
Hydrol. Earth Syst. Sci., 26, 129–148, 2022
https://doi.org/10.5194/hess-26-129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Parsimonious statistical learning models for low-flow estimation
Johannes Laimighofer1, Michael Melcher2, and Gregor Laaha1

1Institute of Statistics, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
2Institute of Information Management, FH JOANNEUM – University of Applied Sciences, Graz, Austria

Correspondence: Johannes Laimighofer (johannes.laimighofer@boku.ac.at)

Received: 20 September 2021 – Discussion started: 22 September 2021
Revised: 26 November 2021 – Accepted: 27 November 2021 – Published: 12 January 2022

Abstract. Statistical learning methods offer a promising ap-
proach for low-flow regionalization. We examine seven sta-
tistical learning models (Lasso, linear, and nonlinear-model-
based boosting, sparse partial least squares, principal com-
ponent regression, random forest, and support vector regres-
sion) for the prediction of winter and summer low flow based
on a hydrologically diverse dataset of 260 catchments in Aus-
tria. In order to produce sparse models, we adapt the recur-
sive feature elimination for variable preselection and propose
using three different variable ranking methods (conditional
forest, Lasso, and linear model-based boosting) for each of
the prediction models. Results are evaluated for the low-
flow characteristicQ95 (Pr(Q >Q95)= 0.95) standardized
by catchment area using a repeated nested cross-validation
scheme. We found a generally high prediction accuracy for
winter (R2

CV of 0.66 to 0.7) and summer (R2
CV of 0.83 to

0.86). The models perform similarly to or slightly better than
a top-kriging model that constitutes the current benchmark
for the study area. The best-performing models are support
vector regression (winter) and nonlinear model-based boost-
ing (summer), but linear models exhibit similar prediction
accuracy. The use of variable preselection can significantly
reduce the complexity of all the models with only a small
loss of performance. The so-obtained learning models are
more parsimonious and thus easier to interpret and more ro-
bust when predicting at ungauged sites. A direct comparison
of linear and nonlinear models reveals that nonlinear pro-
cesses can be sufficiently captured by linear learning mod-
els, so there is no need to use more complex models or to add
nonlinear effects. When performing low-flow regionalization
in a seasonal climate, the temporal stratification into summer
and winter low flows was shown to increase the predictive
performance of all learning models, offering an alternative to
catchment grouping that is recommended otherwise.

1 Introduction

Estimating long-term averages of low flow in ungauged
basins is crucial for a wide range of applications, e.g., wa-
ter resource management and engineering, hydropower plan-
ning, or ecological issues (Smakhtin, 2001). The two main
approaches for predicting low-flow indices are based on ei-
ther physically based models (e.g., Euser et al., 2013) or sta-
tistical models. Statistical low-flow models can be further
subdivided into geostatistical models (e.g., Castiglioni et al.,
2009, 2011; Laaha et al., 2014) and regression-based meth-
ods (e.g., Laaha and Blöschl, 2006, 2007); an overview is
given by Salinas et al. (2013). Regression methods cover a
wide spectrum of models, and especially in the last decade
there was increasing interest in statistical learning models in
hydrology (Abrahart et al., 2012; Dawson and Wilby, 2001;
Nearing et al., 2021; Solomatine and Ostfeld, 2008), with
the terms “statistical learning” and “machine learning” being
used synonymously. The applications include rainfall–runoff
modeling by neural networks (e.g., Kratzert et al., 2019a, b),
using support vector machines (SVM) for prediction of karst
tracers (Mewes et al., 2020) or reference evapotranspiration
(Tabari et al., 2012) and random forest for flood event classi-
fication (Oppel and Mewes, 2020). Nevertheless, the imple-
mentation of statistical learning methods for predicting low
flow is still rare.

The considered methods so far can be classified as lin-
ear and nonlinear statistical learners. Linear methods also in-
clude, besides ordinary least squares regression approaches
(OLS, Kroll and Song, 2013; Zhang et al., 2018; Ferreira
et al., 2021), linear models with a penalization parameter like
elastic net (Worland et al., 2018) and linear boosting models
(Tyralis et al., 2021). Further approaches are based on dimen-
sion reduction techniques such as partial least squares regres-
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sion (PLS, Kroll and Song, 2013) or principal component re-
gression (PCR, Kroll and Song, 2013; Nosrati et al., 2015).
An example of nonlinear extensions to the linear model is
the enhanced adaptive regression through hinges (Earth, Fer-
reira et al., 2021). Furthermore, various forms of tree-based
methods were applied in low-flow prediction, such as ran-
dom forest (RF, Ferreira et al., 2021; Zhang et al., 2018; Wor-
land et al., 2018), gradient boosting with tree stumps (Tyralis
et al., 2021) or M5-cubist (Worland et al., 2018). Addition-
ally, the most comparative study of Worland et al. (2018)
used an ensemble learning technique called meta M5-cubist,
a nonlinear kernel extension of K-nearest neighbor (KKNN)
and two variants of support vector regression (polynomial
and Gaussian kernel).

