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Abstract. In this study, we develop a watershed zonation ap-
proach for characterizing watershed organization and func-
tions in a tractable manner by integrating multiple spatial
data layers. We hypothesize that (1) a hillslope is an appro-
priate unit for capturing the watershed-scale heterogeneity of
key bedrock-through-canopy properties and for quantifying
the co-variability of these properties representing coupled
ecohydrological and biogeochemical interactions, (2) remote
sensing data layers and clustering methods can be used to
identify watershed hillslope zones having the unique distri-
butions of these properties relative to neighboring parcels,
and (3) property suites associated with the identified zones
can be used to understand zone-based functions, such as
response to early snowmelt or drought and solute exports
to the river. We demonstrate this concept using unsuper-
vised clustering methods that synthesize airborne remote
sensing data (lidar, hyperspectral, and electromagnetic sur-
veys) along with satellite and streamflow data collected in
the East River Watershed, Crested Butte, Colorado, USA.
Results show that (1) we can define the scale of hillslopes
at which the hillslope-averaged metrics can capture the ma-
jority of the overall variability in key properties (such as ele-
vation, net potential annual radiation, and peak snow-water
equivalent — SWE), (2) elevation and aspect are indepen-
dent controls on plant and snow signatures, (3) near-surface
bedrock electrical resistivity (top 20 m) and geological struc-
tures are significantly correlated with surface topography and

plan species distribution, and (4) K-means, hierarchical clus-
tering, and Gaussian mixture clustering methods generate
similar zonation patterns across the watershed. Using inde-
pendently collected data, we show that the identified zones
provide information about zone-based watershed functions,
including foresummer drought sensitivity and river nitro-
gen exports. The approach is expected to be applicable to
other sites and generally useful for guiding the selection of
hillslope-experiment locations and informing model param-
eterization.

1 Introduction

Predictive understanding of watershed functions is often hin-
dered by the heterogeneous and multiscale fabric of water-
sheds (e.g., Peters-Lidard et al., 2017). Heterogeneity ex-
ists within each of the watershed compartments, including
above-ground compartments (i.e., plant species distribution
and plant dynamics, topography) and below-ground com-
partments (i.e., soil and bedrock structures/properties). Such
watershed patterns influence ecohydrological and biogeo-
chemical processes, which in turn affect watershed func-
tions and create emerging patterns as feedback (Sivapalan,
2006). Since watersheds consist of diverse biotic and abi-
otic compartments, watershed functions include diverse sig-
natures, including hydrological (i.e., partition, storage, and
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release of water), ecological (e.g., species adaptation, pro-
ductivity), and geochemical (e.g., nutrient cycling, solute
export) signatures (Sivapalan, 2006; Wagener et al., 2007).
There is a multiscale nature of heterogeneity such that differ-
ent processes have different characteristic scales. Watershed
hydrology modeling studies typically use the grid size from
100m to 1km (e.g., Foster et al., 2020; Maina and Siirila-
Woodburn, 2020), whereas soil moisture is known to vary on
the order of several or several tens of meters (e.g., Engstrom
et al., 2005; Wainwright et al., 2015), and biogeochemical
dynamics can vary within 1 m or less (e.g., Burt and Pinay,
2005; Groffman et al., 2009).

There have been extensive studies investigating how the
heterogeneous watershed organization influences water, en-
ergy, and nutrient cycling and their fluxes (e.g., Peters-
Lidard et al., 2017). There are two directions for tackling
this problem: a bottom-up Newtonian approach or a top-
down Darwinian approach. The Newtonian approach is a
reductionist approach that describes a system by a set of
mass/energy/momentum conservation equations with spa-
tially variable parameters. Recently, integrated hydrologi-
cal and reactive transport models have been successfully
implemented to describe and predict watershed behaviors
from hillslope to watershed scales (e.g., Maxwell and Kol-
let, 2008; Li et al., 2017). In addition, the hydrological re-
sponse unit concept has been used to classify the landscapes
based on spatial datasets (e.g., land-cover types, elevation,
and soil maps) and to parameterize hydrological models
(Flugel, 1997; Aytac, 2020). On the other hand, the Dar-
winian approach identifies rules or organizing principles gov-
erning spatial patterns of complex datasets and defines wa-
tersheds as self-organized and co-evolved units by watershed
functional traits (McDonnell et al., 2007). Catchment scal-
ing and similarity concepts have been used to synthesize the
catchment datasets across scales and to classify catchments
(Wagener et al., 2007; Thompson et al., 2011; Sawicz et al.,
2011; Krause et al., 2014).

