Articles | Volume 26, issue 1
https://doi.org/10.5194/hess-26-129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parsimonious statistical learning models for low-flow estimation
Johannes Laimighofer
CORRESPONDING AUTHOR
Institute of Statistics, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
Michael Melcher
Institute of Information Management, FH JOANNEUM – University of Applied Sciences, Graz, Austria
Gregor Laaha
Institute of Statistics, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
Related authors
Daniel Issel, Gregor Laaha, Johannes Laimighofer, Johann G. Zaller, Richard Zink, Daniel Dörler, and Florian Heigl
Web Ecol., 25, 177–188, https://doi.org/10.5194/we-25-177-2025, https://doi.org/10.5194/we-25-177-2025, 2025
Short summary
Short summary
Our study analyzed the distribution of 356 hedgehog and 918 badger sightings from 2012 to 2023 in Vienna, Austria. Both species were reported in areas with a mix of built-up spaces and green areas but not arable land, which can have ecological and methodological reasons. Moreover, hedgehogs and badgers were mostly reported from different areas. Our findings suggest that citizen science can be a good data source to analyze urban human–wildlife interactions.
Vinzent Klaus, Johannes Laimighofer, and Fabian Lehner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-224, https://doi.org/10.5194/nhess-2024-224, 2025
Revised manuscript under review for NHESS
Short summary
Short summary
On 17 August 2024, a thunderstorm in Vienna led to a record-breaking rainfall of 110 mm in two hours. An analysis of the exceptionally long hourly rain gauge time series (since 1941) estimates this event's return period at 662 years. The extremity of the event is further confirmed by neighbouring weather stations and rain-radar data.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574, https://doi.org/10.5194/hess-26-4553-2022, https://doi.org/10.5194/hess-26-4553-2022, 2022
Short summary
Short summary
Our study uses a statistical boosting model for estimating low flows on a monthly basis, which can be applied to estimate low flows at sites without measurements. We use an extensive dataset of 260 stream gauges in Austria for model development. As we are specifically interested in low-flow events, our method gives specific weight to such events. We found that our method can considerably improve the predictions of low-flow events and yields accurate estimates of the seasonal low-flow variation.
Daniel Issel, Gregor Laaha, Johannes Laimighofer, Johann G. Zaller, Richard Zink, Daniel Dörler, and Florian Heigl
Web Ecol., 25, 177–188, https://doi.org/10.5194/we-25-177-2025, https://doi.org/10.5194/we-25-177-2025, 2025
Short summary
Short summary
Our study analyzed the distribution of 356 hedgehog and 918 badger sightings from 2012 to 2023 in Vienna, Austria. Both species were reported in areas with a mix of built-up spaces and green areas but not arable land, which can have ecological and methodological reasons. Moreover, hedgehogs and badgers were mostly reported from different areas. Our findings suggest that citizen science can be a good data source to analyze urban human–wildlife interactions.
Vinzent Klaus, Johannes Laimighofer, and Fabian Lehner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-224, https://doi.org/10.5194/nhess-2024-224, 2025
Revised manuscript under review for NHESS
Short summary
Short summary
On 17 August 2024, a thunderstorm in Vienna led to a record-breaking rainfall of 110 mm in two hours. An analysis of the exceptionally long hourly rain gauge time series (since 1941) estimates this event's return period at 662 years. The extremity of the event is further confirmed by neighbouring weather stations and rain-radar data.