Given the large number of learning methods, it is a pri-
ori unclear which method will perform best for a particular
study area. Only a few studies have conducted a comparative
assessment, typically focusing on single methods or a partic-
ular group of learners (Kroll and Song, 2013; Zhang et al.,
2018; Worland et al., 2018; Ferreira et al., 2021). Compar-
ing only linear models (PLS, PCR, OLS), Kroll and Song
(2012) could not find any superior model for 130 stations
in the eastern USA. Tree-based methods performed better in
terms of point prediction for the CAMELS dataset (Tyralis
et al., 2021) or an Australian dataset of 605 stations (Zhang
et al., 2018), but both studies showed good performance of
less complex linear models. Ferreira et al. (2021) showed that
Earth and RF perform similarly for 51 stations in Brazil, and
Worland et al. (2018) achieved good performance in terms of
a root mean squared error (RMSE) for the ensemble learning
model analyzing 224 stations in the southeastern USA. All
of these studies were conducted for different hydroclimatic
settings, but none did focus on a seasonal climate, where low
flows in summer and winter are generated by different pro-
cesses and should be assessed separately. Such an assessment
is missing and will be addressed in this study.

Results of Worland et al. (2018) and Ferreira et al. (2021)
indicate that more complex models seem to perform better
than more parsimonious ones, making model interpretation
difficult and plausibility of parameters hard to judge. This
leads to a major criticism of statistical learning models, as
they are often inferred as “black box” models (Efron, 2020;
See et al., 2007), meaning that prediction accuracy and pro-
cess understanding cannot be reached at the same time (Kuhn
and Johnson, 2019). One major approach of improving the
interpretability of statistical learning models can be summa-
rized under the concept of variable selection. Variable se-
lection is a wide field of research, where we can basically
identify three major approaches: (i) model-inherent variable
selection such as in, e.g., Lasso, boosting models, or tree-
based methods; (ii) filter-based methods (Guyon and Elisse-
eff, 2003), which include correlation-based variable selection
or univariate regression filters; finally, (iii) wrapper-based
methods (Kohavi and John, 1997) such as recursive feature
elimination (RFE) (Guyon et al., 2002; Granitto et al., 2006)

or genetic algorithms (Kuhn and Johnson, 2019). Model-
inherent selection is a fast selection method whose main
downside is that it is restricted to the underlying model.
Filter-based methods, where one advantage is usually the
computation time, may suffer from weaker predictive perfor-
mance, as filtering options have no link to the final predic-
tion model (Kuhn and Johnson, 2019; Guyon and Elisseeff,
2003). In contrast, wrapper methods have a higher compu-
tational burden, and greedy search algorithms such as RFE
may only find a local minimum, especially if interactions are
present (Kuhn and Johnson, 2019). The RFE, like any vari-
able selection method, can suffer from a bias in the selec-
tion procedure (Ambroise and McLachlan, 2002) if poor val-
idation strategies are chosen. Nevertheless, RFE can be an
efficient technique to substantially reduce the predictor set
(Kuhn and Johnson, 2019).

Although there appears to be a general consensus among
hydrologists that parsimonious models offer a number of ad-
vantages over more complex models, including better pa-
rameter interpretability and robustness, surprisingly little ef-
fort has been made to assess the merits of variable selec-
tion for statistical low-flow regionalization. This is especially
the case for statistical learning methods, which generally al-
low for higher complexity than regionalization approaches.
Apart from stepwise regression procedures (e.g., Laaha and
Blöschl, 2007; Kroll and Song, 2013), Tyralis et al. (2021)
tested the inherent variable selection of the boosting algo-
rithm and found the number of selected variables to depend
on the runoff characteristics to be predicted. Another ap-
proach, which uses at least inherent variable rankings for
predictor variables, is to employ variable importance as the
decrease in accuracy criterion of RF (Worland et al., 2018).
They additionally used partial dependence plots, which they
found beneficial for analyzing relationships between predic-
tors and the response. However, these approaches can be
misleading when variables in boosting models are falsely
selected (Meinshausen and Bühlmann, 2010; Hofner et al.,
2015) or variables in RF are ranked mistakenly high (Strobl
et al., 2007). The most comprehensive approach was used
by Ferreira et al. (2021), who employed the RFE for three
different learning methods (OLS, Earth, RF) but did not in-
clude other prospective learning methods. While all of these
studies found variable selection or calculation of variable im-
portance to be a crucial step, a broader assessment is missing
that sheds light on the value of variable selection for different
statistical learning approaches. Therefore, we propose using
RFE for our variable selection and suggest three different ap-
proaches for computation of the variable ranking to discon-
nect the variable ranking and the final prediction model.

In this paper we perform a comparative assessment of
seven statistical learning models for a comprehensive Aus-
trian dataset covering 260 stations. With our study, we specif-
ically address the lack of research for comparing these meth-
ods in a strongly seasonal climate with summer and winter
low-flow regimes. The following research questions will be
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addressed. (i) How well do statistical learning models per-
form as compared to established models (and which of the
methods perform best)? (ii) What is the effect of different
variable preselection methods on the performance of these
models? (iii) What is the relative value of nonlinear learn-
ing models compared to linear ones? (iv) Which variables
can be identified as the most important drivers of low flow
for Austria? The model performance is evaluated by a re-
peated nested cross-validation (CV) scheme, which provides
a confident assessment of how well the models perform at
ungauged sites.

