahony, S. G.:
USGS Geologic map of the Gothic Quadrangle, Gunnison County, Colorado, https://doi.org/10.3133/gq1689, 1991.
Gillin, C. P., Bailey, S. W., McGuire, K. J., and Gannon, J. P.: Mapping of
hydropedologic spatial patterns in a steep headwater catchment, Soil Sci.
Soc. Am. J., 79, 440, https://doi.org/10.2136/sssaj2014.05.0189, 2015.
Green, G. N.: The Digital Geologic Map of Colorado in ARC/INFO Format: U.S.
Geological Survey Open-File Report 92-0507, 9 pp., available at:
http://pubs.usgs.gov/of/1992/ofr-92-0507 (last access: 20 January 2022), 1992.
Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C. and Vidon, P.: Challenges to incorporating
spatially and temporally explicit phenomena (hotspots and hot moments) in
denitrification models, Biogeochemistry, 93, 49–77, 2009.
Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of statistical
learning: data mining, inference, and prediction, Springer, New York, USA, ISBN-13 978-0387848570,
2001.
Hermes, A. L., Wainwright, H. M., Wigmore, O. H., Falco, N., Molotch, N.,
and Hinckley, E. L. S.: From patch to catchment: A statistical framework to
identify and map soil moisture patterns across complex alpine terrain,
Front. Water, 2, 48, https://doi.org/10.3389/frwa.2020.578602, 2020.
Hinckley, E.-L. S., Barnes, R. T., Anderson, S. P., Williams, M. W., and
Bernasconi, S. M.: Nitrogen retention and transport differ by hillslope aspect at
the rain-snow transition of the Colorado Front Range, J. Geophys. Res.-Biogeo., 119, 1281–1296, https://doi.org/10.1002/2013JG002588, 2014.
Högberg, P., Johannisson, C., Yarwood, S., Callesen, I., Näsholm,
T., Myrold, D. D., and Högberg, M. N.: Recovery of ectomycorrhiza after
“nitrogen saturation” of a conifer forest, New Phytologist, 189, 515–525,
2011.
Homer, C. H., Fry, J. A., and Barnes, C. A.: The national land cover database, US Geological Survey Fact Sheet, 3020, 1–4, 2012.
Houlton, B. Z., Morford, S. L., and Dahlgren, R. A.: Convergent evidence
for widespread rock nitrogen sources in Earth's surface environment,
Science, 360, 58–62, 2018.
Hubbard, S. S., Gangodagamage, C., Dafflon, B., Wainwright, H., Peterson, J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J. and Tweedie, C.: Quantifying and relating
land-surface and subsurface variability in permafrost environments using
LiDAR and surface geophysical datasets, Hydrogeol. J., 21,
149–169, 2013.
Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., Dafflon, B., Dwivedi, D., Falco, N.,
Faybishenko, F., Maxwell, R., Nico, P., Steefel, C., Steltzer, H., Tokunaga, T., Tran, P. A., Wainwright, H., and Varadharajan, C.: The East River, Colorado, Watershed: A
mountainous community testbed for improving predictive understanding of
multiscale hydrological–biogeochemical dynamics, Vadose Zone J.,
17, 1–25, 2018.
Hubbard, S. S., Varadharajan, C., Wu, Y., Wainwright, H., and Dwivedi, D.:
Emerging technologies and radical collaboration to advance predictive
understanding of watershed hydrobiogeochemistry, Hydrol. Process.,
34, 3175–3182, 2020.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K.
E., and Marshall, L. A.: Hydrologic connectivity between landscapes and
streams: Transferring reach-and plot-scale understanding to the catchment
scale, Water Resour. Res., 45, https://doi.org/10.1029/2008WR007225, 2009.
Kassambara, A.: Practical guide to cluster analysis in R: Unsupervised
machine learning, vol. 1, Sthda, ISBN-13 978-1542462709, 2017.
Krause, S., Freer, J., Hannah, D., Howden, N., Wagener, T., and Worrall, F.:
Catchment similarity concepts for understanding dynamic biogeochemical
behavior of river basins, Hydrol. Process., 28, 1554–1560,
https://doi.org/10.1002/hyp.10093, 2014.
