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Abstract. One critical challenge of studying Earth’s hy-
droclimate system, in the face of global environmental
changes, is to predict whether the system approaches a crit-
ical threshold. Here, we identified the critical transitions of
hydrological processes, including precipitation and potential
evapotranspiration, by analyzing their early-warning signals
and system-based network structures. The statistical early-
warning signals are manifest in increasing trends of autocor-
relation and variance in the hydrologic system ranging from
regional to global scales, prior to climate shifts in the 1970s
and 1990s, in agreement with observations. We further ex-
tended the conventional statistics-based measures of early-
warning signals to system-based network analysis in urban
areas across the contiguous United States. The topology of
an urban precipitation network features hub-periphery (clus-
tering) and modular organization, with strong intra-regional
connectivity and inter-regional gateways (teleconnection).
We found that several network parameters (mean correlation
coefficient, density, and clustering coefficient) gradually in-
creased prior to the critical transition in the 1990s, signify-
ing the enhanced synchronization among urban precipitation
patterns. These topological parameters can not only serve as
novel system-based early-warning signals for critical transi-
tions in hydrological processes but also shed new light on
structure–dynamic interactions in the complex hydrological
system.

1 Introduction

The hydrological cycle plays an important role in the Earth’s
changing climate system, especially via the exchanges of

heat and moisture between the atmosphere and the Earth’s
surface (Chahine, 1992; Held and Soden, 2006; Oki and
Kanae, 2006). However, compared with temperature shifts,
changes in the global hydrological cycle (e.g., precipitation)
are relatively less well understood, despite the strong cou-
pling between energy and water transport (Allen and Ingram,
2002; Marvel and Bonfils, 2013; Yang et al., 2019). Andrews
et al. (2010) pointed out that the precipitation response to
climate change can be roughly split into a fast response part
that is strongly correlated with radiative forcing absorbed by
the atmosphere and a relatively slow response to global sur-
face temperature change. Existing studies have also shown
that the change in global precipitation can be attributed to
both natural changes (e.g., solar–volcanic forcing) and an-
thropogenic forcing (e.g., emission of greenhouse gases) (Liu
et al., 2013; Marvel and Bonfils, 2013). A comprehensive
review by Dore (2005) suggested increased precipitation at
high latitudes in the Northern Hemisphere; decreased precip-
itation in China, Australia, and the small island states in the
Pacific; and increased variance in precipitation in equatorial
regions. According to IPCC (2014), annual precipitation over
the midlatitude land areas of the Northern Hemisphere has
increased on average since 1901, with an increasing number
of heavy precipitation events in some regions. In addition, the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
models (IPCC, 2014) predicted a nonuniform change in pre-
cipitation in the future. For example, mean precipitation will
likely decrease in many midlatitude and subtropical dry re-
gions, whereas an increase in mean precipitation is projected
in many midlatitude wet regions under the RCP8.5 scenario.

Precipitation in the contiguous United States (CONUS)
has increased since 1990 with substantial seasonal and re-
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gional variation, and the projected precipitation changes over
this century are not uniform (Melillo et al., 2014). Insaf et
al. (2013) observed an increasing trend in annual precipita-
tion over New York State, with a significant positive trend in
several precipitation indicators from 1948 to 2008. Similar
wetting trends were observed in Brown et al. (2010) over the
northeastern CONUS. Existing studies have identified con-
nections between CONUS precipitation and some climate
indices (especially those related to sea surface temperature,
SST, anomalies), highlighting the important role that cli-
mate variability plays in changing regional rainfall patterns
(e.g., Barlow et al., 2001; Miller et al., 1994). Gutzler et al.
(2002) found that the Southwest winter precipitation anoma-
lies are strongly affected by the El Niño–Southern Oscilla-
tion (ENSO) cycle and the phase of the Pacific decadal oscil-
lation using long-term (1950–1997) index analysis. In partic-
ular, the shift between dry and wet periods is tied to the phase
change of the Interdecadal Pacific Oscillation (IPO), as has
been observed in many studies (e.g., Dai, 2013; Deser et al.,
2004). Owing to the close interactions among the hydrolog-
ical cycle (especially precipitation), ecosystems, and human
society, critical transitions in the hydrological system pose
severe risks to humans, economies, and ecosystems, increas-
ing their vulnerability to water shortage, storms, flooding,
and drought (Melillo et al., 2014). Future climate changes,
along with population growth, will further amplify these ex-
isting risks in many regions (IPCC, 2014). To adjust existing
mitigation and adaptation policies and proactively develop
new strategies, it is imperative to identify critical hydrolog-
ical transitions and their interplay with climate system dy-
namics.

