Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Sebastian Uhlemann
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Maya Franklin
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Nicola Falco
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Nicholas J. Bouskill
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Michelle E. Newcomer
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Baptiste Dafflon
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Erica R. Siirila-Woodburn
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Burke J. Minsley
U.S. Geological Survey, Denver, CO 80225, USA
Kenneth H. Williams
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
Susan S. Hubbard
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Related authors
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Gautam Bisht, William J. Riley, Haruko M. Wainwright, Baptiste Dafflon, Fengming Yuan, and Vladimir E. Romanovsky
Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018, https://doi.org/10.5194/gmd-11-61-2018, 2018
Short summary
Short summary
The land model integrated into the Energy Exascale Earth System Model was extended to include snow redistribution (SR) and lateral subsurface hydrologic and thermal processes. Simulation results at a polygonal tundra site near Barrow, Alaska, showed that inclusion of SR resulted in a better agreement with observations. Excluding lateral subsurface processes had a small impact on mean states but caused a large overestimation of spatial variability in soil moisture and temperature.
Haruko M. Wainwright, Anna K. Liljedahl, Baptiste Dafflon, Craig Ulrich, John E. Peterson, Alessio Gusmeroli, and Susan S. Hubbard
The Cryosphere, 11, 857–875, https://doi.org/10.5194/tc-11-857-2017, https://doi.org/10.5194/tc-11-857-2017, 2017
Short summary
Short summary
Snow has a profound impact on permafrost and ecosystem functioning in the Arctic tundra. This paper aims to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. In addition, we develop a Bayesian geostatistical method to integrate multiscale observational platforms (a snow probe, ground penetrating radar, unmanned aerial system and airborne lidar) for estimating snow depth in high resolution over a large area.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2024-2249, https://doi.org/10.5194/egusphere-2024-2249, 2024
Short summary
Short summary
Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. In this work, we develop an approach to predict snow depth from variability in snow-ground interface temperature using small temperature sensors that are cheap and easy-to-deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that was not previously possible.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Max Berkelhammer, Gerald F. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carter, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark Raleigh, Eric Small, and Kenneth H. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-3063, https://doi.org/10.5194/egusphere-2023-3063, 2024
Short summary
Short summary
Warming in montane systems is affecting the amount of snowmelt inputs. This will affect subalpine forests globally that rely on spring snowmelt to support their water demands. We use a network of sensors across in the Upper Colorado Basin to show that changing spring primarily impacts dense forest stands that have high peak water demands. On the other hand, open forest stands show a higher reliance on summer rain and were minimally sensitive to even historically low snow conditions like 2019.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022, https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Short summary
In this work, we assess the effects of end-of-century extreme dry and wet conditions on the hydrology of California. Our results, derived from cutting-edge and high-resolution climate and hydrologic models, highlight that (1) water storage will be larger and increase earlier in the year, yet the summer streamflow will decrease as a result of high evapotranspiration rates, and that (2) groundwater and lower-order streams are very sensitive to decreases in snowmelt and higher evapotranspiration.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Fadji Z. Maina, Erica R. Siirila-Woodburn, and Pouya Vahmani
Hydrol. Earth Syst. Sci., 24, 3451–3474, https://doi.org/10.5194/hess-24-3451-2020, https://doi.org/10.5194/hess-24-3451-2020, 2020
Short summary
Short summary
Projecting the changes in water resources under a no-analog future climate requires integrated hydrologic models. However, these models are plagued by several sources of uncertainty. A hydrologic model was forced with various resolutions of meteorological forcing (0.5 to 40.5 km) to assess its sensitivity to these inputs. We show that most hydrologic variables reveal biases that are seasonally and spatially dependent, which can have serious implications for calibration and water management.
Nathan A. Wales, Jesus D. Gomez-Velez, Brent D. Newman, Cathy J. Wilson, Baptiste Dafflon, Timothy J. Kneafsey, Florian Soom, and Stan D. Wullschleger
Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, https://doi.org/10.5194/hess-24-1109-2020, 2020
Short summary
Short summary
Rapid warming in the Arctic is causing increased permafrost temperatures and ground ice degradation. To study the effects of ice degradation on water distribution, tracer was applied to two end members of ice-wedge polygons – a ubiquitous landform in the Arctic. End member type was found to significantly affect water distribution as lower flux was observed with ice-wedge degradation. Results suggest ice degradation can influence partitioning of sequestered carbon as carbon dioxide or methane.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Nicola Cenni, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
SOIL, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020, https://doi.org/10.5194/soil-6-95-2020, 2020
Short summary
Short summary
The use of non-invasive geophysical imaging of root system processes is of increasing interest to study soil–plant interactions. The experiment focused on the behaviour of grapevine plants during a controlled infiltration experiment. The combination of the mise-à-la-masse (MALM) method, a variation of the classical electrical tomography map (ERT), for which the current is transmitted directly into the stem, holds the promise of being able to image root distribution.
Elchin E. Jafarov, Dylan R. Harp, Ethan T. Coon, Baptiste Dafflon, Anh Phuong Tran, Adam L. Atchley, Youzuo Lin, and Cathy J. Wilson
The Cryosphere, 14, 77–91, https://doi.org/10.5194/tc-14-77-2020, https://doi.org/10.5194/tc-14-77-2020, 2020
Short summary
Short summary
Improved subsurface parameterization and benchmarking data are needed to reduce current uncertainty in predicting permafrost response to a warming climate. We developed a subsurface parameter estimation framework that can be used to estimate soil properties where subsurface data are available. We utilize diverse geophysical datasets such as electrical resistance data, soil moisture data, and soil temperature data to recover soil porosity and soil thermal conductivity.
Emmanuel Léger, Baptiste Dafflon, Yves Robert, Craig Ulrich, John E. Peterson, Sébastien C. Biraud, Vladimir E. Romanovsky, and Susan S. Hubbard
The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019, https://doi.org/10.5194/tc-13-2853-2019, 2019
Short summary
Short summary
We propose a new strategy called distributed temperature profiling (DTP) for improving the estimation of soil thermal properties through the use of an unprecedented number of laterally and vertically distributed temperature measurements. We tested a DTP system prototype by moving it sequentially across a discontinuous permafrost environment. The DTP enabled high-resolution identification of near-surface permafrost location and covariability with topography, vegetation, and soil properties.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, https://doi.org/10.5194/hess-22-5427-2018, 2018
Gautam Bisht, William J. Riley, Haruko M. Wainwright, Baptiste Dafflon, Fengming Yuan, and Vladimir E. Romanovsky
Geosci. Model Dev., 11, 61–76, https://doi.org/10.5194/gmd-11-61-2018, https://doi.org/10.5194/gmd-11-61-2018, 2018
Short summary
Short summary
The land model integrated into the Energy Exascale Earth System Model was extended to include snow redistribution (SR) and lateral subsurface hydrologic and thermal processes. Simulation results at a polygonal tundra site near Barrow, Alaska, showed that inclusion of SR resulted in a better agreement with observations. Excluding lateral subsurface processes had a small impact on mean states but caused a large overestimation of spatial variability in soil moisture and temperature.