Klaus Haslinger, Wolfgang Schöner, Jakob Abermann, Gregor Laaha, Konrad Andre, Marc Olefs, and Roland Koch
Nat. Hazards Earth Syst. Sci., 23, 2749–2768, https://doi.org/10.5194/nhess-23-2749-2023, https://doi.org/10.5194/nhess-23-2749-2023, 2023
Short summary
Short summary
Future changes of surface water availability in Austria are investigated. Alterations of the climatic water balance and its components are analysed along different levels of elevation. Results indicate in general wetter conditions with particular shifts in timing of the snow melt season. On the contrary, an increasing risk for summer droughts is apparent due to increasing year-to-year variability and decreasing snow melt under future climate conditions.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 2019–2034, https://doi.org/10.5194/hess-27-2019-2023, https://doi.org/10.5194/hess-27-2019-2023, 2023
Short summary
Short summary
In seasonal climates with a warm and a cold season, low flows are generated by different processes so that return periods used as a measure of event severity will be inaccurate. We propose a novel mixed copula estimator that is shown to outperform previous calculation methods. The new method is highly relevant for a wide range of European river flow regimes and should be used by default.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701, https://doi.org/10.5194/hess-27-689-2023, https://doi.org/10.5194/hess-27-689-2023, 2023
Short summary
Short summary
Knowing the severity of an extreme event is of particular importance to hydrology and water policies. In this paper we propose a mixed distribution approach for low flows. It provides one consistent approach to quantify the severity of summer, winter, and annual low flows based on their respective annualities (or return periods). We show that the new method is much more accurate than existing methods and should therefore be used by engineers and water agencies.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574, https://doi.org/10.5194/hess-26-4553-2022, https://doi.org/10.5194/hess-26-4553-2022, 2022
Short summary
Short summary
Our study uses a statistical boosting model for estimating low flows on a monthly basis, which can be applied to estimate low flows at sites without measurements. We use an extensive dataset of 260 stream gauges in Austria for model development. As we are specifically interested in low-flow events, our method gives specific weight to such events. We found that our method can considerably improve the predictions of low-flow events and yields accurate estimates of the seasonal low-flow variation.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Cited articles
Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See,
L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby, R. L.: Two
decades of anarchy? Emerging themes and outstanding challenges for neural
network river forecasting, Prog. Phys. Geog., 36, 480–513,
https://doi.org/10.1177/0309133312444943, 2012. a
Ambroise, C. and McLachlan, G. J.: Selection bias in gene extraction on the
basis of microarray gene-expression data, P. Natl. Acad.
Sci. USA, 99, 6562–6566, https://doi.org/10.1073/pnas.102102699, 2002. a, b
Beguería, S. and Vicente-Serrano, S. M.: SPEI: Calculation of the Standardised
Precipitation-Evapotranspiration Index, r package version
1.7, available at:
https://CRAN.R-project.org/package=SPEI (last access: 15 Septepmber 2021), 2017. a
Blöschl, G., Sivapalan, M., Wagener, T., Savenije, H., and
Viglione, A.: Runoff prediction in ungauged basins: synthesis across
processes, places and scales, edited by: Blöschl, G., Wagener, T., and Savenije, H. Cambridge University Press, https://doi.org/10.1017/CBO9781139235761, 2013. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Bühlmann, P. and Hothorn, T.: Boosting algorithms: Regularization,
prediction and model fitting, Stat. Sci., 22, 477–505,
https://doi.org/10.1214/07-STS242, 2007. a
Castiglioni, S., Castellarin, A., and Montanari, A.: Prediction of low-flow
indices in ungauged basins through physiographical space-based interpolation,
J. Hydrol., 378, 272–280, https://doi.org/10.1016/j.jhydrol.2009.09.032,
2009. a
Castiglioni, S., Castellarin, A., Montanari, A., Skøien, J. O., Laaha, G., and Blöschl, G.: Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging, Hydrol. Earth Syst. Sci., 15, 715–727, https://doi.org/10.5194/hess-15-715-2011, 2011. a
Chimani, B., Böhm, R., Matulla, C., and Ganekind, M.: Development of a longterm dataset of solid/liquid precipitation, Adv. Sci. Res., 6, 39–43, https://doi.org/10.5194/asr-6-39-2011, 2011. a, b
Chun, H. and Keleş, S.: Sparse partial least squares regression for
simultaneous dimension reduction and variable selection, J. Roy.
Stat. Soc. B Met., 72, 3–25,
https://doi.org/10.1111/j.1467-9868.2009.00723.x, 2010. a
Chung, D., Chun, H., and Keles, S.: spls: Sparse Partial Least Squares (SPLS)
Regression and Classification, r package version
2.2-3, available at:
https://CRAN.R-project.org/package=spls (last access: 15 September 2021), 2019. a
Dawson, C. and Wilby, R.: Hydrological modelling using artificial neural
networks, Prog. Phys. Geog., 25, 80–108,
https://doi.org/10.1177/030913330102500104, 2001. a
de Jong, S.: SIMPLS: An alternative approach to partial least squares
regression, Chemometr. Intell. Lab., 18, 251–263,
https://doi.org/10.1016/0169-7439(93)85002-X, 1993. a
Efron, B.: Prediction, estimation, and attribution, Int. Stat.