Existing research has identified critical transitions, also
known as “tipping points”, in various dynamic systems, dur-
ing which the system shifts from one state to another, induced
by small perturbations (Scheffer et al., 2009; Lenton, 2013).
As it approaches a critical threshold, a dynamic system will
slow down with respect to its recovery from small pertur-
bations; this phenomenon is also known as critical slowing
down (Litt et al., 2001; Van Nes and Scheffer, 2007; Vene-
gas et al., 2005). Intuitively, the intrinsic rate of change in a
system decreases with increasing memory for perturbations
(Scheffer et al., 2009). Mathematically, the maximum real
part of the eigenvalues of the Jacobian matrix tends to zero in
critical slowing down, often with early-warning signals such
as increasing autocorrelation, return time, skewness, and
variance (Lenton, 2011; Ives, 1995; Carpenter and Brock,
2006; Scheffer et al., 2009). In particular, early-warning sig-
nals have been identified for abrupt climate change based on
paleoclimatic records and numerical simulations (Dakos et
al., 2008; Lenton, 2011). For example, Dakos et al. (2008)
found that eight ancient abrupt climate shifts were all pre-
ceded by a slowing down of the fluctuations (with early-
warning signals of increased autocorrelation) before the ac-
tual shift. It is noteworthy that these studies usually have
timescales ranging from 104 to 106 years, with relatively few

implications for concurrent climate and variability in the An-
thropocene. Recently, Wang et al. (2020b) identified early-
warning signals of the early 20th century global warming and
several recent heat waves with timescales much shorter than
existing paleoclimate studies.

On the other hand, interactions among hydrological pro-
cesses and climate variability reveal that the complex sys-
tem dynamics run on top of the topological substrata of con-
nected players (nodes), or “networks”. Over recent years,
more research effort has been devoted to applications of net-
work theory to hydrological and climate systems (e.g., Boers
et al., 2016, 2019; Fan et al., 2017; Konapala and Mishra,
2017; Wang and Wang, 2020). For instance, Konapala and
Mishra (2017) analyzed the spatiotemporal propagation of
droughts in the CONUS based on three network-based met-
rics (strength, direction, and distance). Complex network the-
ory has also been employed to investigate regional and global
nonlinear and long-range connections (teleconnections) for
different types of rainfall events as well as the synchroniza-
tion of extreme rainfall events (Boers et al., 2016, 2019;
Rheinwalt et al., 2016). In particular, change in the hydro-
logic cycle may be reflected by the variations in the topo-
logical structure of networks. The climate shift in the mid-
1970s, for instance, has been investigated via the coupling
strength of the network based on major climate indices (Tso-
nis et al., 2007). Tsonis et al. (2008) also showed that the
“supernodes” (nodes connecting with many other nodes) in
the climate network correspond to major atmospheric tele-
connections. Wang et al. (2020a) identified urban clustering
patterns in response to environmental stressors (precipitation,
surface temperature, and aerosol optical depth) with differ-
ent temporal scales based on the affinity propagation method.
Nevertheless, despite being a powerful new tool, the applica-
tion of network analysis to urban climates remains hitherto
underexplored, especially with respect to its potential use to
detect critical transitions in complex dynamic systems.

In this paper, we aim to investigate critical transitions
in hydrological processes (primarily precipitation) at vari-
ous spatial scales (ranging from city to global scales), us-
ing both conventional statistical and novel network measures.
Detailed analyses at different scales demonstrate the versatil-
ity of the proposed method and will be of interest to locality-
concerned researchers and policymakers. In particular, anal-
ysis in individual US cities (see Sect. 3.1 and Fig. 3 below)
will enhance our understanding of the physics of urban hy-
droclimate via local land–atmosphere interactions (Song and
Wang, 2015, 2016).