2 Data

Our study area consists of 260 gauging stations in Austria
(Fig. 1). Austria can be described as physiographically and
hydrologically diverse and is therefore a suitable test bed
for regionalization models. The altitude of gauges ranges
from 143 to 1891 m a.s.l. Annual precipitation varies from
530 mm in the lowlands up to 2223 mm in high Alpine re-
gions. Mean annual temperature ranges from 2 to 11 ◦C.
The 260 gauging stations were all consistently monitored
between 1978 and 2013. All these stations are available at
the Austrian Hydrological Service (ehyd), and catchment
characteristics were available from previous studies (e.g.,
Laaha and Blöschl, 2006). Low-flow and catchment char-
acteristics are both based on the total upstream catchment
of each gauging station. We calculated Q95, where Q95
(Pr(Q >Q95)= 0.95) is the flow that is exceeded on 95 %
of all the days. Low flow in Austria can be separated into
two major seasonal regimes, with low flows in the Alpine re-
gion occurring mainly in the winter half-year and in the low-
lands, mainly in the summer half-year. To account for these
different processes, we calculated Q95 for the summer sea-
son (from May to October), and for the winter season (from
November to April) and both low flows (winter and sum-
mer) it will be analyzed for the full study domain. Summer
and winterQ95 was subsequently standardized by the catch-
ment area. The resulting specific low-flow discharges q95
(L s−1 km−2) were considered in the further analyses. For the
study area, the average winter low flow is 6.0 L s−1 km−2,
which is considerably lower than the summer low flow, with
8.9 L s−1 km−2 on average. Figure 2 shows that summer q95
tends to have more near-zero values than winter q95, and ad-
ditionally summer low flow has a higher variation (standard
deviation of 3.2 in the winter and 6.7 L s−1 km−2 in the sum-
mer). Summer q95 was transformed by the square root trans-
formation to reach a symmetric distribution. After model fit-
ting, the predictions were back-transformed for performance
evaluation.

Figure 1. Overview of the 260 gauging stations used in the study.

Figure 2. Absolute frequency (histogram and kernel density esti-
mate) of summer q95 and winter q95 for all 260 stations.

2.1 Catchment characteristics

We use a set of 87 covariables as possible predictors, some
of which are highly correlated. These covariables can be sep-
arated into catchment and climate characteristics. The catch-
ment characteristics used in this study are fully described in,
e.g., Laaha and Blöschl (2005, 2006). They consist of nine
land use categories, nine geological categories, and informa-
tion about catchment altitude, stream-network density, and
steepness of the slope in the catchment. An overview is given
in Table 1.

2.2 Climate characteristics

The calculation of the climate characteristics is based on
the SPARTACUS dataset for daily precipitation (Hiebl and
Frei, 2018) and daily minimum and maximum temperature
(Hiebl and Frei, 2016). Data are available from 1961 to 2018,
and the spatial resolution is 1× 1 km. Additionally, we re-
trieved the HISTALP dataset of the fraction of solid precipi-
tation (Efthymiadis et al., 2006; Chimani et al., 2011), which
has a coarse spatial resolution of 5× 5 min and a temporal
range from 1801 to 2014. The dataset was not processed
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Table 1. Descriptions of the catchment characteristics that are used in the study. Abbreviations are further used in plots. Precipitation, climatic
water balance, potential evapotranspiration, aridity index, snowmelt, snow fraction, and temperature variables are used on an annual, seasonal,
and half-year basis. These different accumulation periods are indicated by an extension of the indices (annual, spring, summer, autumn,
winter, winter, hy and summer, hy).

Variable Description Unit

H+, H0, HM, HR Maximum, minimum, mean, and range of catchment altitude m

A Catchment area km2

Lat, Lon Latitude and longitude of gauging station Decimal degrees

E Altitude of gauging station m

SM Mean catchment slope %

SSL, SMO, SST Fraction of slight, moderate, and steep slopes of the catchment %

D Stream-network density 102 m km−2

LU, LA, LC, LF, LG, LR, LW, LWA, LGL Fraction of urban areas, agricultural areas, permanent crops,
forests, grasslands, wastelands, wetlands, water surfaces, and
glaciers in catchment

%

GB, GG, GT, GF, GL, GC, GGS, GGD, GSO Fraction of Bohemian massif, Quaternary sediments, Tertiary
sediments, flysch, limestone, crystalline rock, shallow and deep
groundwater table, and source region in catchment

%

P Precipitation mm

ETP Potential evapotranspiration mm

AI Aridity index –

CWB Climatic water balance mm

S Snowmelt mm

SF Snow fraction %

T+, T0, TM, TR Maximum, minimum, mean, and range of temperature ◦C

P0 Average number of days without precipitation (< 1 mm) d

PH Average number of days with precipitation> 5 times the mean d

for a finer resolution, as it already relies on a statistical re-
lationship of temperature with solid precipitation (Chimani
et al., 2011). To calculate specific climatological variables
for each gauging station, the nearest grid point to the gaug-
ing station, which lies inside the catchment, was used. The
gridded datasets were used to calculate precipitation sums
and mean, minimum, and maximum temperature. Daily pre-
cipitation was further used to estimate the number of days
without precipitation for the winter and summer seasons. We
defined a day without precipitation if the precipitation sum
on this day was below 1 mm. Potential evapotranspiration
was calculated after Hargreaves (Hargreaves, 1994) with the
SPEI package in R (Beguería and Vicente-Serrano, 2017).
Furthermore, climatic water balance, aridity, and the frac-
tion of snow were computed. Snowmelt is approached by
a method of Walter et al. (2005), which is included in the
R package EcoHydRology (Fuka et al., 2018). All climato-