Köchy, M. and Wilson, S. D.: Litter decomposition and nitrogen
dynamics in aspen forest and mixed-grass prairie, Ecology, 78, 732–739,
1997.
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017.
Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., and Jin, L.: Expanding the role of reactive transport models in
critical zone processes, Earth-Sci. Rev., 165, 280–301, 2017.
Lintern, A., Webb, J. A., Ryu, D., Liu, S., Waters, D., Leahy, P., Bende-Michl, U., and Western, A. W.: What are the key catchment characteristics affecting spatial
differences in riverine water quality?, Water Resour. Res., 54,
7252–7272, 2018.
Maavara, T., Siirila-Woodburn, E. R., Maina, F., Maxwell, R. M., Sample, J. E., Chadwick, K. D., Carroll, R., Newcomer, M. E., Dong, W., Williams, K. H., and Steefel, C. I.: Modeling geogenic and atmospheric nitrogen
through the East River Watershed, Colorado Rocky Mountains, PLOS ONE, 16, e0247907, https://doi.org/10.1371/journal.pone.0247907, 2021.
Madritch, M. D., Kingdon, C. C., Singh, A., Mock, K. E., Lindroth, R. L.,
and Townsend, P. A.: Imaging spectroscopy links aspen genotype with
below-ground processes at landscape scales, Philos. T.
Roy. Soc. B, 369, 20130194, https://doi.org/10.1098/rstb.2013.0194, 2014.
Maina, F. Z. and Siirila-Woodburn, E. R.: Watersheds dynamics following
wildfires: Nonlinear feedbacks and implications on hydrologic responses,
Hydrol. Process., 34, 33–50, 2020.
Mathworks: MATLAB R2021a, Mathworks [code], available at: http://www.mathworks.com, last access: 20 January 2022.
Maxwell, R. M. and Kollet, S. J.: Quantifying the effects of
three-dimensional subsurface heterogeneity on Hortonian runoff processes
using a coupled numerical, stochastic approach, Adv. Water Resour., 31,
807–817, https://doi.org/10.1016/j.advwatres.2008.01.020,
2008.
Minsley, B. J. and Ball, L. B.: Airborne geophysical characterization of
geologic structure in a mountain headwater system, 7th International
Workshop on Airborne Electromagnetics, 17–20 June 2018, Kolding, Denmark, available at: https://pubs.er.usgs.gov/publication/70217684 (last access: 22 January 2022), 2018.
McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M. L., and Selker, J.: Moving beyond heterogeneity and process complexity: A new
vision for watershed hydrology, Water Resour. Res., 43, W07301,
https://doi.org/10.1029/2006wr005467, 2007.
Mohanty, B. P., Famiglietti, J. S., and Skaggs, T. H.: Evolution of soil
moisture spatial structure in a mixed vegetation pixel during the Southern
Great Plains 1997 (SGP97) Hydrology Experiment, Water Resour. Res.,
36, 3675–3686, https://doi.org/10.1029/2000WR900258, 2000.
Montgomery, D. R.: Slope distributions, threshold hillslopes, and
steady-state topography, Am. J. Sci., 301, 432–454,
2001.
Neuman, S. P.: Maximum likelihood Bayesian averaging of uncertain model
predictions, Stoch. Env. Res. Risk A., 17,
291–305, 2003.
Newcomer, M. E., Bouskill, N. J., Wainwright, H., Maavara, T., Arora, B., Siirila-Woodburn, E. R., Dwivedi, D., Williams, K. H., Steefel, C., and Hubbard, S. S.: Hysteresis Patterns of Watershed Nitrogen
Retention and Loss over the past 50 years in United States Hydrological
Basins, Global Biogeochem. Cycles, 35, e2020GB006777, https://doi.org/10.1029/2020GB006777, 2021.
Noël, P., Rousseau, A. N., Paniconi, C., and Nadeau, D. F.: Algorithm
for delineating and extracting hillslopes and hillslope width functions from
gridded elevation data, J. Hydrol. Eng., 19, 366–374,
2014.
