Articles | Volume 26, issue 7
https://doi.org/10.5194/hess-26-1845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Critical transitions in the hydrological system: early-warning signals and network analysis
Xueli Yang
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
Chenghao Wang
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
Related authors
No articles found.
Yuqi Huang, Chenghao Wang, Tyler Danzig, Temple R. Lee, and Sandip Pal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3397, https://doi.org/10.5194/egusphere-2025-3397, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We evaluated a high-resolution numerical weather prediction model in a small, semi-arid U.S. city using dense ground-based measurements. While the forecasts showed good skill for temperature and humidity, they consistently overestimated wind and underestimates nighttime cooling, with inaccurate heat advection predictions. The results highlight the need for improved urban representation in forecast models to better support heat warning systems for small cities.
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024, https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Short summary
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution for WAM2layers, while for FLEXPART coupled with WaterSip, we suggest applying bias corrections to optimize the filtering of precipitation particles and adjust evaporation estimates.
Haiwei Li, Yongling Zhao, Chenghao Wang, Diana Ürge-Vorsatz, Jan Carmeliet, and Ronita Bardhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-234, https://doi.org/10.5194/egusphere-2024-234, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We investigated the cooling efficacy of urban trees in different climate zones through a robust meta-analysis, we determine that the cooling efficacy of trees is significantly influenced by the interplay of urban morphology, tree traits, and climate zones. We complement the study by an interactive map, offering a visual and quantitative examination and comparison of the cooling effects of urban trees in different climate zones.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Cited articles
Allen, M. and Ingram, W.: Constraints on future changes in climate and the
hydrologic cycle, Nature, 419, 228–232, https://doi.org/10.1038/nature01092, 2002.
Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and Jones, A.:
Precipitation, radiative forcing and global temperature change, Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991, 2010.
Barlow, M., Nigam, S., and Berbery, E. H.: ENSO, Pacific decadal variability,
and US summertime precipitation, drought, and stream flow, J. Climate, 14,
2105–2128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2, 2001.
Beddington, J. R. and May, R. M.: Harvesting natural populations in a randomly fluctuating environment, Science, 197, 463–465, https://doi.org/10.1126/science.197.4302.463, 1977.
Boers, N., Bookhagen, B., Marwan, N., and Kurths, J.: Spatiotemporal
characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range, Clim. Dynam., 46, 601–617,
https://doi.org/10.1007/s00382-015-2601-6, 2016.
Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and Kurths, J.: Complex networks reveal global pattern of extreme-rainfall
teleconnections, Nature, 566, 373–377, https://doi.org/10.1038/s41586-018-0872-x, 2019.
Brown, P. J., Bradley, R. S., and Keimig, F. T.: Changes in extreme climate
indices for the northeastern United States, 1870–2005, J. Climate, 23,
6555–6572, https://doi.org/10.1175/2010JCLI3363.1, 2010.
Carpenter, S. R. and Brock, W. A.: Rising variance: a leading indicator of
ecological transition, Ecol. Lett., 9, 311–318, https://doi.org/10.1111/j.1461-0248.2005.00877.x, 2006.
Centre for Environmental Data Analysis: CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2018), Centre for Environmental Data Analysis [data set], https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.03/data, last access: 7 April 2022.
Chahine, M.: The hydrological cycle and its influence on climate, Nature, 359, 373–380, https://doi.org/10.1038/359373a0, 1992.
Dai, A.: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010, Clim. Dynam., 41, 633–646, https://doi.org/10.1007/s00382-012-1446-5, 2013.
Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov, V., and Held, H.: Slowing down as an early warning signal for abrupt climate change, P. Natl. Acad. Sci. USA, 105, 14308–14312, https://doi.org/10.1073/pnas.0802430105, 2008.
Deser, C., Phillips, A. S., and Hurrell, J. W.: Pacific interdecadal climate
variability: Linkages between the tropics and the North Pacific during boreal winter since 1900, J. Climate, 17, 3109–3124,
https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2, 2004.
Dore, M. H.: Climate change and changes in global precipitation patterns: what do we know?, Environ. Int., 31, 1167–1181, https://doi.org/10.1016/j.envint.2005.03.004, 2005.
Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and Vose, R. S.:
Comprehensive automated quality assurance of daily surface observations, J. Appl. Meteorol. Clim., 49, 1615–1633, https://doi.org/10.1175/2010JAMC2375.1, 2010.
Fan, J., Meng, J., Ashkenazy, Y., Havlin, S., and Schellnhuber, H. J.: Network analysis reveals strongly localized impacts of El Niño, P. Natl. Acad. Sci. USA, 114, 7543–7548, https://doi.org/10.1073/pnas.1701214114, 2017.
Gutzler, D. S., Kann, D. M., and Thornbrugh, C.: Modulation of ENSO-based
long-lead outlooks of southwestern US winter precipitation by the Pacific
decadal oscillation, Weather Forecast., 17, 1163–1172, https://doi.org/10.1175/1520-0434(2002)017<1163:MOEBLL>2.0.CO;2, 2002.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS
monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7,
109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Insaf, T. Z., Lin, S., and Sheridan, S. C.: Climate trends in indices for
temperature and precipitation across New York State, 1948–2008, Air Qual.
Atmos. Health, 6, 247–257, https://doi.org/10.1007/s11869-011-0168-x, 2013.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, in: Contribution of Working Group II to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. L.. Cambridge University Press, Cambridge, UK and New York, NY, USA, 1132 pp., ISBN 9781107641655, 2014.
Ives, A. R.: Measuring resilience in stochastic systems, Ecol. Monogr., 65,
217–233, https://doi.org/10.2307/2937138, 1995.
Konapala, G. and Mishra, A.: Review of complex networks application in
hydroclimatic extremes with an implementation to characterize spatio-temporal drought propagation in continental USA, J. Hydrol., 555, 600–620, https://doi.org/10.1016/j.jhydrol.2017.10.033, 2017.
Lenton, T. M.: Early warning of climate tipping points, Nat. Clim. Change, 1,
201–209, https://doi.org/10.1038/nclimate1143, 2011.
Lenton, T. M.: Environmental tipping points, Annu. Rev. Environ. Resour., 38,
1–29, https://doi.org/10.1146/annurev-environ-102511-084654, 2013.
Litt, B., Esteller, R., Echauz, J., D'Alessandro, M., Shor, R., Henry, T.,
Pennell, P., Epstein, C., Bakay, R., Dichter, M., and Vachtsevanos, G.:
Epileptic seizures may begin hours in advance of clinical onset: a report of
five patients, Neuron, 30, 51–64, https://doi.org/10.1016/S0896-6273(01)00262-8, 2001.
Liu, J., Wang, B., Cane, M. A., Yim, S. Y., and Lee, J. Y.: Divergent global
precipitation changes induced by natural versus anthropogenic forcing, Nature, 493, 656–659, https://doi.org/10.1038/nature11784, 2013.
Marvel, K. and Bonfils, C.: Identifying external influences on global precipitation, P. Natl. Acad. Sci. USA, 110, 19301–19306, https://doi.org/10.1073/pnas.1314382110, 2013.
Melillo, J. M., Richmond, T. C., and Yohe, G. W.: Climate Change Impacts in the United States: The Third National Climate Assessment, US Global Change
Research Program, Washington, DC, 841 pp., https://doi.org/10.7930/J0Z31WJ2, 2014.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An
overview of the global historical climatology network-daily database, J.
Atmos. Ocean Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.
Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E., and Oberhuber, J. M.: The 1976–77 climate shift of the Pacific Ocean, Oceanography, 7, 21–26,
https://doi.org/10.5670/oceanog.1994.11, 1994.
Newman, M.: Networks, 2nd Edn., Oxford University Press, Oxford, UK, 197–201, https://doi.org/10.1093/oso/9780198805090.001.0001, 2018.
Newman, M. E. and Girvan, M.: Finding and evaluating community structure in
networks, Phys. Rev. E, 69, 026113, https://doi.org/10.1103/PhysRevE.69.026113, 2004.
Newman, M. E., Barabási, A. L. E., and Watts, D. J.: The Structure and
Dynamics of Networks, Princeton University Press, Princeton, USA, ISBN 9780691113579, 2006.
NOAA – National Oceanic and Atmospheric Administration National, Centers for Environmental Information: Climate at a Glance: City Time Series, NOAA [data set], https://www.ncdc.noaa.gov/cag/city/time-series, last access: 7 April 2022.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources,
Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Osborn, T. J. and Jones, P.: The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth, Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, 2014.