M. Andy Kass, Trevor P. Irons, Burke J. Minsley, Neal J. Pastick, Dana R. N. Brown, and Bruce K. Wylie
The Cryosphere, 11, 2943–2955, https://doi.org/10.5194/tc-11-2943-2017, https://doi.org/10.5194/tc-11-2943-2017, 2017
Short summary
Short summary
Geophysical methods have wide applications to permafrost studies. We show that borehole nuclear magnetic resonance is a valuable geophysical tool to rapidly characterize the liquid water content and unfrozen pore space in warm permafrost through simulation and field study. This technique is also sensitive to the ice nucleation process in situ. This method, which is applicable in a variety of soil types, can be used for single observations or for time-lapse monitoring of permafrost changes.
Anh Phuong Tran, Baptiste Dafflon, and Susan S. Hubbard
The Cryosphere, 11, 2089–2109, https://doi.org/10.5194/tc-11-2089-2017, https://doi.org/10.5194/tc-11-2089-2017, 2017
Short summary
Short summary
Soil organics carbon (SOC) and its influence on terrestrial ecosystem feedbacks to global warming in permafrost regions are particularly important for the prediction of future climate variation. Our study proposes a new surface–subsurface, joint deterministic–stochastic hydrological–thermal–geophysical inversion approach and documents the benefit of including multiple types of data to estimate the vertical profile of SOC content and its influence on hydrological–thermal dynamics.
Nicholas J. Bouskill, Mark E. Conrad, Markus Bill, Eoin L. Brodie, Yiwei Cheng, Chad Hobson, Matthew Forbes, Karen L. Casciotti, and Kenneth H. Williams
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-212, https://doi.org/10.5194/bg-2017-212, 2017
Preprint retracted
Short summary
Short summary
This work couples isotope geochemical techniques with mechanistic microbial modeling in an attempt to further unravel the major factors responsible for an observed reduction in nitrate concomitant with a rising water table within floodplain sediments. We focus on 3 depths below ground surface with different periods of saturation and varying degrees of microbial nitrate loss. Using a microbial model we identify the controlling factors on denitrification responsible for these differences.
Haruko M. Wainwright, Anna K. Liljedahl, Baptiste Dafflon, Craig Ulrich, John E. Peterson, Alessio Gusmeroli, and Susan S. Hubbard
The Cryosphere, 11, 857–875, https://doi.org/10.5194/tc-11-857-2017, https://doi.org/10.5194/tc-11-857-2017, 2017
Short summary
Short summary
Snow has a profound impact on permafrost and ecosystem functioning in the Arctic tundra. This paper aims to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. In addition, we develop a Bayesian geostatistical method to integrate multiscale observational platforms (a snow probe, ground penetrating radar, unmanned aerial system and airborne lidar) for estimating snow depth in high resolution over a large area.
Anh Phuong Tran, Baptiste Dafflon, Susan S. Hubbard, Michael B. Kowalsky, Philip Long, Tetsu K. Tokunaga, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 20, 3477–3491, https://doi.org/10.5194/hess-20-3477-2016, https://doi.org/10.5194/hess-20-3477-2016, 2016
Short summary
Short summary
Quantifying water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. This study developed and tested a new inversion scheme to estimate subsurface hydro-thermal parameters by joint using different hydrological, thermal and geophysical data. It is especially useful for the increasing number of studies that are taking advantage of autonomously collected measurements to explore ecosystem dynamics.
B. J. Minsley, T. P. Wellman, M. A. Walvoord, and A. Revil
The Cryosphere, 9, 781–794, https://doi.org/10.5194/tc-9-781-2015, https://doi.org/10.5194/tc-9-781-2015, 2015
N. J. Bouskill, W. J. Riley, and J. Y. Tang
Biogeosciences, 11, 6969–6983, https://doi.org/10.5194/bg-11-6969-2014, https://doi.org/10.5194/bg-11-6969-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Sediment transport in South Asian rivers high enough to impact satellite gravimetry
On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes
Pairing remote sensing and clustering in landscape hydrology for large-scale change identification: an application to the subarctic watershed of the George River (Nunavik, Canada)
Uncertainty assessment of satellite remote-sensing-based evapotranspiration estimates: a systematic review of methods and gaps
Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin
Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 synthetic aperture radar (SAR) time series
Climatic and anthropogenic drivers of a drying Himalayan river
On the selection of precipitation products for the regionalisation of hydrological model parameters
Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model
Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data
Using hydrological and climatic catchment clusters to explore drivers of catchment behavior
Using MODIS estimates of fractional snow cover area to improve streamflow forecasts in interior Alaska
Informing a hydrological model of the Ogooué with multi-mission remote sensing data
Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India
Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach
A method to employ the spatial organization of catchments into semi-distributed rainfall–runoff models
Multi-source hydrological soil moisture state estimation using data fusion optimisation
Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile
Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion
Using object-based geomorphometry for hydro-geomorphological analysis in a Mediterranean research catchment
Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model
Case-based knowledge formalization and reasoning method for digital terrain analysis – application to extracting drainage networks
Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations
Vegetative impacts upon bedload transport capacity and channel stability for differing alluvial planforms in the Yellow River source zone
Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations
Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes
Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling
Relating seasonal dynamics of enhanced vegetation index to the recycling of water in two endorheic river basins in north-west China
Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China
GRACE storage-runoff hystereses reveal the dynamics of regional watersheds
Impacts of high inter-annual variability of rainfall on a century of extreme hydrologic regime of northwest Australia
Identification of catchment functional units by time series of thermal remote sensing images
Flow regime change in an endorheic basin in southern Ethiopia
Evaluating digital terrain indices for soil wetness mapping – a Swedish case study
The suitability of remotely sensed soil moisture for improving operational flood forecasting
Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa
Operational reservoir inflow forecasting with radar altimetry: the Zambezi case study
Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances
Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt
Estimating water discharge from large radar altimetry datasets
Estimation of antecedent wetness conditions for flood modelling in northern Morocco
MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites
The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment
A soil moisture and temperature network for SMOS validation in Western Denmark
Classification and flow prediction in a data-scarce watershed of the equatorial Nile region
On the use of AMSU-based products for the description of soil water content at basin scale
Estimating flooded area and mean water level using active and passive microwaves: the example of Paraná River Delta floodplain
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024, https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
Short summary
Satellite data help estimate groundwater depletion, but earlier assessments missed mass loss from river sediment. In the Ganges–Brahmaputra–Meghna (GBM) river system, sediment accounts for 4 % of the depletion. Correcting for sediment in the GBM mountains reduces estimated depletion by 14 %. It's important to note that the Himalayas' uplift may offset some sediment-induced mass loss. This understanding is vital for accurate water storage trend assessments and sustainable groundwater management.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024, https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Short summary
For vast northern watersheds, hydrological data are often sparse and incomplete. Our study used remote sensing and clustering to produce classifications of the George River watershed (GRW). Results show two types of subwatersheds with different hydrological behaviors. The GRW experienced a homogenization of subwatershed types likely due to an increase in vegetation productivity, which could explain the measured decline of 1 % (~0.16 km3 y−1) in the George River’s discharge since the mid-1970s.
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023, https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
Short summary
Satellite data are increasingly used to estimate evapotranspiration (ET) or the amount of water moving from plants, soils, and water bodies into the atmosphere over large areas. Uncertainties from various sources affect the accuracy of these calculations. This study reviews the methods to assess the uncertainties of such ET estimations. It provides specific recommendations for a comprehensive assessment that assists in the potential uses of these data for research, monitoring, and management.