logical variables were calculated for the period of 1978 to
2013. Our data were restricted up to the year of 2013, as
solid precipitation was only available till the end of 2013. For
precipitation, climatic water balance, potential evapotranspi-
ration, snowmelt, snow fraction, and aridity, we calculated
average annual sums and mean sums for each season and for
the winter and summer half-years (November–April, May–
October). The number of days without precipitation was cal-
culated for each half-year and averaged over the whole pe-
riod. Mean, minimum, and maximum temperatures were cal-
culated for the whole year and the winter and summer peri-
ods. Finally, we computed the annual temperature range. All
variables related to snow (snowmelt and snow fraction) were
transformed by the square root.
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3 Methods

This section is divided into two parts. The first part consid-
ers the seven statistical learning models used for prediction
of summer and winter q95. The second part gives a short
description of the RFE algorithm and the proposed variable
ranking methods. Additionally, there will be an overview of
our repeated nested cross-validation scheme.

3.1 Models

We considered seven statistical learning models that can be
structured as follows. Two prediction models use dimen-
sion reduction: (i) PCR and (ii) sparse partial least squares
(sPLS). Additionally, we used two linear models that possess
an inherent variable-selection method – (iii) the Lasso and
(iv) linear-model-based boosting approaches (GLM). If sim-
ple linear terms are not sufficient, we can extend the GLM by
nonlinear smoothing functions. This results in the (v) GAM.
A maximum likelihood estimation of a generalized additive
model in a regional frequency approach for low flow was al-
ready adapted by Ouarda et al. (2018). Finally, we use two
models that are popular in hydrology: (vi) RF, (Tyralis et al.,
2019) and (vii) SVR (Sujay Raghavendra and Deka, 2014).

All the models can be considered regression models where
the response variable Y is a vector of length N(N = 260)
catchment observations, which can either be summer q95 or
winter q95. The predictor matrix X is a N ×p matrix with
elements xij representing the values of p = 87 numeric pre-
dictors for the ith catchment.

3.1.1 Lasso

Lasso was originally introduced by Tibshirani (1996), where
the regression coefficients β lasso can be defined as follows:

β lasso
= argminβ{1/2

N∑
i=1
(yi −β0−

p∑
j=1

xijβj )

+ λ

p∑
j=1
|βj |}, (1)

with β0 as the intercept and βj as the regression coefficients.
The Lasso model performs a penalized model optimiza-
tion known as L1 regularization that reduces parameters and
shrinks the model. A tuning parameter lambda controls the
strength of the penalty and thus the parsimony of the model.
Setting lambda to zero results in the ordinary least squares re-
gression estimates, whereas large values of lambda lead to a
simple intercept model. In between these limits, lambda per-
forms a continuous subset selection (Hastie et al., 2009). We
use the glmnet package in R for computation (Simon et al.,
2011), where the coefficients are estimated by cyclical co-
ordinate descent (Friedman et al., 2010). An optimal solu-
tion for lambda is chosen by 10-fold cross-validation, where
we choose lambda by the 1 standard error rule. We prefer

this over using lambda with minimum error, as this results in
sparser and more robust models in our case. The Lasso ap-
proach can handle high correlated data, coefficients can be
shrunk to zero, and correlated variables do not enter the final
model (Friedman et al., 2010).

3.1.2 PCR

PCR is a regression method that can deal with multicollinear-
ity and high-dimensional data. PCR projects the predictor
matrix X on an orthogonal space, which ensures that the fi-
nal predictors are uncorrelated. The final dimension of our
regression problem can thus be reduced from p (number of
predictors) to M (number of principal components). Using
M = p would result in the least squares estimate for the full
parameter space. The principal components of X are defined
as zm =Xνm, where zm are the principal components and νm
are the principal directions of X. The final regression coef-
ficients of the principal components (zm) can be defined by
Hastie et al. (2009)

βpcr(M)=

M∑
m=1

θmνm, (2)

where θm is θm = Cov(zm,y)/Var(zm). As for Lasso, X has
to be standardized in PCR before estimating the regression
coefficients, as the principal components are dependent on
the scaling of the initial variables. The number of princi-
pal componentsM is optimized by a 10-fold cross-validation
and the regression coefficients are estimated by ordinary least
squares. We fit our PCR model using the pls package in R
(Mevik et al., 2020).