Rev., 88, S28–S59, https://doi.org/10.1080/01621459.2020.1762613, 2020. a
Efthymiadis, D., Jones, P. D., Briffa, K. R., Auer, I., Böhm, R.,
Schöner, W., Frei, C., and Schmidli, J.: Construction of a 10-min-gridded
precipitation data set for the Greater Alpine Region for 1800–2003, J.
Geophys. Res.-Atmos., 111, D01105, https://doi.org/10.1029/2005JD006120, 2006. a
Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., and Savenije, H. H. G.: A framework to assess the realism of model structures using hydrological signatures, Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, 2013. a
Fahrmeir, L., Kneib, T., and Lang, S.: Penalized structured additive regression
for space-time data: a Bayesian perspective, Stat. Sinica, 14, 731–761,
2004. a
Ferreira, R. G., da Silva, D. D., Elesbon, A. A. A., Fernandes-Filho, E. I.,
Veloso, G. V., de Souza Fraga, M., and Ferreira, L. B.: Machine learning
models for streamflow regionalization in a tropical watershed, J.
Environ. Manage., 280, 111713, https://doi.org/10.1016/j.jenvman.2020.111713, 2021. a, b, c, d, e, f, g, h, i
Fuka, D., Walter, M., Archibald, J., Steenhuis, T., and Easton, Z.:
EcoHydRology: A Community Modeling Foundation for Eco-Hydrology, r package
version 0.4.12.1, available at:
https://CRAN.R-project.org/package=EcoHydRology (last access: 15 September 2021), 2018. a
Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, Mach.
Learn., 63, 3–42, https://doi.org/10.1007/s10994-006-6226-1, 2006. a
Granitto, P. M., Furlanello, C., Biasioli, F., and Gasperi, F.: Recursive
feature elimination with random forest for PTR-MS analysis of agroindustrial
products, Chemometr. Intell. Lab., 83, 83–90,
https://doi.org/10.1016/j.chemolab.2006.01.007, 2006. a, b
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.: Gene selection for cancer
classification using support vector machines, Mach. Learn., 46, 389–422,
https://doi.org/10.1023/A:1012487302797, 2002. a
Hargreaves, G. H.: Defining and using reference evapotranspiration, J.
Irrig. Drain. E., 120, 1132–1139,
https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132), 1994. a
Haslinger, K., Koffler, D., Schöner, W., and Laaha, G.: Exploring the link
between meteorological drought and streamflow: Effects of climate-catchment
interaction, Water Resour. Res., 50, 2468–2487,
https://doi.org/10.1002/2013WR015051, 2014. a
Hastie, T., Tibshirani, R., and Friedman, J. (Eds.): The elements of statistical
learning, vol. 2, Springer series in statistics New York, Springer, New York, https://doi.org/10.1007/978-0-387-84858-7, 2009. a, b, c, d
Hiebl, J. and Frei, C.: Daily temperature grids for Austria since
1961 – concept, creation and applicability, Theor. Appl.
Climatol., 124, 161–178, https://doi.org/10.1007/s00704-015-1411-4, 2016. a
Hiebl, J. and Frei, C.: Daily precipitation grids for Austria since
1961 – Development and evaluation of a spatial dataset for hydroclimatic
monitoring and modelling, Theor. Appl. Climatol., 132, 327–345,
https://doi.org/10.1007/s00704-017-2093-x, 2018. a
Hofner, B., Mayr, A., Robinzonov, N., and Schmid, M.: Model-based boosting in
R: a hands-on tutorial using the R package mboost, Computat. Stat.,
29, 3–35, https://doi.org/10.1007/s00180-012-0382-5, 2014. a
Hofner, B., Boccuto, L., and Göker, M.: Controlling false discoveries in
high-dimensional situations: boosting with stability selection, BMC
Bioinformatics, 16, 1–17, 2015. a
Hothorn, T., Hornik, K., and Zeileis, A.: Unbiased recursive partitioning: A
conditional inference framework, J. Comput. Graph.
Stat., 15, 651–674, https://doi.org/10.1198/106186006X133933, 2006. a
Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., and Hofner, B.: mboost:
Model-Based Boosting, R package
version 2.9-5,
available at: https://CRAN.R-project.org/package=mboost (last access: 15 September 2021), 2021. a
Kneib, T., Hothorn, T., and Tutz, G.: Variable selection and model choice in
geoadditive regression models, Biometrics, 65, 626–634,
https://doi.org/10.1111/j.1541-0420.2008.01112.x, 2009. a
Kohavi, R. and John, G. H.: Wrappers for feature subset selection, Artif.