In parallel, there have been recently significant advances
in understanding and quantifying the watershed-scale het-
erogeneity of bedrock-to-canopy terrestrial compartments,
which regulate water and nutrient cycling and their exports,
particularly through the critical-zone observatory (CZO)
network (Brantley et al., 2017). In particular, Pelletier et
al. (2018) have highlighted the control of slope aspects
on ecosystem and critical-zone systems, finding that, for
example, in water-limited systems, the north-facing slopes
have less evapotranspiration and hence higher soil moisture,
deeper weathering, and larger nutrient retention in soil (e.g.,
Hinckley et al., 2014). Such advances are largely attributed
to a variety of spatially extensive characterization technolo-
gies across bedrock-to-canopy compartments, which provide
various patterns (Hubbard et al., 2020). High-resolution dig-
ital elevation models (DEMs) from lidar have been applied
to better understand the relationship between geomorphol-
ogy and hydrology (Prancevic and Kirchner, 2019) as well as
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to measure snow depths and snow-water equivalent (SWE)
over a basin scale (Painter et al., 2016). Lidar data were
also able to inform near-surface soil properties (Patton et al.,
2018; Gillin et al., 2015), hydrological connectivity (Jencso
et al., 2009), and biogeochemical hotspots (Duncan et al.,
2013). In addition, hyperspectral remote sensing can map
plant traits (e.g., Asner et al., 2015), leaf water content (e.g.,
Colombo et al., 2008), leaf chemistry (e.g., Feilhauer et al.,
2015), and other properties, which are also proxies for soil
biogeochemistry (Madritch et al., 2014). At the same time,
geophysics has been extensively used to characterize the sub-
surface structure and to estimate soil and bedrock proper-
ties. Surface geophysics has been used to measure bedrock
depth, weathering zone thickness, and other properties (e.g.,
de Pasquale et al., 2019), contributing to hillslope-scale hy-
drological characterization and modeling. Surface electrical
resistivity tomography (ERT) and seismic data have also re-
vealed the influence of tectonic stresses and hydrological
processes on bedrock fracturing and weathering (Rempe and
Dietritch, 2018; St. Clair et al., 2015). Airborne geophysics
— particularly airborne electromagnetic (EM) surveys — was
originally developed for mineral exploration but is now in-
creasingly used for water-resource applications (e.g., Barfod
etal., 2018; Ball et al., 2020).

Despite these advancements, there are still challenges in
associating watershed functions with heterogenous water-
shed patterns. It remains a challenge to integrate multitype
and multiscale datasets, including ground-based point mea-
surements and airborne or satellite remote sensing datasets.
Although the above-ground properties, such as topography
and plant characteristics, can be mapped over the watershed
scale, the subsurface variability is still difficult to map over
that scale, which is one of the biggest uncertainties in hy-
drology (Fan et al., 2019). In addition, even though hillslope-
scale characterization and experiments (such as tracer tests)
can be extremely useful for providing detailed information
about watershed functions (e.g., Hinckley et al., 2014), it is
difficult to select several hillslopes for such intensive charac-
terization or to gauge the representativeness of one hillslope
for an entire watershed.

In this study, we develop and test the concept of a zona-
tion approach for tractably characterizing the organization of
a watershed based on multiple spatial data layers and how
these characteristic patterns aggregate to predict watershed
functions. The clustering-based zonation approaches have
emerged recently as effective spatial data integration meth-
ods that use spatial clustering to identify regions or zones
that have unique distributions of heterogeneous properties
and key functions relative to neighboring regions (Hubbard
et al., 2013; Wainwright et al., 2015; Devadoss et al., 2020;
Hermes et al., 2020). For watershed zonation, we consider
a hillslope to be a fundamental unit for watershed hydrol-
ogy and element cycling, funneling water and elements from
the ridge to the river (Fan et al., 2019) and also representing
aspect controls on critical zones (Pelletier et al., 2018). We
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follow Band (1989) and Band et al. (1991, 1993) to inves-
tigate the appropriate scales of hillslopes for capturing the
watershed heterogeneity while limiting the internal variance
within hillslopes.

We then hypothesize that (1) a hillslope is an appropri-
ate unit for capturing the watershed-scale heterogeneity of
key bedrock-through-canopy properties and for quantifying
the co-variability of these properties representing coupled
ecohydrological and biogeochemical interactions, (2) we
can identify a group of hillslopes or watershed-scale zones
that have unique distributions of these properties relative to
neighboring parcels, and (3) the identified zones can capture
the variability of key watershed functions. We demonstrate
our approach using the airborne and spatial datasets collected
in the East River watershed region near Crested Butte, Col-
orado, USA (Hubbard et al., 2018). We apply and compare
multiple clustering methods to understand the characteristics,
commonality, and differences among each method. Finally,
we validate the zonation hypothesis based on the datasets that
define key watershed functions, including drought sensitivity
of plant productivity and water/nitrogen export.

2 Site and data

We consider the domain of approximately 15km by 15km
(Fig. 1) near Gothic, Colorado, USA, which is the same area
used in a recent study (Wainwright et al., 2020). As de-
scribed in Hubbard et al. (2018), the domain includes four
catchments, the East River, Washington Gulch, Slate River,
and Coal Creek. It is a part of the Elk Range in the Rocky
Mountains, with elevation from 2800 to 4000 m (Fig. 1a).
The major land-cover types (NLCD 2011 map; Homer et
al., 2012) are rock outcrop (12 %), evergreen forest (29 %),
deciduous forest (18 %), grassland (30 %), and woody wet-
land (6 %). Geology within the domain is diverse, including
Paleozoic, Mesozoic, and Cenozoic sedimentary rocks (silt-
stones and sandstones of the late Permian Maroon Forma-
tion; shales and sandstones of the upper Cretaceous Man-
cos Shale and Mesaverde group, respectively; siltstones and
sandstones of the Eocene Wasatch Formation) and Miocene
igneous intrusive rocks of predominantly granodioritic com-
position (Gaskill et al., 1991).