The remainder the paper is organized as follows. We
present the data sources for precipitation and potential evap-
otranspiration (PET) in Sect. 2 as well as the definition
of early-warning signals and basic network analysis tech-
niques. These methods are then applied to urban areas in
the CONUS, and the results are presented in Sect. 3: statis-
tical variance and autocorrelation in Sect. 3.1 and changes
in network structure in Sect. 3.2. Specifically, the results of
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Sect. 3.1 are for PET analysis at the global scale and pre-
cipitation climatology at city and global scales. The network
analysis in Sect. 3.2 is applied to regional precipitation in the
CONUS. The choice of different scales in Sect. 3 is partly
due to data availability (e.g., the inadequacy of precipitation
data to construct precipitation network at individual city or
global scales) and partly to avoid the repetition of similar
findings (e.g., the trend of statistical variance and autocor-
relation of the CONUS precipitation closely resembles its
urban-scale counterparts). We then conclude this study with
main findings and future perspectives in Sect. 4.

2 Methods

2.1 Data sources

In this study, we analyze the statistical and topological mea-
sures of abrupt precipitation and PET changes at multiple
scales, ranging from regional to global scales. For global-
scale analysis of early-warning signals, we retrieved the
long-term (1901–2018) gridded global monthly precipitation
and PET data with a spatial resolution of 0.5◦× 0.5◦ from
the University of East Anglia Climatic Research Unit Time-
Series (CRU TS) version 4.03 dataset (Centre for Environ-
mental Data Analysis, 2022). This gridded dataset covers
all land domains of the world except Antarctica (Harris et
al., 2020). CRU TS was produced using the angular dis-
tance weighting (ADW) method to interpolate monthly cli-
mate anomalies based on extensive weather station observa-
tions. Here, we calculated the annual global means of pre-
cipitation and PET over land as the weighted averages of the
Northern Hemisphere and Southern Hemisphere, following
Osborn and Jones (2014). Note that means for each hemi-
sphere are the areal-weighted averages of all non-missing
values.

For regional-scale analysis of early-warning signals, we
obtained annual precipitation time series for selected cities
in the CONUS from the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmental
Information (NCEI) Climate at a Glance database (NOAA,
2022). This city-level database contains monthly temper-
ature and precipitation data for 215 US cities: 27 cities
have data recorded by Automated Surface Observing Sys-
tem (ASOS) stations, and the remaining 188 cities use Global
Summary of the Month (GSOM) data. In particular, the
GSOM dataset is based on the Summary of the Day ob-
servations of the Global Historical Climatology Network–
Daily (GHCN-Daily) dataset (Menne et al., 2012), in which
the total monthly precipitation is based on daily or multiday
(if daily is missing) precipitation reports. GHCN-Daily data
have been quality controlled using a suite of automated al-
gorithms designed to detect as many errors as possible while
maintaining a low false-positive rate (valid observations er-
roneously identified as invalid) (Durre et al., 2010). Addi-

tional quality control has also been performed with a val-
idation process that involves independent calculations and
cross-comparisons to ensure computational accuracy.

For the subsequent network analysis, we focus on pre-
cipitation over all cities in the CONUS. We retrieved
the 1 km× 1 km monthly precipitation data over the re-
gion (1980–2018) from the Daymet Version 3 dataset
(Thornton et al., 2018). This dataset uses spatial convolution
of a truncated Gaussian weighting filter applied to a number
of stations (on average 15 for precipitation) (Thornton et al.,
1997). Daymet uses daily precipitation measured by ground-
based meteorological stations from the GHCN-Daily dataset
(Menne et al., 2012). In contrast to the regional-scale anal-
ysis of early-warning signals (single station for each city),
here we derived the time series of monthly precipitation spa-
tially averaged over each urban area in the CONUS based
on Daymet dataset. Note that urban areas (or cities) in this
study are defined as areas with densely developed land and a
population over 50 000, and the city boundaries are retrieved
from the Topologically Integrated Geographic Encoding and
Referencing (TIGER) system, US Census Bureau (2022).

2.2 Early-warning signals for critical transition

2.2.1 The characteristic changes of critical slowing
down

A critical slowing down near the transition can be related to
many statistical measures of the system dynamics subject to
perturbations. The most widely used two measures are vari-
ance (or standard deviation – SD) and autocorrelation, which
are both expected to increase near the critical transition. This
can be expressed with a simple autoregressive model with
lag 1 (AR1) of the perturbation (Scheffer et al., 2009; Wang
et al., 2020b):

ε (tn+1)= αε (tn)+ σRn, (1)

where ε(tn) is the deviation of the state variable (e.g., precip-
itation or PET in this study) from the equilibrium at time tn,
Rn is a random number sampled from a normal distribution
with a standard deviation of σ , and α = eλ1t (where λ is the
rate of recovery from the perturbation – zero for white noise
and one for red noise). Therefore, the statistical expectation
of this autocorrelation process is (Ives, 1995)