3.1.3 sPLS

Additionally to Lasso and PCR, we propose a third-
dimension reduction method, partial least squares regression
(PLS). PLS uses linear combinations of X for the regression
of Y , but these linear combinations are now constructed in
dependence on Y (Hastie et al., 2009). This overcomes the
drawback of PCR, which cannot guarantee that the first prin-
cipal components of X are most suited to predicting Y . PLS,
originally developed by Wold (1966), is an iterative process
that starts with centering the response variable (U1) and the
predictor variable (V1j ). Next, p univariate regression mod-
els are constructed by regressing U1 against each centered
predictor variable V1,j , which gives us p regression coeffi-
cients. These regression coefficients are now used to com-
pute the first PLS component, which is the weighted average
defined as

T1 =

p∑
j=1

wjbjV1j , (3)

where bj are the univariate regression coefficients defined
as bj = Cov(V1j ,U1)/Var(V1j ), and the weights are wi =
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Var(V1j ). In a next step U2 is estimated by computing the
residuals of the regression model U1 ∼ T1. Furthermore, the
predictor matrix V2j is updated by the residuals of the models
V1j ∼ T1, where each predictor variable is regressed against
the first PLS component. This process is repeated until M
PLS components are extracted (de Jong, 1993). As PLS
yields a high variability in the performance evaluation, we
used an adapted PLS procedure, which is called sPLS. This
method was introduced by Chun and Keleş (2010) and in-
cludes a variable selection, as an L1 penalty is added to the
calculation of the PLS components. The model is tuned by
10-fold CV in the spls package in R (Chung et al., 2019).

3.1.4 Linear and nonlinear model-based boosting

In this section the model-based boosting algorithm is pre-
sented, which is used for fitting a simple linear model (GLM)
and a GAM. Boosting refers to an ensemble learning ap-
proach that converts a set of weak models, termed learners,
into a strong model with a better model fit. A current ap-
proach is functional gradient descent boosting, a stage-wise,
additive approach, which improves a fitted model by adding,
each step, a new learner that reduces the model errors. When
predictors X are entered as separate learners, so that the pre-
diction function f is an additive estimate based on simple lin-
ear terms fj (xj )= βjxj , the approach allows one to obtain
an inherent variable selection and can penalize regression co-
efficients (Mayr and Hofner, 2018). In addition, model-based
boosting can deal with multicollinearity and can handle, e.g.,
linear, nonlinear, spatial, or random effects (Hofner et al.,
2014).

Model-based boosting, as applied in this study, aims to
minimize an empirical risk

R := 1/N
N∑
i=1

ρ(yi,fi) (4)

based on the so-called loss function ρ(y,f ) characterizing
the inadequacy of the fitted model. For regression problems
including GLM and GAM, we use the squared error loss
function

ρ(y,f )=
1
2
|y− f |2, (5)

which results in a stage-wise least-square minimization of the
residuals. The boosting algorithm is an iterative process, with
the following steps (Bühlmann and Hothorn, 2007; Mayr and
Hofner, 2018; Melcher et al., 2017).

1. In a first step all base learners are defined. A base learner
can be a, e.g., linear, nonlinear, spatial, or random effect.
The two models used in this study incorporate linear
base learners for the linear model (GLM) and linear and
nonlinear effects for the GAM. As shown by initial anal-
ysis, spatial effects or higher-order interaction effects
did not improve the prediction performance, and hence

they were discarded from the analysis. Nonlinear effects
are modeled as P splines (Schmid and Hothorn, 2008),
which are decomposed into an unpenalized linear base
learner and a penalized nonlinear base learner, each with
1 degree of freedom. The nonlinear base learner is cen-
tered by subtracting the unpenalized linear part. This ap-
proach is proposed by Kneib et al. (2009) and Fahrmeir
et al. (2004) and offers the possibility of spotting the
predictor variables that are added as linear or nonlinear
effects. This leads to p+ 1 (p predictor variables plus
one term for an intercept) linear base learners for the
GLM and 2p+ 1 base learners for the GAM.

2. In the first iteration, the counter m, which is the number
of boosting steps, is set to 0 and the initial function es-
timate is set to f̂ [m] = f̂ [0]. The first function estimate
(f̂ [0]) is determined by an offset, which is the mean of
the response for our purpose (f̂ [0] := y).

3. The following steps are now repeated until the maxi-
mum number of boosting steps is reached, which was
fixed to 1000 in this study.

– The tuning parameter m is increased by 1.

– The negative gradient − d(ρ)
d(f ) is computed and eval-

uated at the function estimate of the previous itera-
tion f [m−1], resulting in the negative gradient vec-
tor u[m].

– Each base learner is now fitted by univariate regres-
sion against u[m], and the best-fitting base learner
(=: ĝ[m]) is selected.

– The function estimate is updated by f̂ [m] :=

f̂ [m−1]
+νĝ[m], where ν is a value between 0 and 1,

and if ν is sufficiently low, the risk of finding only a
local minimum is reduced. Therefore, ν was set to
0.1 in this study.

In each boosting step (m > 0) only one base learner is se-
lected and can be chosen again in later iterations. The number
of boosting steps are optimized by a 10-fold CV. Although
studies indicate that repeated CV would yield more robust
results (Seibold et al., 2018) due to computational costs, the
low risk of overfitting 10-fold CV seemed sufficient. The
model boosting was performed using the mboost package in
R (Hothorn et al., 2021).

3.1.5 RF

RF is a bagging (bootstrap aggregating) method originally
developed by Breiman (2001). In a RF model multiple re-
gression trees are generated using bootstrap samples, and
their predictions are averaged to yield the RF estimate. Boot-
strapping decorrelates the individual trees and adds some
randomness to the predictions. There are several packages
in R that can estimate RF models, but due to the computa-
tional burden of the study we used the fast ranger package
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(Wright and Ziegler, 2017). An RF model has several hyper-
parameters that can be tuned. The number of trees used for
bagging is one of these parameters, but it just has to be suf-
ficiently high, as more trees normally do not impair the pre-
diction performance. In this study we used 500 trees. Another
parameter that needs to be optimized is the size of each boot-
strap sample. We used a grid search from 0.7 to 0.9 for find-
ing an optimal sample size for each bootstrap sample. Sam-
pling was applied without replacement. Further, the number
of variables that are randomly chosen for each split needs to
be set, which was determined by p/3. We used the estimated
response variance as a splitting criterion because rank-based
approaches or the use of extremely randomized trees (Geurts
et al., 2006) did not improve prediction accuracy.