The spatial data layers include the USGS land-cover
map (NLCD, 2011), the digital geological map of Colorado
(Green, 1992), and the soil texture maps (percent clay and
percent sand) from the POLARIS database (Chaney et al.,
2016, 2019). In addition, we used four airborne datasets
(Sect. S1 in the Supplement): an airborne electromagnetic
(AEM) survey acquired in fall 2017 (Minsley and Ball, 2018;
Uhlemann et al., 2022; Zamudio et al., 2020), lidar and hy-
perspectral data collected by the National Ecological Obser-
vation Network (NEON) team in June 2018 (Chadwick et al.,
2020), and NASA Airborne Snow Observatory (ASO) data
collected in April 2018 (Painter, 2018).
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To test the zonation hypothesis, we used datasets repre-
senting two key functions: foresummer drought sensitivity
of plant productivity and river nitrogen export. The fore-
summer drought sensitivity map based on the Landsat nor-
malized difference vegetation index (NDVI) was developed
by Wainwright et al. (2020) to represent the plant produc-
tivity responses to early snowmelt and subsequent drought
conditions in the primary growing season. To create this
map, Wainwright et al. (2020) performed the linear regres-
sion of the historical peak Landsat NDVI as a function of
the Palmer drought severity index in June. They then defined
the slope of the linear fit as the foresummer drought sensitiv-
ity, which represented the magnitude of peak plant produc-
tivity changes with respect to the drought condition in the
growing season. Since the satellite images were not used in
clustering, they were considered independent datasets. In ad-
dition, the annual discharge and nitrogen export were com-
puted from the streamflow and chemistry data at the sub-
catchments (Fig. 1) within the domain used in Carroll et
al. (2018). The nitrogen export was computed in the same
manner as Newcomer et al. (2021).

3 Methodology
3.1 Watershed and hillslope characteristics

We followed Wainwright et al. (2020) to compute pixel-by-
pixel topographic metrics based on the lidar DEM, includ-
ing slope, topographic wetness index (TWI), and annual net
potential solar radiation. We selected metrics based on the
previous studies that reported their relevance to soil mois-
ture, soil thickness, water quality, and others (Mohanty et
al., 2000; Gillin et al., 2015; Lintern et al., 2018). The an-
nual net potential solar radiation — a function of the aspect,
slope, and solar angle — is considered a better metric to rep-
resent the intensity of solar radiation than the aspect itself,
which is circular (0 and 360° are the same; Wainwright et al.,
2020). In parallel, we delineated each hillslope based on the
DEM, following Noél et al. (2014) and using Topotoolbox
(Schwanghart and Scherler, 2014). The hillslope delineation
algorithm first identifies the stream segments that are a col-
lection of pixels that have larger flow accumulation (i.e., a
larger drainage area) than a certain threshold value, using the
flow routing algorithms in Topotoolbox. It then finds the pix-
els in both sides of each stream segment and also the drainage
area leading to each of these pixels. This process yields two
lateral hillslopes in both sides of each stream segment. For
the first-order stream, the algorithm also defines the headwa-
ter hillslope, which is the drainage area leading to the pixel at
the origin of the stream. Although these hillslopes are based
on surficial water routing, we assume that the DEM cap-
tures near-surface hydrological connectivity as documented
by Jencso et al. (2009).
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Figure 1. Study domain with (a) elevation and (b) land-cover map (USGS NLCD 2011 map; Homer et al., 2012). The black lines are the
boundaries of the four watersheds: (A) East River, (B) Washington Gulch, (C) Slate River, and (D) Coal Creek. The thin black boundaries
are subcatchments of the East River watershed from Carroll et al. (2018): (1) Rock, (2) East Above Quigley (EAQ), (3) Quigley, (4) East
Below Copper (EBC), (5) Gothic, (6) Rustlers, (7) Pumphouse, (8) Bradley, (9) Marmot, (10) Avery, and (11) Copper.

We then defined the characteristics of each hillslope, based
on the spatial data layers (Fig. S1). We computed the average
values of the DEM topographic metrics, AEM-based bedrock
resistivity, NEON products (NDVI, Normalized Difference
Water Index, NDWI, and biomass) at the peak growing sea-
son (2018), peak SWE (2018), and soil texture in each hill-
slope. In addition, we computed the relief of each hillslope,
which was the difference between the minimum and maxi-
mum elevations. For the categorical variables such as land-
cover types and geology, we computed the percent cover-
age of each plant type and surface geology in each hillslope.
These 17 hillslope features are defined for each hillslope (Ta-
ble S1).

As Band (1989) and Band et al. (1991) noted, the hillslope
delineation can create different sets of hillslopes, depending
on the threshold drainage areas that define the stream seg-
ments. For the hillslope metrics defined by the average (e.g.,
elevation, slope, and others), we evaluated how these aver-
aged metrics can represent the overall variability of the wa-
tershed properties and how this representation changes de-
pending on the different threshold drainage areas. We con-
sider that the variance of pixel-by-pixel properties represents
the overall variability over this domain, while the variance of
hillslope-averaged metrics represents the variability across
the hillslopes. We computed the ratio between the across-
hillslope variance and the overall variance, representing how
much watershed-scale variability the hillslopes can capture.
In addition, as a contrast, we computed the variance of each
property within the upscaled pixels by taking the averaged
values in larger pixels compared to the original 9 m pixel. We
computed the ratio between this across-upscaled-pixel vari-
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ance and the overall variance. In this way, we can investi-
gate the difference between hillslope-based spatial aggrega-
tion compared to standard pixel-based upscaling for each of
the key watershed properties.