E(ε)=
1

1−α
, (2)

and the variance is given by

Var(ε)=
σ 2

1−α2 . (3)

The recovery speed λ approaches zero as the return speed
to equilibrium decreases (i.e., slows down) when a system
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is close to a critical transition. As a result, the autocorrela-
tion coefficient increases to one and the variance (or stan-
dard deviation) evolves toward infinity (Scheffer et al., 2009).
The increase in the autocorrelation and variance (or standard
deviation) of the fluctuations due to critical slowing down
near transitions could serve as early-warning signals for the
threshold in the system.

2.2.2 Statistical measures of early-warning signals for
critical transition

To quantify the early-warning signals presaging the system
slowing down, we first identified the time instant (year) of
critical transition in the precipitation and PET time series.
More specifically, we first calculated the cumulative precipi-
tation and PET time series (not shown here) based on origi-
nal time series. The year of critical transition was determined
based on the abrupt change in slopes in each cumulative time
series. We then divided each original precipitation (or PET)
time series into two (quasi-)stationary parts (each with a con-
stant slope in cumulative data) using this critical transition
year. The anomalies of PET and precipitation were derived
by subtracting their mean values from the time series in the
periods prior and posterior to the transition correspondingly.
The subsequent analyses focus on the parts prior to the oc-
currence of critical transitions, whereas the parts posterior to
the transitions are truncated as irrelevant to early warning.

The early-warning signals for global- and city-scale
changes are quantified using the AR1 and SD; the mecha-
nism is detailed in Sect. 2.2.1 above (Ives, 1995; Carpenter
and Brock, 2006; Van Nes and Scheffer, 2007). In addition,
7 and 13 years are selected as the sliding window sizes (w)
for the early-warning signal analysis of short-term and long-
term data series, respectively, based on a previous sensitiv-
ity analysis (Tsonis et al., 2007). Sliding windows ensure a
sufficient number of samples for estimating correlations and
standard deviations while avoiding the dilution of signals in
critical transitions (Wang et al., 2020b).

The lag-1 autocorrelation, AR1, with sliding window
size w centered at xk is given by

AR1,k =

k+(w−1)/2−1∑
i=k−(w−1)/2−1

[(
xi −µt1

)(
xi+1−µt2

)]
[
k+(w−1)/2−1∑
i=k−(w−1)/2−1

(
xi −µt1

)2]1/2[
k+(w−1)/2−1∑
i=k−(w−1)/2−1

(
xi+1−µt2

)2]1/2 , (4)

where xi denotes the variables (annual precipitation and PET
anomalies), and µt1 and µt2 are arithmetic averages of vari-
ables in the intervals [k− (w− 1)/2− 1, k+ (w− 1)/2− 1]
and [k− (w− 1)/2, k+ (w− 1)/2], respectively. The (sam-
ple) standard deviation (SDk) is computed as follows (Wang
et al., 2020b):

Figure 1. Characteristic changes in the system of a harvested pop-
ulation when approaching the critical transition: (a) population dy-
namics and (b) statistical metrics when the system is far from tip-
ping (E = 0.1); (c) population dynamics and (d) statistical metrics
when the system is closer to tipping (E = 0.4). Note that the spin-up
periods are removed.

SDk =

√√√√ 1
w− 1

k+(w−1)/2∑
i=k−(w−1)/2

(xi −µt2)
2. (5)

2.2.3 Illustrative example of the autocorrelation
process

The characteristic changes in the AR1 and SD in an autocor-
relation process are illustrated here using a benchmark exam-
ple of a harvested population (Beddington and May, 1977).
Its governing dynamics are given by a stochastic differential
equation:

dX
dt
= [r(t)−E]X− r0X

2/K. (6)

Here, dX/dt is the net growth rate of population X; r(t)=
r0+γ (t), where r0 is the mean value of intrinsic growth rate
(set to 0.6 in this example), and γ (t) is a white noise with
zero mean; K is the carrying capacity (set to 10); and E is
the harvesting rate. Figure 1 shows the evolution of the pop-
ulation subject to the dynamics in Eq. (6) and the results of
two statistical metrics with different harvesting rates (0.1 and
0.4 for low and high rates, respectively). When the system is
far from the tipping point (low harvesting rate; Fig. 1a and b),
its resilience to perturbations is large with a relatively high
recovery rate, characterized by a relatively low AR1 and SD.
In comparison, the resilience decreases when the system is
closer to the critical transition (high harvesting rate; Fig. 1c
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and d), and the rate of recovery from perturbations declines
as a consequence of critical slowing down. The system has
a relatively long memory for perturbations, resulting in a
stronger correlation between subsequent states and a larger
SD in a stochastic environment (Scheffer et al., 2009).