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022, https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Short summary
Monitoring extreme flood events has long been a hot topic for hydrologists and decision makers around the world. In this study, we propose a new index incorporating satellite observations combined with meteorological data to monitor extreme flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The conclusions drawn from this study provide important implications for flood hazard prevention and water resource management over this region.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022, https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Short summary
This study presents a better characterization of surface hydrology variability in the Congo River basin, the second largest river system in the world. We jointly use a large record of in situ and satellite-derived observations to monitor the spatial distribution and different timings of the Congo River basin's annual flood dynamic, including its peculiar bimodal pattern.
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022, https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Short summary
Prairie wetlands are important for biodiversity and water availability. Knowledge about their variability and spatial distribution is of great use in conservation and water resources management. In this study, we propose a novel approach for the classification of small water bodies from satellite radar images and apply it to our study area over 6 years. The retrieved dynamics show the different responses of small and large wetlands to dry and wet periods.
Gopal Penny, Zubair A. Dar, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 375–395, https://doi.org/10.5194/hess-26-375-2022, https://doi.org/10.5194/hess-26-375-2022, 2022
Short summary
Short summary
We develop an empirical approach to attribute declining streamflow in the Upper Jhelum watershed, a key subwatershed of the transboundary Indus basin. We find that a loss of streamflow since the year 2000 resulted primarily due to interactions among vegetation and groundwater in response to climate rather than local changes in land use, revealing the climate sensitivity of this Himalayan watershed.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Ulrike Falk and Adrián Silva-Busso
Hydrol. Earth Syst. Sci., 25, 3227–3244, https://doi.org/10.5194/hess-25-3227-2021, https://doi.org/10.5194/hess-25-3227-2021, 2021
Short summary
Short summary
This paper focuses on the groundwater flow aspects of a small hydrological catchment at the northern tip of the Antarctic Peninsula. This region has experienced drastic climatological changes in the recent past. The basin is representative for the rugged coastline of the peninsula. It is discussed as a case study for possible future evolution of similar basins further south. Results include a quantitative analysis of glacial and groundwater contribution to total discharge into coastal waters.
Rui Tong, Juraj Parajka, Andreas Salentinig, Isabella Pfeil, Jürgen Komma, Borbála Széles, Martin Kubáň, Peter Valent, Mariette Vreugdenhil, Wolfgang Wagner, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1389–1410, https://doi.org/10.5194/hess-25-1389-2021, https://doi.org/10.5194/hess-25-1389-2021, 2021
Short summary
Short summary
We used a new and experimental version of the Advanced Scatterometer (ASCAT) soil water index data set and Moderate Resolution Imaging Spectroradiometer (MODIS) C6 snow cover products for multiple objective calibrations of the TUWmodel in 213 catchments of Austria. Combined calibration to runoff, satellite soil moisture, and snow cover improves runoff (40 % catchments), soil moisture (80 % catchments), and snow (~ 100 % catchments) simulation compared to traditional calibration to runoff only.
Mo Zhang, Wenjiao Shi, and Ziwei Xu
Hydrol. Earth Syst. Sci., 24, 2505–2526, https://doi.org/10.5194/hess-24-2505-2020, https://doi.org/10.5194/hess-24-2505-2020, 2020
Short summary
Short summary
We systematically compared 45 models for direct and indirect soil texture classification and soil particle size fraction interpolation based on 5 machine-learning models and 3 log-ratio transformation methods. Random forest showed powerful performance in both classification of imbalanced data and regression assessment. Extreme gradient boosting is more meaningful and computationally efficient when dealing with large data sets. The indirect classification and log-ratio methods are recommended.
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary
Short summary
We grouped 643 rivers from the United States into 10 behavioral groups based on their hydrological behavior (e.g., how much water they transport overall). Those groups are aligned with the ecoregions in the United States. Depending on the groups’ location and other characteristics, either snow, aridity or seasonality is most important for the behavior of the rivers in a group. We also find that very similar river behavior can be found in rivers far apart and with different characteristics.
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Cecile M. M. Kittel, Karina Nielsen, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 1453–1472, https://doi.org/10.5194/hess-22-1453-2018, https://doi.org/10.5194/hess-22-1453-2018, 2018
Short summary
Short summary
In this study, we integrate free, global Earth observations in a user-friendly and flexible model to reliably characterize an otherwise unmonitored river basin. The proposed model is the best baseline characterization of the Ogooué basin in light of available observations. Furthermore, the study shows the potential of using new, publicly available Earth observations and a suitable model structure to obtain new information in poorly monitored or remote areas and to support user requirements.
Gopal Penny, Veena Srinivasan, Iryna Dronova, Sharachchandra Lele, and Sally Thompson
Hydrol. Earth Syst. Sci., 22, 595–610, https://doi.org/10.5194/hess-22-595-2018, https://doi.org/10.5194/hess-22-595-2018, 2018
Short summary
Short summary
Water resources in the Arkavathy watershed in southern India are changing due to human modification of the landscape, including changing agricultural practices and urbanization. We analyze surface water resources in man-made lakes in satellite imagery over a period of 4 decades and find drying in the northern part of the watershed (characterized by heavy agriculture) and wetting downstream of urban areas. Drying in the watershed is associated with groundwater-irrigated agriculture.
Gorka Mendiguren, Julian Koch, and Simon Stisen
Hydrol. Earth Syst. Sci., 21, 5987–6005, https://doi.org/10.5194/hess-21-5987-2017, https://doi.org/10.5194/hess-21-5987-2017, 2017
Short summary
Short summary
The present study is focused on the spatial pattern evaluation of two models and describes the similarities and dissimilarities. It also discusses the factors that generate these patterns and proposes similar new approaches to minimize the differences. The study points towards a new approach in which the spatial component of the hydrological model is also calibrated and taken into account.
Henning Oppel and Andreas Schumann
Hydrol. Earth Syst. Sci., 21, 4259–4282, https://doi.org/10.5194/hess-21-4259-2017, https://doi.org/10.5194/hess-21-4259-2017, 2017
Short summary
Short summary
How can we evaluate the heterogeneity of natural watersheds and how can we assess its spatial organization? How can we make use of this information for hydrological models and is it beneficial to our models? We propose a method display and assess the interaction of catchment characteristics with the flow path which we defined as the ordering scheme within a basin. A newly implemented algorithm brings this information to the set-up of a model and our results show an increase in model performance.
Lu Zhuo and Dawei Han
Hydrol. Earth Syst. Sci., 21, 3267–3285, https://doi.org/10.5194/hess-21-3267-2017, https://doi.org/10.5194/hess-21-3267-2017, 2017
Short summary
Short summary
Reliable estimation of hydrological soil moisture state is of critical importance in operational hydrology to improve the flood prediction and hydrological cycle description. This paper attempts for the first time to build a soil moisture product directly applicable to hydrology using multiple data sources retrieved from remote sensing and land surface modelling. The result shows a significant improvement of the soil moisture state accuracy; the method can be easily applied in other catchments.
Mauricio Zambrano-Bigiarini, Alexandra Nauditt, Christian Birkel, Koen Verbist, and Lars Ribbe
Hydrol. Earth Syst. Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, https://doi.org/10.5194/hess-21-1295-2017, 2017
Short summary
Short summary
This work exhaustively evaluates – for the first time – the suitability of seven state-of-the-art satellite-based rainfall estimates (SREs) over the complex topography and diverse climatic gradients of Chile.
Several indices of performance are used for different timescales and elevation zones. Our analysis reveals what SREs are in closer agreement to ground-based observations and what indices allow for understanding mismatches in shape, magnitude, variability and intensity of precipitation.