3.2 Cluster-based approach to identify watershed zones

Based on the hillslope features, we first evaluated the cor-
relations among multivariate above-/below-ground proper-
ties. Although such multivariate co-variability has been an-
alyzed using principal component analysis (Devadoss et al.,
2020), we used scatter plots and correlation coefficients in
this study because of nonlinearity. We then applied three
commonly used unsupervised clustering methods: K-means
(KM), hierarchical clustering (HC), and Gaussian mixture
models (GMMs; Hastie et al., 2001; Kassambara, 2017). We
scaled each feature by the mean and standard deviation and
defined the dissimilarity between two data points based on
the Euclidean distance. The characteristics of each method
are described in Sect. S2. Multiple methods are often evalu-
ated based on true classes or labeled datasets (Rodriguez et
al., 2019), which are not available here. We used a silhouette
score, which represented how similar a given data point was
to its own cluster compared to other clusters. For GMMs, we
used the Bayesian information criterion (BIC) to select the
number of clusters.

After the clusters are defined, we transfer the clusters — the
group of hillslopes that have similar features — to the spatial
map as zones. We identify the common zones across the three
methods as well as the zones that differ. We then evaluate the
distribution of hillslope features and functions in each zone
using box plots to define the characteristics of each zone. The
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foresummer drought sensitivity (Wainwright et al., 2020) is a
watershed function available throughout the domain that al-
lows us to quantify the hillslope-average values in the same
manner as other spatial data layers. In addition, we computed
the spatial coverage of each zone in each subcatchment and
compared them to the ratio between the annual nitrogen ex-
port and total discharge, which is considered a key metric
indicating how watersheds retain and lose nutrients (New-
comer et al., 2021).

4 Results
4.1 Hillslope scales

The ratio between the across-hillslope variance and the over-
all variance (Fig. 2a) is generally high for the elevation, net
annual potential solar radiation (radiation), peak SWE, and
bedrock resistivity up to 0.75, which means that the hillslope-
averaged metrics capture the watershed-scale variability of
these variables and that the within-hillslope variability is
small compared to the across-hillslope variability. TWI and
NDVI, on the other hand, have a low ratio, which means
that the within-hillslope variability is significant. The ratio
increases as the drainage area decreases, since the smaller
the hillslopes, the better they capture small-scale variabil-
ity. However, the variance ratio of the elevation and radiation
reaches a plateau with the drainage area around 10® m?. This
means that the internal variability within hillslopes is lim-
ited up to this threshold drainage area and that the hillslope
metrics are representative of the overall variability up to this
threshold. Based on this result, we selected 810 000 m? as the
threshold drainage area in the subsequent analysis.

We can compare this hillslope-based averaging (Fig. 2a)
with pixel-based averaging/upscaling (Fig. 2b). Similarly
to hillslope-based averaging, the ratio between the across-
upscaled-pixel variance and the overall variance increases
as the pixel size decreases. The magnitude is similar such
that the elevation, peak SWE, and bedrock resistivity have a
higher ratio, meaning that the upscaled properties can cap-
ture the overall variability of these properties. The exception
is the radiation, since the pixel-averaged radiation captures
only up to 60 % of the overall variance, while the hillslope-
averaged radiation captures up to 70 %. In addition, differ-
ently from the hillslope average, the ratio for radiation in
Fig. 2b keeps increasing without reaching a plateau. This
means that a representative size or scale does not exist when
we use pixel-based upscaling.

4.2 Watershed zonation

Figure 3 shows that the above- and below-ground hillslope
features are significantly correlated with each other. In par-
ticular, elevation is correlated with all other features except
for net annual potential radiation. The hillslopes at higher el-
evation have steeper slopes and lower TWI, higher bedrock
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resistivity, and higher peak SWE. There are some nonlin-
earities: TWI increases beyond the linear function at lower
elevations. The relationship between peak NDVI and eleva-
tion is quadratic, having peaks at middle elevation (corre-
sponding to around 3300 m). The net annual potential radia-
tion is weakly correlated with slope, TWI, and peak SWE.
The correlation coefficients among the hillslope-averaged
features are significantly higher than the pixel-by-pixel ones
(Fig. S2).

The clustering results are then mapped spatially as the wa-
tershed zones (Fig. 4). The number of clusters is six, since
the highest silhouette score is high at six clusters across the
three methods (Fig. S3a), and BIC for GMM is also the high-
est at six clusters (above four; Fig. S3b). To compare the re-
sults from these three methods, we first identified six com-
mon zones across the three methods that have the overlap-
ping coverage, starting from the GMM-based map as a ba-
sis. Zone 7 appears only in the HC result (Fig. 4c) and is
designated as a separate zone; the hillslopes in Zone 7 are
included either in Zone 3 or Zone 4 in the GMM and KM
results. The frequency maps (Fig. S4) show that most hill-
slopes are consistently categorized in the same zones among
the three methods. The zonation maps from GMM (Fig. 4a)
and KM (Fig. 4b) are quite similar, although small fractions
of the hillslopes have different designations between the two
maps. The zonation map from HC (Fig. 4c) is also similar to
the ones from GMM and KM, except for Zone 7, which is a
part of Zone 3 or Zone 4 in the GMM and KM result.