2.3 Precipitation network analysis

The hydrological system dynamics often evolve on top of
complex topological structures such as climate networks
(Konapala and Mishra, 2017); their interactions modulate the
potential tipping of the system. In this section, we extend the
analysis of early-warning signals for precipitation transitions
beyond the changes in conventional means (AR1 and vari-
ance) and investigate the system structure represented by the
precipitation network of all CONUS cities.

In its simplest form, a network (or graph) can be mathe-
matically represented as a group of nodes or vertices that are
connected together. The connection between a pair of nodes
is called a link (edge), representing the similarity (or inverse
distance) of attributes of the two nodes. Note that we focus
here on undirected and unweighted networks only, although
the proposed procedure of analysis in this study remains ap-
plicable to more complicated (e.g., directed and/or weighted)
networks with slight modification.

More specifically, in this study, we treat 481 CONUS cities
(see Sect. 2.1) as nodes and construct the network based
on monthly precipitation retrieved from the Daymet dataset
(Thornton et al., 2018) for the period from 1980 to 2018
(see Sect. 2.1). The connectivity of precipitation networks is
constructed using the Pearson correlation coefficient (a com-
monly adopted distance function) between monthly precipi-
tation time series of two cities i and j (ρij ), which is defined
as follows:

ρij =
E
[(
Pi −µPi

)(
Pj −µPj

)]
σPiσPj

, (7)

where Pi is the precipitation time series, with the subscript i
denoting the node (city) number; and µ and σ are the mean
and standard deviation of the precipitation time series, re-
spectively. Note that the correlation coefficient is only one
kind of measure to describe connectivity, and other similarity
(or dissimilarity) functions (e.g., Minkowski distance) (Wang
et al., 2020a) are also applicable in network construction. The
connectivity between a pair of nodes forms the adjacency
matrix A (or Aij , i, j = 1, 2, . . . ,N ), which is defined as fol-
lows (Tsonis and Roebber, 2004):

Aij =2
(
ρij − ρthreshold

)
, (8)

where 2 is the Heaviside step function, ρthreshold is the
threshold value, and N is the number of cities. Here, we
choose a threshold of 0.5, which is a statistically significant
example, as suggested by previous studies (Tsonis and Roeb-
ber, 2004; Wang and Wang, 2020).

To investigate the topological feature of the precipitation
network and how it evolves over time, four representative
metrics are then analyzed: the mean distance (or equiva-
lently the network-average Pearson correlation coefficient),
the density, the network modularity, and the clustering coef-
ficient. The mean distance describes the overall connectivity
of the network and is given by (Tsonis et al., 2007)

d(t)=
2

N(N − 1)

∑
d tij∈Dt

d tij , (9)

where d(t) denotes the mean network distance at current
time t at the center of a sliding window, d tij represents the
distance between a pair nodes i and j at time t , and Dt is the
distance matrix for each sliding window. Equivalently, the
mean network distance can be measured using the Pearson
correlation coefficient:

d tij =

√
2
(

1− |ρtij |
)
. (10)

The distance can be thought of as the average correlation
between all possible pairs of nodes and is interpreted as a
measure of synchronization among different components of
a network: a distance of zero corresponds to a complete syn-
chronization (Tsonis et al., 2007). The mean (nodal) Pearson
correlation coefficient is

ρ(t)=
2

N(N − 1)

∑
ρtij∈Dt

ρtij , (11)

and it is clear that the mean distance and the mean Pearson
correlation coefficient are inversely correlated when the latter
is positive.

The density of a network is the fraction of edges that are
present and can have a value between zero and one. It is cal-
culated as follows:

ρ′ =
2m

N(N − 1)
, (12)

where m is the total number of edges. The density represents
the probability that a pair of nodes picked at random from the
whole network are connected by an edge. It plays an impor-
tant role in the random graph model (Newman, 2018). The
larger the density value, the denser the network.