Yun Yang, Martha C. Anderson, Feng Gao, Christopher R. Hain, Kathryn A. Semmens, William P. Kustas, Asko Noormets, Randolph H. Wynne, Valerie A. Thomas, and Ge Sun
Hydrol. Earth Syst. Sci., 21, 1017–1037, https://doi.org/10.5194/hess-21-1017-2017, https://doi.org/10.5194/hess-21-1017-2017, 2017
Short summary
Short summary
This work explores the utility of a thermal remote sensing based MODIS/Landsat ET data fusion procedure over a mixed forested/agricultural landscape in North Carolina, USA. The daily ET retrieved at 30 m resolution agreed well with measured fluxes in a clear-cut and a mature pine stand. An accounting of consumptive water use by land cover classes is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components.
Domenico Guida, Albina Cuomo, and Vincenzo Palmieri
Hydrol. Earth Syst. Sci., 20, 3493–3509, https://doi.org/10.5194/hess-20-3493-2016, https://doi.org/10.5194/hess-20-3493-2016, 2016
Short summary
Short summary
The authors apply an object-based geomorphometric procedure to define the runoff contribution areas. The results enabled us to identify the contribution area related to the different runoff components activated during the storm events through an advanced hydro-chemical analysis. This kind of approach could be useful applied to similar, rainfall-dominated, forested and no-karst Mediterranean catchments.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Cheng-Zhi Qin, Xue-Wei Wu, Jing-Chao Jiang, and A-Xing Zhu
Hydrol. Earth Syst. Sci., 20, 3379–3392, https://doi.org/10.5194/hess-20-3379-2016, https://doi.org/10.5194/hess-20-3379-2016, 2016
Short summary
Short summary
Application of digital terrain analysis (DTA), which is typically a modeling process involving workflow building, relies heavily on DTA domain knowledge. However, the DTA knowledge has not been formalized well to be available for inference in automatic tools. We propose a case-based methodology to solve this problem. This methodology can also be applied to other domains of geographical modeling with a similar situation.
Patricia López López, Niko Wanders, Jaap Schellekens, Luigi J. Renzullo, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, https://doi.org/10.5194/hess-20-3059-2016, 2016
Short summary
Short summary
We perform a joint assimilation experiment of high-resolution satellite soil moisture and discharge observations in the Murrumbidgee River basin with a large-scale hydrological model. Additionally, we study the impact of high- and low-resolution meteorological forcing on the model performance. We show that the assimilation of high-resolution satellite soil moisture and discharge observations has a significant impact on discharge simulations and can bring them closer to locally calibrated models.
Zhi Wei Li, Guo An Yu, Gary Brierley, and Zhao Yin Wang
Hydrol. Earth Syst. Sci., 20, 3013–3025, https://doi.org/10.5194/hess-20-3013-2016, https://doi.org/10.5194/hess-20-3013-2016, 2016
Short summary
Short summary
Influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching–braided to fully braided planform conditions along trunk and tributary reaches of the Yellow River source zone in western China. This innovative work reveals complex interactions between channel planform, bedload transport capacity, sediment supply in the flood season, and the hydraulic role of vegetation.
W. Qi, C. Zhang, G. Fu, C. Sweetapple, and H. Zhou
Hydrol. Earth Syst. Sci., 20, 903–920, https://doi.org/10.5194/hess-20-903-2016, https://doi.org/10.5194/hess-20-903-2016, 2016
Short summary
Short summary
Six precipitation products, including TRMM3B42, TRMM3B42RT, GLDAS/Noah, APHRODITE, PERSIANN, and GSMAP-MVK+, are investigated in the usually neglected area of NE China, and a framework is developed to quantify the contributions of uncertainties from precipitation products, hydrological models, and their interactions to uncertainty in simulated discharges. It is found that interactions between hydrological models and precipitation products contribute significantly to uncertainty in discharge.
A. Molina, V. Vanacker, E. Brisson, D. Mora, and V. Balthazar
Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, https://doi.org/10.5194/hess-19-4201-2015, 2015
Short summary
Short summary
Andean catchments play a key role in the provision of freshwater resources. The development of megacities in the inter-Andean valleys raises severe concerns about growing water scarcity. This study is one of the first long-term (1970s-now) analyses of the role of land cover and climate change on provision and regulation of streamflow in the tropical Andes. Forest conversion had the largest impact on streamflow, leading to a 10 % net decrease in streamflow over the last 40 years.
D. Shen, J. Wang, X. Cheng, Y. Rui, and S. Ye
Hydrol. Earth Syst. Sci., 19, 3605–3616, https://doi.org/10.5194/hess-19-3605-2015, https://doi.org/10.5194/hess-19-3605-2015, 2015
M. A. Matin and C. P.-A. Bourque
Hydrol. Earth Syst. Sci., 19, 3387–3403, https://doi.org/10.5194/hess-19-3387-2015, https://doi.org/10.5194/hess-19-3387-2015, 2015
Short summary
Short summary
This paper describes a methodology in analysing the interdependencies between components of the hydrological cycle and vegetation characteristics at different elevation zones of two endorheic river basins in an arid-mountainous region of NW China. The analysis shows that oasis vegetation has an important function in sustaining the water cycle in the river basins and oasis vegetation is dependent on surface and shallow subsurface water flow from mountain sources.
L. Hao, G. Sun, Y. Liu, J. Wan, M. Qin, H. Qian, C. Liu, J. Zheng, R. John, P. Fan, and J. Chen
Hydrol. Earth Syst. Sci., 19, 3319–3331, https://doi.org/10.5194/hess-19-3319-2015, https://doi.org/10.5194/hess-19-3319-2015, 2015
Short summary
Short summary
The role of land cover in affecting hydrologic and environmental changes in the humid region in southern China is not well studied. We found that high flows and low flows increased and evapotranspiration decreased due to urbanization in the Qinhuai River basin. Urbanization masked climate warming effects in a rice-paddy-dominated watershed in altering long-term hydrology. Flooding risks and heat island effects are expected to rise due to urbanization.
E. A. Sproles, S. G. Leibowitz, J. T. Reager, P. J. Wigington Jr, J. S. Famiglietti, and S. D. Patil
Hydrol. Earth Syst. Sci., 19, 3253–3272, https://doi.org/10.5194/hess-19-3253-2015, https://doi.org/10.5194/hess-19-3253-2015, 2015
Short summary
Short summary
The paper demonstrates how data from the Gravity Recovery and Climate Experiment (GRACE) can be used to describe the relationship between water stored at the regional scale and stream flow. Additionally, we employ GRACE as a regional-scale indicator to successfully predict stream flow later in the water year. Our work focuses on the Columbia River Basin (North America), but is widely applicable across the globe, and could prove to be particularly useful in regions with limited hydrological data.
A. Rouillard, G. Skrzypek, S. Dogramaci, C. Turney, and P. F. Grierson
Hydrol. Earth Syst. Sci., 19, 2057–2078, https://doi.org/10.5194/hess-19-2057-2015, https://doi.org/10.5194/hess-19-2057-2015, 2015
Short summary
Short summary
We reconstructed a 100-year monthly history of flooding and drought of a large wetland in arid northwest Australia, using hydroclimatic data calibrated against 25 years of satellite images. Severe and intense regional rainfall, as well as the sequence of events, determined surface water expression on the floodplain. While inter-annual variability was high, changes to the flood regime over the last 20 years suggest the wetland may become more persistent in response to the observed rainfall trend.