Box plots shows the characteristics of each identified zone
(Figs. 5 and 6). Although each map has six zones, we use
seven zones that are found across the three clustering meth-
ods. The statistics are computed by aggregating the zona-
tion from the three methods (Fig. S4) such that the zona-
tion of each method has a weight of 1/3. Elevation (Fig. 5a)
increases from Zones 1 to 6, while Zone 7 is similar to
Zone 4. Slope (Fig. 5b) shows a similar progression to el-
evation, which is consistent with the correlation plot (Fig. 3),
although Zone 7 has steeper hillslopes than expected for its
elevation range. Relief (Fig. 5c) also has a similar order
to the elevation, except that Zones 4 to 7 are similar, be-
cause the higher-elevation hillslopes are smaller with lower
relief, even though the slope is high. TWI (Fig. 5d) has an
opposite trend to elevation, consistent with the correlation
plot (Fig. 3). In terms of the net annual potential radiation
(Fig. Se), the grassland-dominated hillslopes (Zones 1, 2, and
5) tend to be higher, while the conifer-dominated hillslopes
(Zones 3, 4, and 7) are lower except for Zone 4 being around
the average. The bedrock resistivity (Fig. 5f) is higher at
the higher-elevation zones (Zones 4-7) or an intrusive-rock-
dominated zone (Zone 4). NDVI (Fig. 5g) is higher in the
forest-dominated zones (Zone 2, 3, 4, and 7). Zone 6 has a
significantly lower NDVI, since it is predominantly in the
barren region. NDWI (Fig. 5h) is lower in the low-elevation
zones (Zone 1). Peak SWE (Fig. 5i) is associated with the
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Figure 2. Variance ratio (a) between the across-hillslope variance and the overall variance as a function of the threshold drainage area and
(b) between the across-upscaled-pixel variance and the overall variance as a function of the pixel area.

elevation such that it is the highest in Zone 6, which has the
highest elevation and the lower net potential radiation.

With respect to geology (Fig. 6a—c), the low-elevation
zones (Zones 1 and 2) are predominantly shale, while the
mid- to high-elevation zones (Zones 3 and 5) have both shale
and sandstone. Zones 4, 6, and 7 have a high percentage of
intrusive rock coverage. Among the conifer-dominated ar-
eas (Zones 3, 4, and 7), Zone 4 is associated with intrusive
rock, while Zone 3 is associated with shale and sandstone,
and Zone 7 has a mixture of these three bedrock types. In
terms of land-cover types (Fig. 6d—g), the barren area cover-
age (Fig. 6d) increases with elevation from Zones 1 to 6. The
grassland region (Fig. 6e) exists across all the zones, but it
is particularly high in the low-elevation zones (Zones 1 and
2) and the higher-elevation south-facing zone (Zone 5). The
coverage of deciduous forests (Fig. 6f) is higher at lower el-
evation (i.e., Zones 1 and 2); Zone 2, in particular, has high
aspen coverage. The evergreen forest regions (Fig. 6g) ap-
pear in Zones 3, 4, and 7, which are associated with differ-
ent bedrock types and slopes as mentioned above. Finally,
the wetland (woody and herbaceous combined) coverage is
higher in the low-elevation Zone 1. The characteristics of
each zone are summarized in Table 1.

4.3 Watershed functions

Foresummer drought sensitivity (Fig. 7a) has an opposite
trend to elevation (Fig. 5a), with higher sensitivity in lower-
elevation zones (Zones 1 and 2) and the lowest in Zone 6.
Zone 5 is an exception such that this zone — high-elevation
south-facing grassland-dominated hillslopes — has higher
sensitivity than the zones that are in a similar elevation range.
The conifer-dominated zones (Zones 3, 4, and 7) have lower-
than-average sensitivity. Tukey’s pairwise comparison met-
rics suggest that the differences are significant except in the
case of conifer-dominated zones (3, 4, and 7).
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We found that the magnitude of annual nitrogen exports
scaled log-linearly with discharge, albeit with bifurcation
among some of the smaller catchments (Fig. 7c). The Rock
and Gothic subcatchments, which are predominantly within
conifer-dominated Zones 3, 4, and 7 (Fig. 7b), have lower
nitrogen expected from this simple scaling relationship. By
contrast, Zone-2-dominated subcatchments (Marmot, Avery)
have a larger nitrogen export than would be expected from
this relationship. In addition, we evaluated the association of
the N mass export and percent coverage of each zone quan-
titatively. Since the number of points is not large, we divided
the N export data into the two groups of the subcatchments
that have the coverage of each zone larger than 50 % or less
(Fig. 7d and e). The association is statistically significant
for Zone 2 and for the conifer-dominated zones combined
(Zones 3, 4, and 7), with a p value of less than 0.01. The
larger coverage of Zone 2 is associated with a higher N ex-
port, while the conifer-dominated zones are associated with
a lower export. The individual data points are also shown in
Fig. S5.