The modularity is the number of edges falling within
groups minus the expected number in an equivalent network
with edges placed at random. It describes how strong the
community structure is (Newman et al., 2006) and is defined
as follows:

Q=
1

2m

∑
ij

(
Aij −

kikj

2m

)
δgigj , (13)

where gi is the group to which node i belongs, δij is the
Kronecker delta function, and ki is the degree (number of
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Figure 2. Time series of anomalies, AR1, and SD of global (a) PET and (b) precipitation. The horizontal lines with arrows show the width of
one moving window (13 years), the vertical dashed red lines represent critical transitions, and the gray bands represent the transition phase.

links) of node i. A network with positive and large modular-
ity values is preferable for research and real-world applica-
tions (Newman and Girvan, 2004).

The clustering coefficient of a network is defined as fol-
lows:

C =
1
N

N∑
i=1

ni

ki (ki − 1)/2
, (14)

where ni is the number of edges among the nearest neighbors
of the ith node. Topologically, the clustering coefficient is the
fraction of paths with the length equal to two in the network
that are closed, and it quantifies the extent to which a pair
of nodes with common neighbor are also neighbors of each
other (Newman, 2018).

3 Results and discussion

3.1 Statistical measures of early-warning signals

We first identify the conventional early-warning signals at
the global scale, the AR1 and SD, for the potential evapo-
transpiration and precipitation anomalies using the algorithm
detailed in Sect. 2.2. Figure 2 shows PET and precipitation
anomalies and the early-warning signals prior to critical tran-
sitions. The critical transition of global PET occurred in the
year 1994 (denoted by the red dashed line in Fig. 2a), which
is generally consistent with the transition of the solar radi-
ation trend at the Earth’s surface in ∼ 1990 (Pinker et al.,
2005; Wild et al., 2005). This transition from decreasing to
increasing global radiation (also known as the transition from
global dimming to brightening) has been found in many ob-
servational records, primarily due to changes in cloudiness,
aerosol loadings, and atmospheric transparency (Pinker et al.,
2005). It is clear from Fig. 2a that both the AR1 and SD of
global PET increased gradually over time for more than

1 decade (one sliding window) prior to the critical transition.
Per theoretical analysis in Sect. 2, the increase in the AR1
and SD apparently presages the critical slowing down of the
rate of recovery from perturbation, as the system evolved ap-
proaching the transition in 1994.

We then proceed to identify early-warning signals for pre-
cipitation at the city scale, following the same procedure
as that utilized for the global-scale analysis above. Fig-
ure 3 shows the results for four CONUS cities (New York
City, NY; Seattle, WA; Fresno, CA; and Miami, FL). These
cities were preselected as being representative of the distinct
regional geographic conditions and background climates of
their locations. Note that the monthly precipitation data are
from 1895 to 2019 (125 years) for New York City and
Fresno, whereas the data are from 1948 to 2019 (72 years)
for Seattle and Miami. For individual cities, the times (years)
at which the critical transition occurred in the precipita-
tion records differ: 1967 for New York City, 1993 for Seat-
tle, 1971 for Fresno, and 1993 for Miami. The results are
generally in good agreement with studies on climate phase
changes. Those phase changes have been associated with sig-
nificant changes in climate variability, such as global tem-
perature, ENSO, and the IPO. For example, the switch of the
IPO from a cold phase to a warm phase around 1977 induced
a clear upward trend in precipitation over much of the west-
ern and central regions (e.g., Oklahoma, Kansas, and Mis-
souri) of the CONUS, whereas a latter shift in around 1999
(back to a cold phase) resulted in decreased precipitation
(Dai, 2013). The results of early-warning signals are also
shown in Fig. 3. Here, again, we find that the statistical mea-
sures of the AR1 and SD generally increase with time in all
four cities prior to the emergence of transitions.
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Figure 3. Time series of anomalies, AR1, and SD of precipitation in (a) New York, (b) Seattle, (c) Fresno, and (d) Miami in the CONUS.
The horizontal lines with arrows show the width of one moving window (13 years), the vertical dashed red lines represent critical transitions,
and the gray bands represent the transition phase.

Table 1. The division of CONUS cities into nine geographical regions.