B. Müller, M. Bernhardt, and K. Schulz
Hydrol. Earth Syst. Sci., 18, 5345–5359, https://doi.org/10.5194/hess-18-5345-2014, https://doi.org/10.5194/hess-18-5345-2014, 2014
Short summary
Short summary
We present a method to define hydrological landscape units by a time series of thermal infrared satellite data. Land surface temperature is calculated for 28 images in 12 years for a catchment in Luxembourg. Pattern measures show spatio-temporal persistency; principle component analysis extracts relevant patterns. Functional units represent similar behaving entities based on a representative set of images. Resulting classification and patterns are discussed regarding potential applications.
F. F. Worku, M. Werner, N. Wright, P. van der Zaag, and S. S. Demissie
Hydrol. Earth Syst. Sci., 18, 3837–3853, https://doi.org/10.5194/hess-18-3837-2014, https://doi.org/10.5194/hess-18-3837-2014, 2014
A. M. Ågren, W. Lidberg, M. Strömgren, J. Ogilvie, and P. A. Arp
Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, https://doi.org/10.5194/hess-18-3623-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
J. K. Kiptala, M. L. Mul, Y. A. Mohamed, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 2287–2303, https://doi.org/10.5194/hess-18-2287-2014, https://doi.org/10.5194/hess-18-2287-2014, 2014
C. I. Michailovsky and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, https://doi.org/10.5194/hess-18-997-2014, 2014
T. Conradt, F. Wechsung, and A. Bronstert
Hydrol. Earth Syst. Sci., 17, 2947–2966, https://doi.org/10.5194/hess-17-2947-2013, https://doi.org/10.5194/hess-17-2947-2013, 2013
M. El Bastawesy, R. Ramadan Ali, A. Faid, and M. El Osta
Hydrol. Earth Syst. Sci., 17, 1493–1501, https://doi.org/10.5194/hess-17-1493-2013, https://doi.org/10.5194/hess-17-1493-2013, 2013
A. C. V. Getirana and C. Peters-Lidard
Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, https://doi.org/10.5194/hess-17-923-2013, 2013
Y. Tramblay, R. Bouaicha, L. Brocca, W. Dorigo, C. Bouvier, S. Camici, and E. Servat
Hydrol. Earth Syst. Sci., 16, 4375–4386, https://doi.org/10.5194/hess-16-4375-2012, https://doi.org/10.5194/hess-16-4375-2012, 2012
J. Parajka, L. Holko, Z. Kostka, and G. Blöschl
Hydrol. Earth Syst. Sci., 16, 2365–2377, https://doi.org/10.5194/hess-16-2365-2012, https://doi.org/10.5194/hess-16-2365-2012, 2012
S. Peischl, J. P. Walker, C. Rüdiger, N. Ye, Y. H. Kerr, E. Kim, R. Bandara, and M. Allahmoradi
Hydrol. Earth Syst. Sci., 16, 1697–1708, https://doi.org/10.5194/hess-16-1697-2012, https://doi.org/10.5194/hess-16-1697-2012, 2012
S. Bircher, N. Skou, K. H. Jensen, J. P. Walker, and L. Rasmussen
Hydrol. Earth Syst. Sci., 16, 1445–1463, https://doi.org/10.5194/hess-16-1445-2012, https://doi.org/10.5194/hess-16-1445-2012, 2012
J.-M. Kileshye Onema, A. E. Taigbenu, and J. Ndiritu
Hydrol. Earth Syst. Sci., 16, 1435–1443, https://doi.org/10.5194/hess-16-1435-2012, https://doi.org/10.5194/hess-16-1435-2012, 2012
S. Manfreda, T. Lacava, B. Onorati, N. Pergola, M. Di Leo, M. R. Margiotta, and V. Tramutoli
Hydrol. Earth Syst. Sci., 15, 2839–2852, https://doi.org/10.5194/hess-15-2839-2011, https://doi.org/10.5194/hess-15-2839-2011, 2011
M. Salvia, F. Grings, P. Ferrazzoli, V. Barraza, V. Douna, P. Perna, C. Bruscantini, and H. Karszenbaum
Hydrol. Earth Syst. Sci., 15, 2679–2692, https://doi.org/10.5194/hess-15-2679-2011, https://doi.org/10.5194/hess-15-2679-2011, 2011
Cited articles
Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I.: Nitrogen saturation in temperate forest ecosystems,
BioScience, 48, 921–934, https://doi.org/10.2307/1313296,
1998.
Abrahamsen, G. and Stuanes, A. O.: Retention and leaching of N in
Norwegian coniferous forests, Nutr. Cycl. Agroecosyst., 52,
171–178, 1998.
Anderson, B. T., McNamara, J. P., Marshall, H. P., and Flores, A. N.:
Insights into the physical processes controlling correlations between snow
distribution and terrain properties, Water Resour. Res., 50,
4545–4563, 2014.
Arora, B., Burrus, M., Newcomer, M. E., Steefel, C. I., Carroll, R. W. H., Dwivedi, D., Dong, W., Williams., K. H., and Hubbard, S. S.: Differential C-Q Analysis: A New Approach to Inferring
Lateral Transport and Hydrologic Transients Within Multiple Reaches of a
Mountainous Headwater Catchment, Frontiers in Water, 2, 24, https://doi.org/10.3389/frwa.2020.00024, 2020.
Asner, G. P., Martin, R. E., Anderson, C. B., and Knapp, D. E.: Quantifying
forest canopy traits: Imaging spectroscopy versus field survey, Remote
Sens. Environ., 158, 15–27, https://doi.org/10.1016/j.rse.2014.11.011, 2015.
Aytaç, E.: Unsupervised learning approach in defining the similarity of
catchments: Hydrological response unit based k-means clustering, a
demonstration on Western Black Sea Region of Turkey, Int. Soil
Water Conserv. Res., 8, 321–331, 2020
Ball, L. B., Davis, T. A., Minsley, B. J., Gillespie, J. M., and Landon, M.
K.: Probabilistic categorical groundwater salinity mapping from airborne
electromagnetic data adjacent to California's Lost Hills and Belridge oil
fields, Water Resour. Res., 56, e2019WR026273, https://doi.org/10.1029/2019WR026273, 2020.
Band, L. E.: Spatial aggregation of complex terrain, Geogr. Anal.,
21, 279–293, 1989.
Band, L. E., Peterson, D. L., Running, S. W., Coughlan, J., Lammers, R.,
Dungan, J., and Nemani, R.: Forest ecosystem processes at the watershed
scale: basis for distributed simulation, Ecol. Model., 56, 171–196,
1991.
Band, L. E., Patterson, P., Nemani, R., and Running, S. W.: Forest
ecosystem processes at the watershed scale: incorporating hillslope
hydrology, Agric. Forest Meteorol., 63, 93–126, 1993.
Barfod, A. A. S., Møller, I., Christiansen, A. V., Høyer, A.-S., Hoffimann, J., Straubhaar, J., and Caers, J.: Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods, Hydrol. Earth Syst. Sci., 22, 3351–3373, https://doi.org/10.5194/hess-22-3351-2018, 2018.
Brantley, S. L., McDowell, W. H., Dietrich, W. E., White, T. S., Kumar, P., Anderson, S. P., Chorover, J., Lohse, K. A., Bales, R. C., Richter, D. D., Grant, G., and Gaillardet, J.: Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth, Earth Surf. Dynam., 5, 841–860, https://doi.org/10.5194/esurf-5-841-2017, 2017.
