Articles | Volume 20, issue 2
Hydrol. Earth Syst. Sci., 20, 903–920, 2016
Hydrol. Earth Syst. Sci., 20, 903–920, 2016

Research article 26 Feb 2016

Research article | 26 Feb 2016

Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations

W. Qi1,2, C. Zhang1, G. Fu2, C. Sweetapple2, and H. Zhou1 W. Qi et al.
  • 1School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
  • 2Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Harrison Building, Exeter, EX4 4QF, UK

Abstract. The applicability of six fine-resolution precipitation products, including precipitation radar, infrared, microwave and gauge-based products, using different precipitation computation recipes, is evaluated using statistical and hydrological methods in northeastern China. In addition, a framework quantifying uncertainty contributions of precipitation products, hydrological models, and their interactions to uncertainties in ensemble discharges is proposed. The investigated precipitation products are Tropical Rainfall Measuring Mission (TRMM) products (TRMM3B42 and TRMM3B42RT), Global Land Data Assimilation System (GLDAS)/Noah, Asian Precipitation – Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and a Global Satellite Mapping of Precipitation (GSMAP-MVK+) product. Two hydrological models of different complexities, i.e. a water and energy budget-based distributed hydrological model and a physically based semi-distributed hydrological model, are employed to investigate the influence of hydrological models on simulated discharges. Results show APHRODITE has high accuracy at a monthly scale compared with other products, and GSMAP-MVK+ shows huge advantage and is better than TRMM3B42 in relative bias (RB), Nash–Sutcliffe coefficient of efficiency (NSE), root mean square error (RMSE), correlation coefficient (CC), false alarm ratio, and critical success index. These findings could be very useful for validation, refinement, and future development of satellite-based products (e.g. NASA Global Precipitation Measurement). Although large uncertainty exists in heavy precipitation, hydrological models contribute most of the uncertainty in extreme discharges. Interactions between precipitation products and hydrological models can have the similar magnitude of contribution to discharge uncertainty as the hydrological models. A better precipitation product does not guarantee a better discharge simulation because of interactions. It is also found that a good discharge simulation depends on a good coalition of a hydrological model and a precipitation product, suggesting that, although the satellite-based precipitation products are not as accurate as the gauge-based products, they could have better performance in discharge simulations when appropriately combined with hydrological models. This information is revealed for the first time and very beneficial for precipitation product applications.

Short summary
Six precipitation products, including TRMM3B42, TRMM3B42RT, GLDAS/Noah, APHRODITE, PERSIANN, and GSMAP-MVK+, are investigated in the usually neglected area of NE China, and a framework is developed to quantify the contributions of uncertainties from precipitation products, hydrological models, and their interactions to uncertainty in simulated discharges. It is found that interactions between hydrological models and precipitation products contribute significantly to uncertainty in discharge.