Intell., 97, 273–324, https://doi.org/10.1016/S0004-3702(97)00043-X, 1997. a
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and
Nearing, G. S.: Toward improved predictions in ungauged basins: Exploiting
the power of machine learning, Water Resour. Res., 55,
11344–11354, https://doi.org/10.1029/2019WR026065, 2019a. a
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019b. a
Kuhn, M.: caret: Classification and Regression Training, r package version
6.0-88, available at:
https://CRAN.R-project.org/package=caret (last access: 15 Septepmber 2021), 2021. a
Laaha, G. and Blöschl, G.: Low flow estimates from short stream flow
records – a comparison of methods, J. Hydrol., 306, 264–286,
https://doi.org/10.1016/j.jhydrol.2004.09.012, 2005. a
Laaha, G. and Blöschl, G.: A national low flow estimation procedure for
Austria, Hydrolog. Sci. J., 52, 625–644,
https://doi.org/10.1623/hysj.52.4.625, 2007. a, b, c
Laaha, G., Skøien, J., and Blöschl, G.: Spatial prediction on river
networks: comparison of top-kriging with regional regression, Hydrol.
Process., 28, 315–324, https://doi.org/10.1002/hyp.9578, 2014. a, b
Mayr, A. and Hofner, B.: Boosting for statistical modelling-A non-technical
introduction, Stat. Model., 18, 365–384,
https://doi.org/10.1177/1471082X17748086, 2018. a, b
Meinshausen, N. and Bühlmann, P.: Stability selection, J. Roy.
Stat. Soc. B Met., 72, 417–473,
https://doi.org/10.1111/j.1467-9868.2010.00740.x, 2010. a
Melcher, M., Scharl, T., Luchner, M., Striedner, G., and Leisch, F.: Boosted
structured additive regression for Escherichia coli fed-batch fermentation
modeling, Biotechnol. Bioeng., 114, 321–334,
https://doi.org/10.1002/bit.26073, 2017. a
Mevik, B.-H., Wehrens, R., and Liland, K. H.: pls: Partial Least Squares and
Principal Component Regression, r package version
2.7-3, available at:
https://CRAN.R-project.org/package=pls (last access: 15 September 2021), 2020. a
Mewes, B., Oppel, H., Marx, V., and Hartmann, A.: Information-Based Machine
Learning for Tracer Signature Prediction in Karstic Environments, Water
Resour. Res., 56, e2018WR024558, https://doi.org/10.1029/2018WR024558,
2020. a
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F.: e1071:
Misc Functions of the Department of Statistics, Probability Theory Group
(Formerly: E1071), TU Wien, r package version
1.7-7, available at:
https://CRAN.R-project.org/package=e1071 (last access: 15 September 2021), 2021. a
Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D.,
Frame, J. M., Prieto, C., and Gupta, H. V.: What role does hydrological
science play in the age of machine learning?, Water Resour. Res., 57,
e2020WR028091, https://doi.org/10.1029/2020WR028091, 2021. a
Nosrati, K., Laaha, G., Sharifnia, S. A., and Rahimi, M.: Regional low flow
analysis in Sefidrood Drainage Basin, Iran using principal component
regression, Hydrol. Res., 46, 121–135, https://doi.org/10.2166/nh.2014.087,
2015. a
Oppel, H. and Mewes, B.: On the automation of flood event separation from
continuous time series, Frontiers in Water, 2, 18,
https://doi.org/10.3389/frwa.2020.00018, 2020. a
Ouarda, T., Charron, C., Hundecha, Y., St-Hilaire, A., and Chebana, F.:
Introduction of the GAM model for regional low-flow frequency analysis at
ungauged basins and comparison with commonly used approaches, Environ.