Buck, J. R. and Clair, S. B. S.: Aspen increase soil moisture, nutrients,
organic matter and respiration in Rocky Mountain forest communities, PLoS One, 7,
e52369, https://doi.org/10.1371/journal.pone.0052369, 2012.
Burke, A. R. and Kasahara, T.: Subsurface lateral flow generation in aspen
and conifer-dominated hillslopes of a first order catchment in northern
Utah, Hydrol. Process., 25, 1407–1417, 2011.
Burt, T. P. and Pinay, G.: Linking hydrology and biogeochemistry in
complex landscapes, Prog. Phys. Geogr., 29, 297–316, 2005.
Carroll, R. W., Bearup, L. A., Brown, W., Dong, W., Bill, M., and Williams, K.
H.: Factors Controlling Seasonal Groundwater and Solute Flux from
Snow-Dominated Basins, Hydrol. Process., 32, 1–16, https://doi.org/10.1002/hyp.13151, 2018.
Chadwick, K. D., Brodrick, P. G., Grant, K., Goulden, T., Henderson, A., Falco, N., Brodie, E. L., Steltzer, H., Rick Williams, C. F., Blonder, B., Chen, J., Dafflon, D., Damerow, J., Hancher, M., Khurram,A., Lamb, L., Lawrence, C. R., McCormick, M., Musinsky, J., Pierce, S., Polussa, A., Porro, M. H., Scott, A., Singh, H. W., Sorensen, P. O., Varadharajan, C., Whitney, B., and Maher, K.: Integrating airborne remote sensing and
field campaigns for ecology and Earth system science, Methods Ecol.
Evol., 11, 1492–1508, 2020.
Chaney, N. W., Wood, E. F., McBratney, A. B., Hempel, J. W., Nauman, T. W.,
Brungard, C. W., and Odgers, N. P.: POLARIS: A 30-meter probabilistic soil
series map of the contiguous United States, Geoderma, 274, 54–67, 2016.
Chaney, N. W., Van Huijgevoort, M. H. J., Shevliakova, E., Malyshev, S., Milly, P. C. D., Gauthier, P. P. G., and Sulman, B. N.: Harnessing big data to rethink land heterogeneity in Earth system models, Hydrol. Earth Syst. Sci., 22, 3311–3330, https://doi.org/10.5194/hess-22-3311-2018, 2018.
Chaney, N. W., Minasny, B., Herman, J. D., Nauman, T. W., Brungard, C. W., Morgan, C. L., McBratney, A. B., Wood, E. F., and Yimam, Y.: POLARIS soil properties: 30-m probabilistic maps
of soil properties over the contiguous United States, Water Resour.
Res., 55, 2916–2938, https://doi.org/10.1029/2018WR022797,
2019.
Clarke, B. A. and Burbank, D. W.: Bedrock fracturing, threshold
hillslopes, and limits to the magnitude of bedrock landslides, Earth
Planet. Sci. Lett., 297, 577–586, 2010.
Colombo, R., Meroni, M., Marchesi, A., Busetto, L., Rossini, M., Giardino,
C., and Panigada, C.: Estimation of leaf and canopy water content in poplar
plantations by means of hyperspectral indices and inverse modeling, Remote
Sens. Environ., 112, 1820–1834, 2008.
DeByle, N. V.: Water and watershed, in: Aspen: Ecology and management in the western United States, edited by: DeByle, N. V. and Winokur, R.
P.,
USDA Forest Service General Technical Report RM-119, Rocky Mountain Forest
and Range Experiment Station, Fort Collins, CO, 119, 153–160, 1985.
de Pasquale, G., Linde, N., and Greenwood, A.: Joint probabilistic
inversion of DC resistivity and seismic refraction data applied to
bedrock/regolith interface delineation, J. Appl. Geophys., 170,
103839, https://doi.org/10.1016/j.jappgeo.2019.103839, 2019.
Devadoss, J., Falco, N., Dafflon, B., Wu, Y., Franklin, M., Hermes, A., Hinckley, E. L., and Wainwright, H.: Remote Sensing-Informed Zonation for Understanding
Snow, Plant and Soil Moisture Dynamics within a Mountain Ecosystem, Remote
Sens., 112, 2733, https://doi.org/10.3390/rs12172733, 2020.
Duncan, J. M., Groffman, P. M., and Band, L. E.: Towards closing the
watershed nitrogen budget: Spatial and temporal scaling of denitrification,
J. Geophys. Res.-Biogeo., 118, 1105–1119, 2013.
Engstrom, R., Hope, A., Kwon, H., Stow, D., and Zamolodchikov, D.: Spatial
distribution of near surface soil moisture and its relationship to
microtopography in the Alaskan Arctic coastal plain, Hydrol. Res.,
36, 219–234, 2015.
Falco, N., Wainwright, H., Dafflon, B., Léger, E., Peterson, J., Stelzer, H., Wilmer, C., Rowland, J. C., Williams, K. H., and Hubbard, S. S.: Remote sensing and geophysical characterization
of a floodplain-hillslope system in the East River watershed, Colorado.
Watershed Functionality Scientific Focus Area, 2019.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope hydrology in global change research and Earth system
modeling, Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Feilhauer, H., Asner, G. P., and Martin, R. E.: Multi-method ensemble
selection of spectral bands related to leaf biochemistry, Remote Sens.
Environ., 164, 57–65, https://doi.org/10.1016/j.rse.2015.03.033, 2015.
Flugel, W. A.: Combining GIS with regional hydrological modelling
usinghydrological response units (HRUs): An application from
Germany, Math. Comput. Simulat., 43,
297e304, https://doi.org/10.1016/S0378-4754(97)00013-X, 1997.
Foster, L. M., Williams, K. H., and Maxwell, R. M.: Resolution matters when
modeling climate change in headwaters of the Colorado River, Environ.
Res. Lett., 15, 104031, https://doi.org/10.1088/1748-9326/aba77f, 2020.
Gaskill, D. L., Mutschler, F. E., Kramer, J. H., Thomas, J. A., and Zahony, S. G.:
USGS Geologic map of the Gothic Quadrangle, Gunnison County, Colorado, https://doi.org/10.3133/gq1689, 1991.
Gillin, C. P., Bailey, S. W., McGuire, K. J., and Gannon, J. P.: Mapping of
hydropedologic spatial patterns in a steep headwater catchment, Soil Sci.
Soc. Am. J., 79, 440, https://doi.org/10.2136/sssaj2014.05.0189, 2015.
Green, G. N.: The Digital Geologic Map of Colorado in ARC/INFO Format: U.S.
Geological Survey Open-File Report 92-0507, 9 pp., available at:
http://pubs.usgs.gov/of/1992/ofr-92-0507 (last access: 20 January 2022), 1992.
Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C. and Vidon, P.: Challenges to incorporating
spatially and temporally explicit phenomena (hotspots and hot moments) in
denitrification models, Biogeochemistry, 93, 49–77, 2009.
Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of statistical
learning: data mining, inference, and prediction, Springer, New York, USA, ISBN-13 978-0387848570,
2001.
Hermes, A. L., Wainwright, H. M., Wigmore, O. H., Falco, N., Molotch, N.,
and Hinckley, E. L. S.: From patch to catchment: A statistical framework to
identify and map soil moisture patterns across complex alpine terrain,
Front. Water, 2, 48, https://doi.org/10.3389/frwa.2020.578602, 2020.