3.1.6 SVR

Support vector machines have their origin in classification
but can be extended to regression problems. The method in
its basic form uses a training dataset to create a line (or hyper-
plane) that separates the data into classes. The support vec-
tors are the data points closest to the line or hyperplane and
have the most influence on parameter estimation. In SVR,
each of the predictor variables can be transformed to a set of
basis function hm(xj ). Hence the regression function f (x)
can be approximated by (Hastie et al., 2009)

f (x)=

M∑
m=1

βmhm(xj )+β0. (6)

The number of M basis functions is not limited, and to es-
timate the coefficients β0 and βm, H(β,β0) has to be mini-
mized:

H(β,β0)=

N∑
i=1

V (yi − f (xi))+ λ/2
∑

β2
m. (7)

V can be any loss function, but in the initial idea of Vap-
nik (2000), it is defined by a threshold r . If the residuals are
higher than this value, they are included in the penalization of
the model, and if the residuals are lower, they are discarded
(Worland et al., 2018). Hence, the SVR is insensitive to out-
liers, as coefficients will be penalized with respect to them.
The fast computation of the coefficients is achieved by only
computing the inner product of each xj . Therefore, different
kernels can be used, and we decided to use the nonlinear ra-
dial kernel in our study. The SVR model was estimated by
the e1071 package in R (Meyer et al., 2021).

3.2 Variable preselection for parsimonious models

The variable selection procedure of this study is based on
the recursive feature elimination (RFE) algorithm. RFE is a
prospective method that initially ranks the predictor variables
after some measurements of importance, and the least impor-
tant variables are removed in a backward procedure (Granitto

et al., 2006). The final number of variables are determined by
an error measurement of an independent test set. In this part
we will present our three approaches for variable ranking, the
error measurement to define the number of variables, and a
short overview of the validation scheme.

3.2.1 Variable ranking methods

We test three different methods for the variable ranking of the
RFE. Thus, we can differentiate between the prediction accu-
racy of the prediction models and the capability of different
variable ranking methods for producing more parsimonious
models.

– The first variable ranking method is Lasso (lassorank),
which is applied as described in Sect. 3.1.1, except that
standardized coefficients are calculated.

– Second, we use a linear model-based boosting approach
(glmrank). Every model is estimated by 500 boosting
steps, since boosting shows only slow overfitting be-
havior (Fig. 3). One disadvantage is that some non-
influential variables will be ranked, but computation
time is reduced. For calculation of the standardized co-
efficients we apply the variable importance function of
the caret package in R (Kuhn, 2021).

– The third method (cfrank) uses conditional forests
(Hothorn et al., 2006; Strobl et al., 2007, 2009) for vari-
able ranking, where the standardized coefficients are a
sum of the main and interaction effects for each vari-
able. Standardized coefficients are again calculated us-
ing the variable importance function of the caret pack-
age.

Our variable ranking is computed over a bootstrap sample
to improve its robustness with respect to data. Therefore,
an initial dataset D is split up into 25 bootstrap samples
(B = (b1,b2,b3, . . .,b25)). Sampling is performed without
replacement, and a sample size of 68.2 % is used.

In a next step, each of the bootstrap samples is fitted to
one of the variable ranking methods. For each bootstrap sam-
ple and each method, standardized coefficients denoted as
βmethod
j,b are returned, where b refers to the bootstrap sample,

method is the variable ranking method (lassorank, glmrank,
cfrank), and j is the considered predictor. The variable impor-
tance of each bootstrap sample for each selected coefficient
is calculated by

varimpmethod
j,b = βmethod

j,b · 100/
p∑
j=1

βmethod
j,b . (8)

Final variable rankings are computed by averaging over all
25 bootstrap samples (Eq. 9). The variables are ranked from
highest to lowest.

varrankmethod
j = rank(1/25

b∑
i=1

varimpmethod
j,i ) (9)
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Figure 3. Prediction error for the unseen test data (a) and the train-
ing data (b). Bootstrapping was performed 100 times where the
training set consists of 70 % of the observations.

Variables that were never selected in the 25 bootstrap sam-
ples are not considered for the variable selection. This yields
nvar preselected variables for each method.