Number Region name States

1 Ohio Valley IL, IN, KY, MO, OH, TN, and WV
2 Upper Midwest IA, MI, MN, and WI
3 Northeast CT, DE, MA, MD, ME, NH, NJ, NY, PA, RI, and VT
4 Northwest ID, OR, and WA
5 South AR, KS, LA, MS, OK, and TX
6 Southeast AL, FL, GA, NC, SC, and VA
7 Southwest AZ, CO, NM, and UT
8 West CA and NV
9 Northern Rockies and Plains MT, ND, NE, SD, and WY

3.2 Network representation of critical transitions

In this section, we extend the concept of early-warning sig-
nals for critical transitions in hydrological systems from con-
ventional time series analysis to the topological analysis
of their network structure. We first construct the precipita-
tion networks based on the monthly precipitation data for
all CONUS 481 cities in the period from 1980 to 2018 re-

trieved from the Daymet dataset (Thornton et al., 2018),
with a threshold similarity of 0.5 (detailed in Sect. 2.3).
The CONUS precipitation network generated using the entire
time series (39 years× 12 months) is shown in Fig. 4a. All
CONUS cities are further subdivided into nine geographic re-
gions following Wang and Wang (2020), as listed in Table 1.
The connectivity, represented by the adjacency matrix, of the
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precipitation network is shown in Fig. 4b, with the nine re-
gions marked.

From Fig. 4, it is clear that the 39-year aggregated CONUS
urban precipitation network is largely occupied by intra-
regional connection, manifest as regional clusters on the ge-
ographic map (Fig. 4a) and dark (connected) diagonal blocks
in the adjacency matrix (Fig. 4b). This is consistent with a
clustering analysis based on monthly precipitation (1981–
2010) in CONUS cities (Wang et al., 2020a). This is phys-
ical, as the patterns of precipitation and its anomalies in a
city are predominated by the geographic controls and back-
ground climate conditions in the region where the city is lo-
cated. Thus, the dense intra-regional connections (diagonal
blocks in Fig. 4b) reveal the similarity of precipitation pat-
terns among cities with a similar climate environment, or, in
other words, “like is connected to like” (Newman and Girvan,
2004). This topological feature also shows that the CONUS
precipitation network is highly assortative with large modu-
larity (Q= 0.589), as the modularity reveals network com-
munity structures.

In addition to the modular structure reflected as dense
intra-regional connectivity, the precipitation network also
includes some inter-regional (Fig. 4a) or “off-diagonal”
(Fig. 4b) connections. The presence of long-range, out-of-
region connectivity is usually formed by complex interac-
tions via atmospheric gateways (teleconnection) (Boers et
al., 2019). For example, it is found that precipitation patterns
are similar in the Ohio Valley (Region 1) and Upper Mid-
west (Region 2) (same for the West and Northwest), which is
shown as the off-diagonal connection in Fig. 4b. Similar hy-
drological teleconnections have been observed in Konapala
and Mishra (2017) and Wang et al. (2020a). For example,
Konapala and Mishra (2017) found that the Ohio Valley re-
gion plays an important role in propagating droughts (with
higher values of outward strength) toward adjacent regions
such as the Upper Midwest (Region 2) and Northeast (Re-
gion 3), consistent with the off-diagonal connections shown
in Fig. 4b.

To find how the network structure responds to (or presages,
as early-warning signals of AR1 and SD) critical transitions
in the CONUS precipitation system, we then proceed to con-
struct the time-varying networks (cf. the aggregated 39-year
network in Fig. 4) using a sliding window of 7 years (fol-
lowing Sect. 2.2) from the same 39-year (1980–2019) set of
Daymet precipitation data. In addition, we follow the same
procedure for analyzing the time series of cumulative pre-
cipitation in the CONUS and determine the year of critical
transition at the emergence of abrupt change in the slope of
cumulative precipitation. In this case, the critical transition
for precipitation in the CONUS urban areas was around the
year 1998, which is consistent with the IPO phase changes
in the 1990s (Dai, 2013; Deser et al., 2004). This can also be
seen from Fig. 5a, as the early-warning signal of SD had a
clear increasing trend, whereas the trend of AR1 was slightly
obscure with a 7-year window size. Nevertheless, a clear in-

crease immediately prior to the transition is still observed for
the AR1 in Fig. 5a.