Hinckley, E.-L. S., Barnes, R. T., Anderson, S. P., Williams, M. W., and
Bernasconi, S. M.: Nitrogen retention and transport differ by hillslope aspect at
the rain-snow transition of the Colorado Front Range, J. Geophys. Res.-Biogeo., 119, 1281–1296, https://doi.org/10.1002/2013JG002588, 2014.
Högberg, P., Johannisson, C., Yarwood, S., Callesen, I., Näsholm,
T., Myrold, D. D., and Högberg, M. N.: Recovery of ectomycorrhiza after
“nitrogen saturation” of a conifer forest, New Phytologist, 189, 515–525,
2011.
Homer, C. H., Fry, J. A., and Barnes, C. A.: The national land cover database, US Geological Survey Fact Sheet, 3020, 1–4, 2012.
Houlton, B. Z., Morford, S. L., and Dahlgren, R. A.: Convergent evidence
for widespread rock nitrogen sources in Earth's surface environment,
Science, 360, 58–62, 2018.
Hubbard, S. S., Gangodagamage, C., Dafflon, B., Wainwright, H., Peterson, J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J. and Tweedie, C.: Quantifying and relating
land-surface and subsurface variability in permafrost environments using
LiDAR and surface geophysical datasets, Hydrogeol. J., 21,
149–169, 2013.
Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., Dafflon, B., Dwivedi, D., Falco, N.,
Faybishenko, F., Maxwell, R., Nico, P., Steefel, C., Steltzer, H., Tokunaga, T., Tran, P. A., Wainwright, H., and Varadharajan, C.: The East River, Colorado, Watershed: A
mountainous community testbed for improving predictive understanding of
multiscale hydrological–biogeochemical dynamics, Vadose Zone J.,
17, 1–25, 2018.
Hubbard, S. S., Varadharajan, C., Wu, Y., Wainwright, H., and Dwivedi, D.:
Emerging technologies and radical collaboration to advance predictive
understanding of watershed hydrobiogeochemistry, Hydrol. Process.,
34, 3175–3182, 2020.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K.
E., and Marshall, L. A.: Hydrologic connectivity between landscapes and
streams: Transferring reach-and plot-scale understanding to the catchment
scale, Water Resour. Res., 45, https://doi.org/10.1029/2008WR007225, 2009.
Kassambara, A.: Practical guide to cluster analysis in R: Unsupervised
machine learning, vol. 1, Sthda, ISBN-13 978-1542462709, 2017.
Krause, S., Freer, J., Hannah, D., Howden, N., Wagener, T., and Worrall, F.:
Catchment similarity concepts for understanding dynamic biogeochemical
behavior of river basins, Hydrol. Process., 28, 1554–1560,
https://doi.org/10.1002/hyp.10093, 2014.
Köchy, M. and Wilson, S. D.: Litter decomposition and nitrogen
dynamics in aspen forest and mixed-grass prairie, Ecology, 78, 732–739,
1997.
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017.
Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., and Jin, L.: Expanding the role of reactive transport models in
critical zone processes, Earth-Sci. Rev., 165, 280–301, 2017.
Lintern, A., Webb, J. A., Ryu, D., Liu, S., Waters, D., Leahy, P., Bende-Michl, U., and Western, A. W.: What are the key catchment characteristics affecting spatial
differences in riverine water quality?, Water Resour. Res., 54,
7252–7272, 2018.
Maavara, T., Siirila-Woodburn, E. R., Maina, F., Maxwell, R. M., Sample, J. E., Chadwick, K. D., Carroll, R., Newcomer, M. E., Dong, W., Williams, K. H., and Steefel, C. I.: Modeling geogenic and atmospheric nitrogen
through the East River Watershed, Colorado Rocky Mountains, PLOS ONE, 16, e0247907, https://doi.org/10.1371/journal.pone.0247907, 2021.
Madritch, M. D., Kingdon, C. C., Singh, A., Mock, K. E., Lindroth, R. L.,
and Townsend, P. A.: Imaging spectroscopy links aspen genotype with
below-ground processes at landscape scales, Philos. T.
Roy. Soc. B, 369, 20130194, https://doi.org/10.1098/rstb.2013.0194, 2014.
Maina, F. Z. and Siirila-Woodburn, E. R.: Watersheds dynamics following
wildfires: Nonlinear feedbacks and implications on hydrologic responses,
Hydrol. Process., 34, 33–50, 2020.
Mathworks: MATLAB R2021a, Mathworks [code], available at: http://www.mathworks.com, last access: 20 January 2022.
Maxwell, R. M. and Kollet, S. J.: Quantifying the effects of
three-dimensional subsurface heterogeneity on Hortonian runoff processes
using a coupled numerical, stochastic approach, Adv. Water Resour., 31,
807–817, https://doi.org/10.1016/j.advwatres.2008.01.020,
2008.
Minsley, B. J. and Ball, L. B.: Airborne geophysical characterization of
geologic structure in a mountain headwater system, 7th International
Workshop on Airborne Electromagnetics, 17–20 June 2018, Kolding, Denmark, available at: https://pubs.er.usgs.gov/publication/70217684 (last access: 22 January 2022), 2018.
McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M. L., and Selker, J.: Moving beyond heterogeneity and process complexity: A new
vision for watershed hydrology, Water Resour. Res., 43, W07301,
https://doi.org/10.1029/2006wr005467, 2007.
Mohanty, B. P., Famiglietti, J. S., and Skaggs, T. H.: Evolution of soil
moisture spatial structure in a mixed vegetation pixel during the Southern
Great Plains 1997 (SGP97) Hydrology Experiment, Water Resour. Res.,
36, 3675–3686, https://doi.org/10.1029/2000WR900258, 2000.
Montgomery, D. R.: Slope distributions, threshold hillslopes, and
steady-state topography, Am. J. Sci., 301, 432–454,
2001.
Neuman, S. P.: Maximum likelihood Bayesian averaging of uncertain model
predictions, Stoch. Env. Res. Risk A., 17,
291–305, 2003.
Newcomer, M. E., Bouskill, N. J., Wainwright, H., Maavara, T., Arora, B., Siirila-Woodburn, E. R., Dwivedi, D., Williams, K. H., Steefel, C., and Hubbard, S. S.: Hysteresis Patterns of Watershed Nitrogen
Retention and Loss over the past 50 years in United States Hydrological
Basins, Global Biogeochem. Cycles, 35, e2020GB006777, https://doi.org/10.1029/2020GB006777, 2021.
Noël, P., Rousseau, A. N., Paniconi, C., and Nadeau, D. F.: Algorithm
for delineating and extracting hillslopes and hillslope width functions from
gridded elevation data, J. Hydrol. Eng., 19, 366–374,
2014.
Painter, T.: ASO L4 Lidar Snow Water Equivalent 50m UTM Grid, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/M4TUH28NHL4Z, 2018.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., and Mattmann, C.: The Airborne Snow Observatory: Fusion
of scanning lidar, imaging spectrometer, and physically-based modeling for
mapping snow water equivalent and snow albedo, Remote Sens.
Environ., 184, 139–152, 2016.
Park, S. J. and Van De Giesen, N.: Soil–landscape delineation to define
spatial sampling domains for hillslope hydrology, J. Hydrol.,
295, 28–46, 2004.
Patton, N. R., Lohse, K. A., Godsey, S. E., Crosby, B. T., and Seyfried, M.
S.: Predicting soil thickness on soil mantled hillslopes, Nat.
Commun., 9, 1–10, 2018.