3.2.2 Model-specific preselection of variables

The variable rankings are now calculated for each of the
seven prediction models. Each prediction model is fitted to
the best l (l = 2,3, . . .,nvar) ranked variables, and for each
prediction vector ŷi the RMSE as a measure of fit is calcu-
lated:

RMSE=

√√√√1/N
N∑
i=1
(yi − ŷi)2. (10)

As one aim of this study is to get unbiased predictions (Solo-
matine and Ostfeld, 2008; Ambroise and McLachlan, 2002),
we employ a nested CV scheme (referred to as double CV in
Varmuza and Filzmoser, 2016). The nested 10-fold CV con-
sists of two loops, where the inner loop is used for model op-
timization and variable selection and the outer loop is used
for independently evaluating the predictive performance of
the so-obtained models. In the outer loop the data are split
into 10 folds, 9 of which define the calibration data and the
remaining 1 the test data. The calibration data are sent to the
inner loop, where again these data are split into 10 folds, 9
of which are used for variable rankings and parameter esti-
mation. The left-out fold is used for estimating the RMSE
for each candidate variable selection (l). The RMSEl is then
simply averaged over the 10 folds of the inner CV. The final
number of variables (nfinal) of a method is then obtained from
the relationship of the RMSEl vs. the number of variables
l, as exemplified in Fig. 4. A common option is to use the
min(RMSE) for determining nfinal, but this would only yield
a small reduction in the number of variables. We therefore

propose using a somewhat (+5 %) higher residual error, i.e.,
1.05×min(RMSE), as the reference point. This should make
the models more parsimonious with only a slight loss in per-
formance. In a final step, we determine the specific variables
that are used for predictions of the outer loop of the nested
CV. For this we use all obtained variable rankings of each of
the 10 inner folds of the CV run and average each variable
ranking over these 10 folds. The best nfinal variables of these
final rankings are used for prediction. The process is repeated
10 times for the outer loop to complete the cross-validation.

The full nested CV is again repeated 10 times for summer
q95 and winter q95.

3.2.3 Performance evaluation metrics

Model evaluation was performed by the RMSECV and the
relative root mean squared error RRMSECV of each CV rep-
etition:

RRMSECV = RMSECV/y, (11)

where y is the mean of all observations. We further compare
our results by the cross-validated R2

CV defined as

R2
CV = 1−

RMSE2

1/N
∑N
i=1(yi − y)

2
. (12)

For a more focused assessment of individual catchments in
terms of how CV performance depends on climate and catch-
ment characteristics, we use the absolute normalized error
ANECV of the ith catchment:

ANECV,i = |(ŷi − yi)|/yi . (13)

4 Results

4.1 Model performance without variable preselection

Figure 5 shows the performance of all the models without
variable preselection and Table 2 presents the performance
metrics of all the models. The best-performing model for
winter low flow is the SVR model with a medianR2

CV of 0.70
over all 10 CV runs. It is followed by the GLM (0.69) and RF
(0.68) and a group of similarly performing models (Lasso,
GAM, PCR, and sPLS), with an R2

CV of 0.66. Summer low
flow generally reaches a higher prediction accuracy, with a
R2

CV of 0.86 (GAM) and 0.85 (GLM) for the two boosting
approaches and a somewhat lower performance for Lasso,
sPLS, RF, SVR (all 0.84), and PCR (0.83).

Additional insights can be gained by stratifying the predic-
tions by specific low-flow magnitude into three parts, the first
part containing observations smaller than the first quartile,
the second part ranging between the first and third quartiles
and the third part considering only the observations higher
than the third quartile. For each of the three parts we calcu-
lated the RRMSECV. High q95 winter values reach similar
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Figure 4. Variable selection for a GAM boosting model based on RMSE graphs. The red vertical line indicates the number of variables
selected by a 5 % increase in the min(RMSE), and the green line is the number of variables obtained by min(RMSE). The black graph is the
average over 10 inner CV folds, and colored graphs represent individual folds.

Figure 5. Performance of 10 CV runs of statistical learning models without variable preselection. Horizontal lines display the median of the
CV runs.

performances for all the models, with a RRMSECV of 0.24
to 0.25. Middle-ranged values are best approximated by the
Lasso model (RMSErel = 0.24), followed by the RF and the
SVR (both 0.25) and slightly worse performances by the two
boosting models (0.26) and sPLS and PCR (0.27). The main
differences between the model predictions can be observed
for the lowest observation class, where the SVR model with
a RRMSECV of 0.58 performs substantially better than the
other models. The next best model in this class is the GLM
(0.66), and models such as RF (0.75) and GAM (0.78) have
less prediction accuracy.

For summer low flow, low q95 values again have a higher
relative error than medium or high q95 values. For the low-
est observation quartile, the GLM shows the best perfor-
mance (RRMSECV of 0.49) compared to most other models
(RRMSECV between 0.54 and 0.56). The sPLS (0.62) and
the RF (0.71) show a much lower prediction accuracy in this
class. Differences for moderate summer q95 values are only
marginal, with a range of 0.3 (SVR) to 0.32 (PCR). High
summer q95 values are somewhat better approached by the
GAM (0.2), with a slightly higher RRMSECV of all other
models ranging from 0.21 to 0.23.
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Table 2. Overview of the prediction performance of all the models. The median and standard deviation (SD) are calculated over the 10 CV
runs for each model.