In addition, we also find that the network topology has
a significant response to the critical transition, as shown in
Fig. 5. The mean nodal correlation coefficient ρ, the net-
work density ρ′, and the clustering coefficient C all exhib-
ited a clear trend of increase prior to the transition. Note
that ρ is the structural parameter prior to the construction of
networks, whereas ρ′ and C are posterior parameters deter-
mined from the topology of constructed networks. Further-
more, the mean distance d is (nearly) inversely correlated
with the mean nodal correlation coefficient, so it is expected
that d decreased prior to the transition. The increase in ρ
(or, equivalently, the decrease in d) suggests that, on average,
the connectivity among all cities in the CONUS precipitation
network was enhanced prior to the transition. This is likely
attributable to the strengthening of synchronization of pre-
cipitation events (Boers et al., 2016; Rheinwalt et al., 2016)
via, e.g., propagation of precipitation fronts entraining larger
urban areas than before, as a result of critical slowing down in
recovery from system perturbation (e.g., extreme rainfalls).
Similar patterns of increases in structural correlation ρ and
decreases in mean distance have been observed in other cli-
mate networks by Tsonis et al. (2007).

The enhanced network connectivity prior to critical transi-
tions, manifested as an increase in nodal correlation ρ (or
a decrease in mean distance d), led to the increase in the
total number of links and the network density ρ′ (the frac-
tion of edges in the network) (Fig. 5b). The clustering co-
efficient C also increased as a result of enhanced commu-
nity structure predominated by the intra-regional connections
(Fig. 4). In contrast, the modular structure of the precipi-
tation network remained insusceptible to the emergence of
critical transition and enhanced synchronization of precip-
itation events, with the value of modularity Q fluctuating
around 0.55–0.57 in the 7-year window size. This is seem-
ingly because the critical transition tends to enhance both
the local community structure (intra-regional connection)
and the teleconnection (inter-regional connection), thereby
leaving the modular organization of the entire network un-
changed. Qualitatively, this means that the topological struc-
ture of the CONUS precipitation network, despite its tem-
poral evolution and changes in the overlying dynamics (the
occurrence of critical transition or slowing down), remains
“like is connected to like”.

4 Concluding remarks

In this study, we investigated the early-warning signals of po-
tential critical transitions in the hydrological system, in par-
ticular the precipitation and PET, as a result of the critical
slowing down of system recovery rate from dynamic per-
turbation. The occurrence of critical transitions in precipi-
tation climatology agreed with recorded observation, consis-
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Figure 4. The precipitation network of CONUS cities: (a) the geographic map of connectivity and (b) the adjacency matrix, with Aij = 1 in
black (connected),Aij = 0 in white, and the short red lines marking the divisions of the nine geographic regions in accordance with panel (a).

Figure 5. Early-warning signals and structural responses to the critical transitions (in the year 1998) in time-varying CONUS precipitation, as
the time evolutions of (a) precipitation anomalies, AR1, SD, and the mean distance (d) and similarity (ρ) functions for network construction,
and (b) network topological parameters of clustering coefficient (C), density (ρ′), and modularity (Q). The horizontal lines with arrows
show the width of one moving window (7 years), the vertical dashed red lines represent critical transitions, and the gray bands represent the
transition phase.

tent with climate shifts in the 1970s and 1990s due to low-
frequency variability such as SST or IPO. The theoretical ba-
sis of their early-warning signals, statistically measured in
terms of the AR1 and SD (variance), was illustrated using an
autocorrelation process and a harvested population model.
We applied the analysis to the long-term global-scale precip-
itation and PET time series as well as a city-scale precipita-
tion dataset in the CONUS. It was found that the emergence
of increasing trends in the AR1 and SD, prior to critical tran-
sitions in all cases, agrees well with theoretical predictions.

In addition, we extended the conventional statistical mea-
sures of early-warning signals to system-based network anal-
ysis. We constructed precipitation networks over all urban
areas in the CONUS and calculated some key topological
parameters including the mean similarity/distance function,
network density, clustering coefficient, and modularity. The
system evolution toward the critical transition apparently
enhances the synchronization of precipitation events over
CONUS urban areas, leading to the strengthening of the com-
munity structure as well as teleconnections in the network.
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As a result, we identified the increasing trends of the mean
network correlation, the density, and the clustering coeffi-
cients due to system transitions; therefore, these structural
parameters can be used as network-based precipitation sys-
tem early-warning signals, similar to the process-based mea-
sures of the AR1 and variance. The network modularity, on
the other hand, is not susceptible to and cannot be interpreted
as a harbinger of critical transitions in the precipitation sys-
tem. These findings help to shed new light on the intricate
structure–dynamic interactions in complex climate systems
that modulate the future trend of the evolution of hydrologi-
cal processes under global climate change.
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