Articles | Volume 26, issue 7
https://doi.org/10.5194/hess-26-1845-2022
https://doi.org/10.5194/hess-26-1845-2022
Research article
 | 
12 Apr 2022
Research article |  | 12 Apr 2022

Critical transitions in the hydrological system: early-warning signals and network analysis

Xueli Yang, Zhi-Hua Wang, and Chenghao Wang

Related authors

Urban heat forecasting in small cities: Evaluation of a high-resolution operational numerical weather prediction model
Yuqi Huang, Chenghao Wang, Tyler Danzig, Temple R. Lee, and Sandip Pal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3397,https://doi.org/10.5194/egusphere-2025-3397, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Unraveling the discrepancies between Eulerian and Lagrangian moisture tracking models in monsoon- and westerly-dominated basins of the Tibetan Plateau
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024,https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Cooling efficacy of trees across cities is determined by background climate, urban morphology, and tree trait
Haiwei Li, Yongling Zhao, Chenghao Wang, Diana Ürge-Vorsatz, Jan Carmeliet, and Ronita Bardhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-234,https://doi.org/10.5194/egusphere-2024-234, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022,https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021,https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary

Cited articles

Allen, M. and Ingram, W.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 228–232, https://doi.org/10.1038/nature01092, 2002. 
Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and Jones, A.: Precipitation, radiative forcing and global temperature change, Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991, 2010. 
Barlow, M., Nigam, S., and Berbery, E. H.: ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow, J. Climate, 14, 2105–2128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2, 2001. 
Beddington, J. R. and May, R. M.: Harvesting natural populations in a randomly fluctuating environment, Science, 197, 463–465, https://doi.org/10.1126/science.197.4302.463, 1977. 
Boers, N., Bookhagen, B., Marwan, N., and Kurths, J.: Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range, Clim. Dynam., 46, 601–617, https://doi.org/10.1007/s00382-015-2601-6, 2016. 
Download
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a critical slowing down in complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Share