Painter, T.: ASO L4 Lidar Snow Water Equivalent 50m UTM Grid, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/M4TUH28NHL4Z, 2018.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., and Mattmann, C.: The Airborne Snow Observatory: Fusion
of scanning lidar, imaging spectrometer, and physically-based modeling for
mapping snow water equivalent and snow albedo, Remote Sens.
Environ., 184, 139–152, 2016.
Park, S. J. and Van De Giesen, N.: Soil–landscape delineation to define
spatial sampling domains for hillslope hydrology, J. Hydrol.,
295, 28–46, 2004.
Patton, N. R., Lohse, K. A., Godsey, S. E., Crosby, B. T., and Seyfried, M.
S.: Predicting soil thickness on soil mantled hillslopes, Nat.
Commun., 9, 1–10, 2018.
Pelletier, J., Barron-Gafford, G. A., Gutiérrez‐Jurado, H., Hinckley, E. L. S., Istanbulluoglu, E., McGuire, L. A., Niu, G. Y., Poulos, M. J., Rasmussen, C., Richardson, P., Swetnam, T. L., and Tucker, G. E.: Which way do you lean? Using slope aspect variations
to understand Critical Zone processes and feedbacks, Earth Surf. Process. Landf., 43, 1133–1154, https://doi.org/10.1002/esp.4306, 2018.
Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C.: A review ofspatial
downscaling of satellite remotelysensed soil moisture, Rev. Geophys., 55,
341–366, https://doi.org/10.1002/2016RG000543, 2017.
Peters-Lidard, C. D., Clark, M., Samaniego, L., Verhoest, N. E. C., van Emmerik, T., Uijlenhoet, R., Achieng, K., Franz, T. E., and Woods, R.: Scaling, similarity, and the fourth paradigm for hydrology, Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, 2017.
Prancevic, J. and Kirchner, J.: Topographic Controls on the Extension and
Retraction of Flowing Streams, Geophys. Res. Lett., 46, 2084–2092,
https://doi.org/10.1029/2018gl081799, 2019.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [code], ISBN 3-900051-07-0, available at: http://www.R-project.org/ (last access: 26 January 2022), 2013.
Rempe, D. M. and Dietritch, W. E.: Direct observations of rock moisture, a
hidden component of the hydrologic cycle, P. Natl.
Acad. Sci. USA, 115, 2664–2669, 2018.
Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R.,
Costa, L. D. F., and Rodrigues, F. A.: Clustering algorithms: A comparative
approach, PloS One, 14, e0210236, https://doi.org/10.1371/journal.pone.0210236, 2019.
Rogers, D. B., Newcomer, M. E., Raberg, J. H., Dwivedi, D., Steefel, C., Bouskill, N., Nico, P., Faybishenko, B., Fox, P., Conrad, M., and Bill, M.: Modeling the Impact of Riparian Hollows on River
Corridor Nitrogen Exports, Front. Water, 3, 590314, https://doi.org/10.3389/frwa.2021.590314, 2021.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, https://doi.org/10.5194/hess-15-2895-2011, 2011.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E.: mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8, 289–317, https://doi.org/10.32614/RJ-2016-021, 2016 (code available at: https://mclust-org.github.io/mclust/, last access: 26 January 2022).
Selby, M. J.: Rock slopes, in: Slope
Stability, edtied by: Anderson, M. G. and Richards, K. S., Chichester, John Wiley & Sons, 475–504, 1987.
Sickman, J. O., Melack, J. M., and Stoddard, J. L.: Regional analysis of
inorganic nitrogen yield and retention in high-elevation ecosystems of the
Sierra Nevada and Rocky Mountains, in: The Nitrogen Cycle at Regional to Global Scales, Springer, Dordrecht, 341–374,
2002.
Sivapalan, M.: Pattern, process and function: elements of a unified theory
of hydrology at the catchment scale, Encyclopedia of hydrological sciences, https://doi.org/10.1002/0470848944.hsa012, 2006.
Sollins, P. and McCorison, F. M.: Nitrogen and carbon solution chemistry
of an old growth coniferous forest watershed before and after cutting,
Water Resour. Res., 17, 1409–1418, 1981.