5 Discussion

We first identified the co-variability between topographic
metrics, elevation, bedrock resistivity, and plant signatures at
the watershed scale. In particular, the near-surface bedrock
electrical resistivity is significantly correlated with slope and
elevation. The detailed analysis of AEM by Uhlemann et
al. (2022) has found that (1) bedrock resistivity is primarily
controlled by bedrock type and that (2) within the shale and
sandstone, the bedrock resistivity is affected by the extent of
hydrothermal alteration. The relationship between topogra-
phy, elevation, and bedrock strength has been documented
extensively (e.g., Selby, 1987; Clarke and Burbank, 2010).
Montgomery (2001) showed that, in low-precipitation and
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Figure 3. Correlation and scatter plots (Pearson’s correlation coefficients) among selected hillslope features (Table S1). The * sign represents
p values < 0.01.

Figure 4. Hillslope zonation based on (a) Gaussian mixture model (GMM), (b) K-means (KM), and (c) hierarchical clustering (HC). Different
zones are represented by the cluster index from 1 to 7. There are six common zones among the three methods, and one additional zone
(Zone 7) appears in the HC result (c). The black lines are the hillslope boundaries.
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Figure 5. Box plots of hillslope pattern features: (a) elevation, (b)

slope, (c) relief, (d) TWI, (e) annual net potential radiation, (f) bedrock

electrical resistivity (top 20 m), (g) peak NDVI in 2018, (h) NDWI (at peak NDVI) in 2018, and (i) peak SWE in 2018. The horizontal lines

are the overall mean and plus/minus 1 standard deviation.

Table 1. Summary of the features in each zone based on Figs. 5 and 6.

Zone Elevation  Slope TWI Resistivity ~ Radiation = Peak NDVI  Peak SWE  Plant types Geology

1 Low Low High Low Mid-high Mid Low Grassland Shale

2 Low-mid Low-mid Mid-high Low-mid  Mid-high Mid-high Low-mid Grassland—deciduous ~ Shale

3 Mid Mid Mid-high Mid Low Mid-high Mid Evergreen Shale—sandstone
4 Mid Mid-high Low-mid High Mid Mid-high Mid-high  Evergreen Intrusive

5 Mid-high Mid-high Low-mid Mid-high  Mid-high Low-mid Mid-high  Grassland Shale—sandstone
6 High High Low High Mid-low  Low High Barren Shale—intrusive
7 Mid-high  High Low-mid Mid-high Low Low-mid Mid-high  Evergreen Mixed

low soil production environments, such as the East River, the
erosion rate is dependent on rock strength and slope steep-
ness, whereby erosion-resistant rocks (i.e., hydrothermally
altered sandstones and shales and/or igneous rocks) are on
steeper slopes than more erodible rocks. Erosion-resistant

Hydrol. Earth Syst. Sci., 26, 429-444, 2022

rocks also remain at higher elevations, while erodible rock
erodes away. This work provides information on how sur-
face topographic features are linked to bedrock variability
and could be potentially used to inform bedrock variability,

https://doi.org/10.5194/hess-26-429-2022
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Figure 6. Box plots of hillslope pattern features with respect to geology and land-cover types: the percent coverage of (a) shale, (b) sandstone,
(c) igneous (intrusive) rock, (d) barren, (e) grassland, (f) deciduous forest, (g) evergreen forest, and (h) riparian zone.

which is considered to be one of the largest uncertainties in
watershed science (Fan et al., 2019).

In addition, our results show that plant signatures and peak
SWE are primarily correlated with elevation. The quadratic
dependency of NDVI and above-ground biomass on eleva-
tion is consistent with previous studies (e.g., Wainwright et
al., 2020); productivity and biomass increase with elevation
up to 3300-3500 m because plants have more access to snow-
derived water at higher elevation. Above 3500 m, plant pro-
ductivity is limited by temperature. Net annual potential ra-
diation is not correlated with elevation but is associated with
conifer coverage and peak SWE. The conifer forest and high
vegetative biomass are associated with north-facing slopes
due to higher water availability, which is consistent with pre-
vious synthesis studies (e.g., Pelletier et al., 2018). The spa-
tial variability of peak SWE is also consistent with previous
studies being associated with elevation and radiation (Ander-

https://doi.org/10.5194/hess-26-429-2022

son et al., 2014). In addition, the conifer-dominated zones are
associated with high-resistivity bedrock, while aspen forests
are located within the less resistive bedrock. This is con-
sistent with past studies showing that conifer trees grow in
the shallow bedrock regions, while aspens require the estab-
lishment of deeper root systems (e.g., Burke and Kasahara,
2011). Although there have been studies that have reported
the co-variability of plants, topographic metrics, and aspect-
controlled bedrock weathering (e.g., Pelletier et al., 2018),
our analysis suggested an additional control of geological
variability.

To capture such co-variabilities, we hypothesized that hill-
slopes would be appropriate spatial units to aggregate key
properties and to classify into zones. However, the hillslopes
could be defined at different scales based on the threshold
drainage area, as documented by Band (1989) and Band et
al. (1991). We computed the variance in hillslope-averaged

Hydrol. Earth Syst. Sci., 26, 429-444, 2022
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percent coverage of (d) Zone 2 and (e) Zones 3, 4, and 7 as the conifer-dominated zone, respectively. In (b), the color code is the same as

Figs. 3-5.

metrics compared to the overall variance as a measure for
quantifying how well hillslopes could capture the overall het-
erogeneity. We then investigated the effect of the threshold
drainage area on this variance ratio. Our results show that,
although this ratio decreases as the drainage area increases, it
stays flat up to a certain threshold drainage area, particularly
for elevation and annual net potential radiation. This suggests
that there is a representative scale of hillslopes, up to which
the within-hillslope variability is limited, and the hillslope-
averaged metrics can capture most of the overall variabil-
ity across the domain. Such a representative scale has been
known to exist as a representative elementary area (Wood et
al., 1988). This representative scale is important, since Pel-
letier et al. (2018) showed the significant impact of hillslope
aspects and slopes on evapotranspiration, weathering, nutri-
ent cycling, and others.