Pinker, R. T., Zhang, B., and Dutton, E. G.: Do satellites detect trends in
surface solar radiation?, Science, 308, 850–854, https://doi.org/10.1126/science.1103159, 2005.
Rheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P., Gerstengarbe, F. W., and Werner, P.: Non-linear time series analysis of precipitation events using regional climate networks for Germany, Clim. Dynam., 46, 1065–1074, https://doi.org/10.1007/s00382-015-2632-z, 2016.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., and
Dakos, V.: Early-warning signals for critical transitions, Nature, 461, 53–59, https://doi.org/10.1038/nature08227, 2009.
Song, J. and Wang, Z. H.: Interfacing urban land-atmosphere through coupled
urban canopy and atmospheric models, Bound.-Lay. Meteorol., 154, 427–448,
https://doi.org/10.1007/s10546-014-9980-9, 2015.
Song, J. and Wang, Z.-H.: Evaluating the impact of built environment characteristics on urban boundary layer dynamics using an advanced stochastic approach, Atmos. Chem. Phys., 16, 6285–6301, https://doi.org/10.5194/acp-16-6285-2016, 2016.
Thornton, M. M., Thornton, P. E., Wei, Y., Mayer, B. W., Cook, R. B., and Vose, R. S.: Daymet: Monthly Climate Summaries on a 1-km Grid for North America, Version 3, ORNL DAAC, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/1345, 2018.
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of daily meteorological variables over large regions of complex terrain, J.
Hydrol., 190, 214–251, https://doi.org/10.1016/S0022-1694(96)03128-9, 1997.
Tsonis, A. A. and Roebber, P. J.: The architecture of the climate network,
Physica A, 497–504, https://doi.org/10.1016/j.physa.2003.10.045, 2004.
Tsonis, A. A., Swanson, K., and Kravtsov, S.: A new dynamical mechanism for
major climate shifts, Geophys. Res. Lett., 34, L13705, https://doi.org/10.1029/2007GL030288, 2007.
Tsonis, A. A., Swanson, K. L., and Wang, G.: On the role of atmospheric
teleconnections in climate, J. Climate, 21, 2990–3001, https://doi.org/10.1175/2007JCLI1907.1, 2008.
US Census Bureau: TIGER/Line Geodatabases, US Census Bureau [data set], https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html, last access: 7 April 2022.
Van Nes, E. H. and Scheffer, M.: Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift, Am. Nat., 169, 738–747,
https://doi.org/10.1086/516845, 2007.
Venegas, J. G., Winkler, T., Musch, G., Melo, M. F. V., Layfield, D., Tgavalekos, N., Fischman, A. J., Callahan, R. J., Bellani, G., and Harris, R. S.: Self-organized patchiness in asthma as a prelude to catastrophic shifts, Nature, 434, 777–782, https://doi.org/10.1038/nature03490, 2005.
Wang, C. and Wang, Z. H.: A network-based toolkit for evaluation and
intercomparison of weather prediction and climate modelling, J. Environ.
Manage., 268, 110709, https://doi.org/10.1016/j.jenvman.2020.110709, 2020.
Wang, C., Wang, Z. H., and Li, Q.: Emergence of urban clustering among U.S. cities under environmental stressors, Sustain. Cities Soc., 63, 102481,
https://doi.org/10.1016/j.scs.2020.102481, 2020a.
Wang, C., Wang, Z. H., and Sun, L.: Early-warning signals for critical
temperature transition, Geophys. Res. Lett., 47, e2020GL088503, https://doi.org/10.1029/2020GL088503, 2020b.
Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G.,
Forgan, B., Kallis, A., Russak, V., and Tsvetkov, A.: From dimming to
brightening: Decadal changes in solar radiation at Earth's surface, Science, 308, 847–850, https://doi.org/10.1126/science.1103215, 2005.
Yang, J., Wang, Z. H., and Huang, H. P.: Intercomparison of the surface energy partitioning in CMIP5 simulations, Atmosphere, 10, 602, https://doi.org/10.3390/atmos10100602, 2019.
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
In this study, we investigated potentially catastrophic transitions in hydrological processes by...