St. Clair, J. S., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., Carr, B., Harman, C., Singha, K. D., and Richter, D. D.: Geophysical imaging reveals
topographic stress control of bedrock weathering, Science, 350,
534–538, 2015.
Thompson, S. E., Harman, C. J., Troch, P. A., Brooks, P. D., and Sivapalan, M.:
Spatial scale dependence of ecohydrologically mediated water balance
partitioning: A synthesis framework for catchment ecohydrology, Water
Resour. Res., 47, W00J03, https://doi.org/10.1029/2010WR009998, 2011.
Tokunaga, T. K., Wan, J., Williams, K. H., Brown, W., Henderson, A., Kim, Y., Tran, A. P., Conrad, M. E., Bill, M., Carroll, R. W., and Dong, W.: Depth-and time-resolved distributions of
snowmelt-driven hillslope subsurface flow and transport and their
contributions to surface waters, Water Resour. Res., 55,
9474–9499, 2019.
Uhlemann, S., Dafflon, B., Wainwright, H. M., Williams, K. H., Minsley, B.,
Zamudio, K., Carr, B., Falco, N., Ulrich, C., and Hubbard, S.: Shale bedrock variability
correlates with surface morphology and vegetation distribution, and controls
hydraulic properties, Sci. Adv., in review, 2022.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification
and Hydrologic Similarity, Geogr. Compass., 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007.
Wainwright, H. M., Dafflon, B., Smith, L. J., Hahn, M. S., Curtis, J. B., Wu, Y., Ulrich, C., Peterson, J. E., Torn, M. S., and Hubbard, S. S.: Identifying multiscale zonation and
assessing the relative importance of polygon geomorphology on carbon fluxes
in an Arctic tundra ecosystem, J. Geophys. Res.-Biogeo., 120, 788–808, 2015.
Wainwright, H. M., Steefel, C., Trutner, S. D., Henderson, A. N., Nikolopoulos, E. I., Wilmer, C. F., Chadwick, K. D., Falco, N., Schaettle, K. B., Brown, J. B., Steltzer, H., Williams, K. H., and Enquist, B. J.: Satellite-derived
foresummer drought sensitivity of plant productivity in Rocky Mountain
headwater catchments: spatial heterogeneity and geological-geomorphological
control, Environ. Res. Lett., 15, 084018, https://doi.org/10.1088/1748-9326/ab8fd0, 2020.
Wainwright, H., Uhlemann, S., Franklin, M., Falco, N., Bouskill, N., Newcomer, M., Dafflon, B., Woodburn, E., Minsley, B., Williams, K., and Hubbard, S.: Data used in Wainwright, H. M. et al. 2021, “Watershed zonation through hillslope clustering for tractably quantifying above- and belowground watershed heterogeneity and functions”, Watershed Function SFA, ESS-DIVE repository [data set], https://doi.org/10.15485/1841262, last access: 20 January 2022.
Wan, J., Tokunaga, T. K., Williams, K. H., Dong, W., Brown, W., Henderson, A. N., Newman, A. W., and Hubbard, S. S.: Predicting sedimentary bedrock subsurface
weathering fronts and weathering rates, Sci. Rep.-UK, 9, 1–10,
2019.
Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: Effects of spatial
variability and scale with implications to hydrologic modeling, J.
Hydrol., 102, 29–47, 1988.
Yan, Q., Wainwright, H., Dafflon, B., Uhlemann, S., Steefel, C. I., Falco, N., Kwang, J., and Hubbard, S. S.: A hybrid data–model approach to map soil thickness in mountain hillslopes, Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, 2021.
Ye, M., Meyer, P. D., Lin, Y. F., and Neuman, S. P.: Quantification of
model uncertainty in environmental modeling, Stoch. Environ.
Res. Risk A., 24, 807–808, 2010.
Zamudio, K. D., Minsley, B. J., and Ball, L. B: Airborne electromagnetic,
magnetic, and radiometric survey, upper East River and surrounding
watersheds near Crested Butte, Colorado, 2017, U.S. Geological Survey,
https://doi.org/10.5066/P949ZCZ8, 2020.
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
This paper has developed a tractable approach for characterizing watershed heterogeneity and its...