On the other hand, standard pixel-based upscaling (i.e.,
taking an average in larger pixels) does not show such
a plateau, since larger pixels include a mixture of hill-
slopes with different aspects. This is consistent with Band
et al. (1991), which documented that the hillslope-based par-
tition had much greater efficiency for upscaling than pixel-
based scaling by minimizing the within-unit variability and
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maximizing the ability to capture the watershed-scale vari-
ability. Although pixel-based (or grid-based) spatial scaling
is still the mainstream for remote sensing and hydrological
modeling (e.g., Peng et al., 2017; Foster et al., 2020), our re-
sults suggest that the hillslope-based partitioning would be
a more effective template for scaling, particularly for moun-
tainous hydrology, where aspect and solar radiation play a
significant role (Pelletier et al., 2018; Fan et al., 2019).
After the appropriate hillslope scale is defined, we com-
puted the hillslope features (including the hillslope average
of key properties as well as the percent coverage of categor-
ical variables) and applied unsupervised clustering to these
features. This clustering process takes advantage of the co-
variability between above-ground and below-ground prop-
erties and reduces the multidimensional parameter space to
one-dimensional classes (Hastie et al., 2001). In the East
River watershed, the zones are primarily dictated by eleva-
tion, while aspect or radiation poses orthogonal controls to
the elevation. Geology and bedrock are also correlated with
elevation, such that hillslopes dominated by crystalline rocks
and hydrothermally altered shales and sandstones are primar-
ily found at higher elevations. The plant types are associated
with both elevation and radiation, such that the dominant

https://doi.org/10.5194/hess-26-429-2022
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type changes from grassland, aspen, conifer, and grassland
to barren from low to high elevations, and conifers are dom-
inant in the north-facing hillslopes.

Instead of relying on a single clustering method, we com-
pared three commonly used clustering methods: hierarchical
clustering, k-means, and Gaussian mixture models. Although
clustering has been applied in many hydrology or environ-
mental science applications, the selection of methods is of-
ten arbitrary and subjective (e.g., Sawicz et al., 2011; Wain-
wright et al., 2015; Devadoss et al., 2020). Such method-
ological or conceptual model uncertainties are important to
characterize, since they are often larger than parameter un-
certainty (Neuman, 2003; Ye et al., 2010). Based on the fre-
quency map, we can also identify the hillslopes that are con-
sistently categorized in each zone as the most representative
hillslopes in that zone. In addition, our results show that dif-
ferent methods yield similar zones provided that the distance
metrics are the same. Differences could be explained as the
further division of an identified zone, such that one method
divided a zone into two, due to a particular metric. For ex-
ample, the conifer-dominated hillslopes were divided into
Zones 3, 4, and 7, which could provide insights into the im-
pact of different bedrock types and topographic features such
as slope.

The identified zones are evaluated with the metrics asso-
ciated with key watershed functions, including foresummer
drought, sensitivity of plant productivity, and river nitrogen
export from subcatchments. Drought sensitivity is mainly af-
fected by the dominant plant species in the hillslopes, which
is consistent with Wainwright et al. (2020). The conifer-
dominated hillslopes have lower sensitivity to the droughts,
since they are located mostly in north-facing hillslopes and
conifer trees have deeper roots. However, there is a difference
in two grassland-dominated zones, Zone 5 and Zone 1, with
the high-elevation grassland less sensitive to droughts, possi-
bly owing to increased water availability at higher elevation.
In addition, in a separate study by Yan et al. (2021), the soil
thickness and associated parameters such as soil diffusion co-
efficients are found to be distinctly different between the two
zones in this domain (Zone 1 and Zone 2).

Nitrogen export is known to be controlled by multiple
factors, such as plant retention (Aber et al., 1998), soil
cover (Sickman et al., 2002), river corridor features (e.g.,
floodplains) (Rogers et al., 2021), and geology (Wan et al.,
2019; Arora et al., 2020; Maavara et al., 2021). Our anal-
ysis showed that the conifer-dominated zone (Zones 3, 4,
and 7) is associated with low nitrogen export, while Zone 2,
which has the highest fraction of aspen forests, is associated
with higher N export. Conifer forests have previously been
observed to have high nitrogen retention (Abrahamsen and
Stuanes, 1998; Sollins and McCorison, 1981), particularly
through ectomycorrhizal uptake (Hogberg et al., 2011). By
contrast, deciduous aspen forests produce annual leaf litters,
with a low C : N content, releasing nitrogen back to the soil
(e.g., DeByle et al., 1985; Kochy and Wilson, 1997; Buck