Pelletier, J., Barron-Gafford, G. A., Gutiérrez‐Jurado, H., Hinckley, E. L. S., Istanbulluoglu, E., McGuire, L. A., Niu, G. Y., Poulos, M. J., Rasmussen, C., Richardson, P., Swetnam, T. L., and Tucker, G. E.: Which way do you lean? Using slope aspect variations
to understand Critical Zone processes and feedbacks, Earth Surf. Process. Landf., 43, 1133–1154, https://doi.org/10.1002/esp.4306, 2018.
Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C.: A review ofspatial
downscaling of satellite remotelysensed soil moisture, Rev. Geophys., 55,
341–366, https://doi.org/10.1002/2016RG000543, 2017.
Peters-Lidard, C. D., Clark, M., Samaniego, L., Verhoest, N. E. C., van Emmerik, T., Uijlenhoet, R., Achieng, K., Franz, T. E., and Woods, R.: Scaling, similarity, and the fourth paradigm for hydrology, Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, 2017.
Prancevic, J. and Kirchner, J.: Topographic Controls on the Extension and
Retraction of Flowing Streams, Geophys. Res. Lett., 46, 2084–2092,
https://doi.org/10.1029/2018gl081799, 2019.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [code], ISBN 3-900051-07-0, available at: http://www.R-project.org/ (last access: 26 January 2022), 2013.
Rempe, D. M. and Dietritch, W. E.: Direct observations of rock moisture, a
hidden component of the hydrologic cycle, P. Natl.
Acad. Sci. USA, 115, 2664–2669, 2018.
Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R.,
Costa, L. D. F., and Rodrigues, F. A.: Clustering algorithms: A comparative
approach, PloS One, 14, e0210236, https://doi.org/10.1371/journal.pone.0210236, 2019.
Rogers, D. B., Newcomer, M. E., Raberg, J. H., Dwivedi, D., Steefel, C., Bouskill, N., Nico, P., Faybishenko, B., Fox, P., Conrad, M., and Bill, M.: Modeling the Impact of Riparian Hollows on River
Corridor Nitrogen Exports, Front. Water, 3, 590314, https://doi.org/10.3389/frwa.2021.590314, 2021.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, https://doi.org/10.5194/hess-15-2895-2011, 2011.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E.: mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8, 289–317, https://doi.org/10.32614/RJ-2016-021, 2016 (code available at: https://mclust-org.github.io/mclust/, last access: 26 January 2022).
Selby, M. J.: Rock slopes, in: Slope
Stability, edtied by: Anderson, M. G. and Richards, K. S., Chichester, John Wiley & Sons, 475–504, 1987.
Sickman, J. O., Melack, J. M., and Stoddard, J. L.: Regional analysis of
inorganic nitrogen yield and retention in high-elevation ecosystems of the
Sierra Nevada and Rocky Mountains, in: The Nitrogen Cycle at Regional to Global Scales, Springer, Dordrecht, 341–374,
2002.
Sivapalan, M.: Pattern, process and function: elements of a unified theory
of hydrology at the catchment scale, Encyclopedia of hydrological sciences, https://doi.org/10.1002/0470848944.hsa012, 2006.
Sollins, P. and McCorison, F. M.: Nitrogen and carbon solution chemistry
of an old growth coniferous forest watershed before and after cutting,
Water Resour. Res., 17, 1409–1418, 1981.
St. Clair, J. S., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., Carr, B., Harman, C., Singha, K. D., and Richter, D. D.: Geophysical imaging reveals
topographic stress control of bedrock weathering, Science, 350,
534–538, 2015.
Thompson, S. E., Harman, C. J., Troch, P. A., Brooks, P. D., and Sivapalan, M.:
Spatial scale dependence of ecohydrologically mediated water balance
partitioning: A synthesis framework for catchment ecohydrology, Water
Resour. Res., 47, W00J03, https://doi.org/10.1029/2010WR009998, 2011.
Tokunaga, T. K., Wan, J., Williams, K. H., Brown, W., Henderson, A., Kim, Y., Tran, A. P., Conrad, M. E., Bill, M., Carroll, R. W., and Dong, W.: Depth-and time-resolved distributions of
snowmelt-driven hillslope subsurface flow and transport and their
contributions to surface waters, Water Resour. Res., 55,
9474–9499, 2019.
Uhlemann, S., Dafflon, B., Wainwright, H. M., Williams, K. H., Minsley, B.,
Zamudio, K., Carr, B., Falco, N., Ulrich, C., and Hubbard, S.: Shale bedrock variability
correlates with surface morphology and vegetation distribution, and controls
hydraulic properties, Sci. Adv., in review, 2022.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification
and Hydrologic Similarity, Geogr. Compass., 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007.
Wainwright, H. M., Dafflon, B., Smith, L. J., Hahn, M. S., Curtis, J. B., Wu, Y., Ulrich, C., Peterson, J. E., Torn, M. S., and Hubbard, S. S.: Identifying multiscale zonation and
assessing the relative importance of polygon geomorphology on carbon fluxes
in an Arctic tundra ecosystem, J. Geophys. Res.-Biogeo., 120, 788–808, 2015.
Wainwright, H. M., Steefel, C., Trutner, S. D., Henderson, A. N., Nikolopoulos, E. I., Wilmer, C. F., Chadwick, K. D., Falco, N., Schaettle, K. B., Brown, J. B., Steltzer, H., Williams, K. H., and Enquist, B. J.: Satellite-derived
foresummer drought sensitivity of plant productivity in Rocky Mountain
headwater catchments: spatial heterogeneity and geological-geomorphological
control, Environ. Res. Lett., 15, 084018, https://doi.org/10.1088/1748-9326/ab8fd0, 2020.
Wainwright, H., Uhlemann, S., Franklin, M., Falco, N., Bouskill, N., Newcomer, M., Dafflon, B., Woodburn, E., Minsley, B., Williams, K., and Hubbard, S.: Data used in Wainwright, H. M. et al. 2021, “Watershed zonation through hillslope clustering for tractably quantifying above- and belowground watershed heterogeneity and functions”, Watershed Function SFA, ESS-DIVE repository [data set], https://doi.org/10.15485/1841262, last access: 20 January 2022.
Wan, J., Tokunaga, T. K., Williams, K. H., Dong, W., Brown, W., Henderson, A. N., Newman, A. W., and Hubbard, S. S.: Predicting sedimentary bedrock subsurface
weathering fronts and weathering rates, Sci. Rep.-UK, 9, 1–10,
2019.
Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: Effects of spatial
variability and scale with implications to hydrologic modeling, J.
Hydrol., 102, 29–47, 1988.
Yan, Q., Wainwright, H., Dafflon, B., Uhlemann, S., Steefel, C. I., Falco, N., Kwang, J., and Hubbard, S. S.: A hybrid data–model approach to map soil thickness in mountain hillslopes, Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, 2021.
Ye, M., Meyer, P. D., Lin, Y. F., and Neuman, S. P.: Quantification of
model uncertainty in environmental modeling, Stoch. Environ.
Res. Risk A., 24, 807–808, 2010.
Zamudio, K. D., Minsley, B. J., and Ball, L. B: Airborne electromagnetic,
magnetic, and radiometric survey, upper East River and surrounding
watersheds near Crested Butte, Colorado, 2017, U.S. Geological Survey,
https://doi.org/10.5066/P949ZCZ8, 2020.
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
This paper has developed a tractable approach for characterizing watershed heterogeneity and its...