Modell. Softw., 109, 256–271, https://doi.org/10.1016/j.envsoft.2018.08.031,
2018. a
Sujay Raghavendra, N. and Deka, P. C.: Support vector machine applications in
the field of hydrology: A review, Applied Soft Computing, 19, 372–386,
https://doi.org/10.1016/j.asoc.2014.02.002, 2014. a
Ram, K. and Wickham, H.: wesanderson: A Wes Anderson Palette Generator, r package
version 0.3.6, available at:
https://CRAN.R-project.org/package=wesanderson (last access: 15 September 2021), 2018. a
Salinas, J. L., Laaha, G., Rogger, M., Parajka, J., Viglione, A., Sivapalan, M., and Blöschl, G.: Comparative assessment of predictions in ungauged basins – Part 2: Flood and low flow studies, Hydrol. Earth Syst. Sci., 17, 2637–2652, https://doi.org/10.5194/hess-17-2637-2013, 2013. a, b, c, d, e, f, g, h, i
Schmid, M. and Hothorn, T.: Boosting additive models using component-wise
P-splines, Comput. Stat. Data An., 53, 298–311,
https://doi.org/10.1016/j.csda.2008.09.009, 2008. a
See, L., Solomatine, D., Abrahart, R., and Toth, E.: Hydroinformatics:
computational intelligence and technological developments in water science
applications, Hydrolog. Sci. J., 52, 391–396,
https://doi.org/10.1623/hysj.52.3.391, 2007. a
Seibold, H., Bernau, C., Boulesteix, A.-L., and De Bin, R.: On the choice and
influence of the number of boosting steps for high-dimensional linear
Cox-models, Comput. Stat., 33, 1195–1215,
https://doi.org/10.1007/s00180-017-0773-8, 2018. a
Simon, N., Friedman, J., Hastie, T., and Tibshirani, R.: Regularization Paths
for Cox's Proportional Hazards Model via Coordinate Descent, J.
Stat. Softw., 39, 1–13, https://doi.org/10.18637/jss.v039.i05, 2011. a
Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging – geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10, 277–287, https://doi.org/10.5194/hess-10-277-2006, 2006. a
Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol., 240,
147–186, https://doi.org/10.1016/S0022-1694(00)00340-1, 2001. a
Solomatine, D. P. and Ostfeld, A.: Data-driven modelling: some past experiences
and new approaches, J. Hydroinform., 10, 3–22,
https://doi.org/10.2166/hydro.2008.015, 2008. a, b
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.: Bias in random
forest variable importance measures: Illustrations, sources and a solution,
BMC Bioinformatics, 8, 1–21, https://doi.org/10.1186/1471-2105-8-25, 2007. a, b
Strobl, C., Malley, J., and Tutz, G.: An introduction to recursive
partitioning: rationale, application, and characteristics of classification
and regression trees, bagging, and random forests, Psychol. Methods,
14, 323, https://doi.org/10.1037/a0016973, 2009. a
Tabari, H., Kisi, O., Ezani, A., and Talaee, P. H.: SVM, ANFIS, regression and
climate based models for reference evapotranspiration modeling using limited
climatic data in a semi-arid highland environment, J. Hydrol., 444,
78–89, https://doi.org/10.1016/j.jhydrol.2012.04.007, 2012. a
Tibshirani, R.: Regression shrinkage and selection via the lasso, J.
Roy. Stat. Soc. B Meth, 58, 267–288,
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x, 1996. a
Tyralis, H., Papacharalampous, G., and Langousis, A.: A brief review of random
forests for water scientists and practitioners and their recent history in
water resources, Water, 11, 910, https://doi.org/10.3390/w11050910, 2019. a
Vapnik, V.: The nature of statistical learning theory, Springer Science &
Business Media, https://doi.org/10.1007/978-1-4757-3264-1, 2000. a
Varmuza, K. and Filzmoser, P.: Introduction to multivariate statistical
analysis in chemometrics, CRC Press, https://doi.org/10.1201/9781420059496, 2016. a
Walter, M. T., Brooks, E. S., McCool, D. K., King, L. G., Molnau, M., and Boll,
J.: Process-based snowmelt modeling: does it require more input data than
temperature-index modeling?, J. Hydrol., 300, 65–75,
https://doi.org/10.1016/j.jhydrol.2004.05.002, 2005. a
Wold, H.: Estimation of principal components and related models by iterative least squares, edited by: Krishnajah, P. R., Multivariate analysis, New York, Academic Press, 391–420, 1966. a
Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R, J. Stat.
Softw., 77, 1–17, https://doi.org/10.18637/jss.v077.i01, 2017. a
Short summary
This study aims to predict long-term averages of low flow on a hydrologically diverse dataset in Austria. We compared seven statistical learning methods and included a backward variable selection approach. We found that separating the low-flow processes into winter and summer low flows leads to good performance for all the models. Variable selection results in more parsimonious and more interpretable models. Linear approaches for prediction and variable selection are sufficient for our dataset.
This study aims to predict long-term averages of low flow on a hydrologically diverse dataset in...