https://doi.org/10.5194/hess-26-429-2022

and St. Clair, 2012). In addition, Wan et al. (2019) found that
shale was a significant geogenic source of nitrogen, based on
the intensive observation site located in Zone 2 of this wa-
tershed, which is consistent with the global data synthesis
(Houlten et al., 2018). We found that the conifer-dominant
hillslopes, including those in Zone 3, were in sandstone or
igneous rock regions or in more resistive shale with a lower
fracture density. These factors may be combined to reduce
the nitrogen delivery to the river in the conifer-dominated
hillslopes and thus the lower observed river nitrogen exports
from that subwatershed. We acknowledge that our approach
does not explicitly account for microtopography or the small-
scale heterogeneity in the wetland areas, which are consid-
ered biogeochemical hotspots because they are small in area
but have outsized impacts on N export (Duncan et al., 2013;
Rogers et al., 2021). However, we assume that zonation can
still capture a large-scale pattern such that Zone 1 has the
largest coverage of the wetland region.

6 Conclusion

In this paper, we have developed a watershed zonation ap-
proach for characterizing watershed organization and func-
tions based on the bedrock-to-canopy remote sensing (lidar,
hyperspectral, and electromagnetic surveys) and spatial data
layers (soil, geology, and land-cover maps). We first delin-
eated the domain into a set of hillslopes by computing flow
routing based on the lidar-based DEM. To choose an ap-
propriate scale of hillslopes, we defined the ratio between
the across-hillslope variance (i.e., the variance of hillslope-
averaged properties) and the overall variance and investi-
gated the impact of different threshold drainage areas on
the ability of the hillslope-averaged metrics to represent
the watershed-scale heterogeneity. We then applied unsu-
pervised clustering to the hillslope features, including the
hillslope-averaged metrics of spatial data layers, as well as
the percent coverage of categorical variables within each hill-
slope. Our major findings are that (1) we can define the scale
of hillslopes at which the hillslope-averaged metrics can cap-
ture the majority of the overall heterogeneity, particularly for
elevation and net annual potential radiation, (2) the identi-
fied zones (i.e., the groups of hillslopes) have representative
characteristics with respect to co-varied bedrock-to-canopy
properties, (3) different clustering methods generate similar
zonation patterns given the same distance criteria, and (4) the
identified zones could provide information about zone-based
watershed functions, including foresummer drought sensitiv-
ity and river nitrogen exports.

Our approach is similar to catchment clustering and clas-
sification of past studies (e.g., Wagener et al., 2007; Krause
et al., 2014; Kuentz et al., 2017). Those studies, however,
defined the classes of watersheds based on streamflow signa-
tures, which were sparse in space, particularly in headwater
catchments. In our study, the expansion of spatial data lay-
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ers from various remote sensing data layers provides alter-
native opportunities to apply clustering to the regions with-
out streamflow measurements. In addition, although our ap-
proach is similar to the hydrological response unit approach
(Flugel, 1997) or hillslope clustering done by Chaney et
al. (2018), their main purpose was to parameterize hydrolog-
ical models. Our analysis confirmed the significance of zona-
tion using the key watershed properties and functions based
on observational datasets, including novel datasets such as
subsurface structures and signatures from airborne EM.

We recognize that every hillslope is unique, each with dis-
tinct topographic positions, geology, and vegetation. How-
ever, since hillslope-scale studies and experiments are an in-
tegral part of watershed science and critical zone science
(Hinckley et al., 2014; Tokunaga et al., 2019; Wan et al.,
2019), it is important to identify the similarities and differ-
ences among the hillslopes. Our approach provides an ob-
jective way of classifying different hillslopes, including the
evaluation of hillslope scales and the variability associated
with different clustering methods. Using our zonation ap-
proach, we can guide the experimental plot placement as well
as evaluate the representativeness of the selected hillslopes
within the domain of interest. After a particular hillslope is
identified, we can use pixel-by-pixel clustering to map the
heterogeneity within each hillslope associated with micro-
topography and hillslope positions based on high-resolution
images and lidar (e.g., Park and Van De Giesen, 2004; Falco
et al., 2019; Devadoss et al., 2020; Hermes et al., 2020).
This hierarchical representation provides a tractable frame-
work for watershed characterization. Furthermore, Yan et
al. (2021) developed two separate parameterizations for the
soil evolution model in the two hillslopes that belonged to
Zones 1 and 2 and then simulated the variable soil thick-
ness within those hillslopes. In this way, our method can
improve model parameterization in large-scale hydrological
models by honoring distinct boundaries and water/element
export contributions and provide a new comprehensive way
of linking above- and below-ground properties to watershed
functions critical to maintaining water resources.

Code availability. We used Topotoolbox (Schwanghart and Scher-
ler, 2014) for processing spatial data layers. In addition, we used
statistical software R (R Core Team, 2013, http://www.R-project,
last access: 26 January 2022) for statistical analysis, including the
“kmeans” function for KM, the “hclust” function for HC, and the
“mclust” function (Scrucca et al., 2016, https://mclust-org.github.
io/mclust/, last access: 26 January 2022) for GMM. We used MAT-
LAB R2021a (Mathworks, 2022, http://www.mathworks.com, last
access: 20 January 2022) for visualization.

Data availability. All data files associated with calculating nitro-
gen fluxes (gap-filled nitrogen concentrations and gap-filled dis-
charge) are freely available at https://doi.org/10.15485/1841262
(Wainwright et al., 2022).
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