Winter Summer

Model Variable ranking Median RMSE SD RMSE Median R2
CV Median RMSE SD RMSE Median R2

CV

GAM cfrank 1.95 0.024 0.622 2.65 0.022 0.844
GAM glmrank 1.94 0.041 0.626 2.67 0.068 0.842
GAM lassorank 1.99 0.033 0.603 2.67 0.052 0.842
GAM None 1.84 0.109 0.661 2.53 0.041 0.857
GLM cfrank 1.90 0.033 0.639 2.78 0.038 0.828
GLM glmrank 1.93 0.021 0.637 2.78 0.067 0.828
GLM lassorank 1.98 0.024 0.609 2.77 0.043 0.829
GLM None 1.79 0.328 0.69 2.62 0.216 0.847
Lasso cfrank 1.95 0.024 0.621 2.76 0.023 0.832
Lasso glmrank 1.97 0.02 0.611 2.73 0.033 0.835
Lasso lassorank 1.97 0.015 0.613 2.76 0.027 0.832
Lasso None 1.85 0.107 0.657 2.71 0.036 0.837
PCR cfrank 1.93 0.03 0.627 2.85 0.045 0.819
PCR glmrank 1.93 0.026 0.629 2.8 0.075 0.825
PCR lassorank 1.96 0.021 0.616 2.8 0.04 0.826
PCR None 1.85 0.748 0.659 2.79 0.563 0.826
sPLS cfrank 1.9 0.038 0.641 2.81 0.037 0.825
sPLS glmrank 1.94 0.026 0.625 2.8 0.8 0.825
sPLS lassorank 1.96 0.023 0.615 2.79 0.31 0.826
sPLS None 1.84 0.024 0.664 2.66 0.067 0.842
RF cfrank 1.86 0.04 0.656 2.69 0.044 0.839
RF glmrank 1.89 0.032 0.642 2.73 0.022 0.835
RF lassorank 1.85 0.03 0.657 2.73 0.054 0.834
RF None 1.8 0.026 0.678 2.68 0.25 0.841
SVR cfrank 1.75 0.048 0.694 2.67 0.04 0.842
SVR glmrank 1.86 0.034 0.654 2.7 0.037 0.839
SVR lassorank 1.85 0.05 0.659 2.7 0.033 0.839
SVR None 1.73 0.029 0.702 2.69 0.043 0.84

4.2 Effect of variable preselection

The use of variable preselection can significantly reduce the
complexity of all the models, with only a small loss of perfor-
mance (Fig. 6). For winter low flow, variable selection leads
to a median R2

CV decrease of 5.1 % (cfrank), 5.8 % (glmrank),
and 7.1 % (lassorank) over all the models. The spread in per-
formance across models is a bit higher for lassorank, with an
interquartile range (IQR) of 4.1 % compared to an IQR of
3 % for cfrank and 2.8 % for glmrank. Although cfrank yields
a slightly better performance than glmrank and lassorank,
the conditional forest approach requires 35 variables, where
glmrank and lassorank only use 12 and 14 variables for winter
q95. glmrank and lassorank are therefore much more effective.
The number of variables for the three variable ranking meth-
ods have almost no dispersion, with an IQR of 1 (glmrank),
2 (cfrank) and 3.5 (lassorank). Interestingly, the highest per-
formance loss is observed with the linear boosting model
(GLM) for all three variable ranking methods. This is due
to the nature of boosting methods, whose main strength is
efficient parameter estimation for high-dimensional multi-

collinear datasets. Clearly, variable preselection affects the
performance of the method. In contrast to winter low flow,
where the performance loss corresponds well to the +5 %
residual error specification, variable selection for summer
low flow only leads to a minor loss in performance (Fig. 6b).
Here, the median R2

CV decrease is only 1 % for cfrank and
lassorank and 0.8 % for glmrank. Also, the differences between
models are very small. Again, cfrank yields a substantially
higher number of variables (22) than the glmrank method
(8) and lassorank (9). Furthermore, the IQR of the number
of variables shows that the selected number of variables is
about the same in all the models for lassorank (IQR= 3) and
glmrank (IQR= 2) but greatly differs between the models
based on cfrank (IQR= 23). This spread reflects a much lower
parameter-reduction efficiency of cfrank for the linear mod-
els (22 predictors for PCR, 35 for lasso, 42 for sPLS, 50 for
GLM) than for the nonlinear models (12 predictors for RF,
17 for SVR, 18 for GAM). Among all the models, the RF
provides the model with the lowest number of variables for
summer low flows. It consists (on median) of only three vari-
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ables when lassorank and glmrank are used for variable selec-
tion and has a performance loss of less than 1 %.

4.3 Importance of predictors (from variable rankings)

We performed variable rankings for each of the three ranking
methods 1000 times inside the CV runs. In this section we
discuss the 10 best-ranked variables for each variable rank-
ing method, defined by the average rank over all 1000 repe-
titions. We focus on the two linear ranking methods, as the
nonlinear method cfrank did not perform well.

Figure 7 gives an overview of the rank counts for winter
low flow and shows that the catchment altitude is on aver-
age the highest-ranked variable. Meteorologically based vari-
ables appear four (glmrank) and five (lassorank) times among
the 10 best-ranked variables. Predictors rated by both meth-
ods are aridity and snowmelt in the winter months. glmrank
lists preconditions such as precipitation or dry days in the
summer as important variables. However, lassorank found dry
days in winter and over the whole year to be more impor-
tant. Geological variables such as percentage of Quaternary
sediments or limestone enter the models as indicators for
catchment processes. Finally, land use characteristics such
as proportion of agriculture area and wasteland rocks were
found for glmrank, where only the fraction of grassland is
rated by lassorank. Both are correlated with the proportion of
lowland/high mountain areas and can be interpreted as topo-
logical characteristics as well.

A slightly different picture emerges from the assessment
of summer low flow (Fig. 8), where the three highest-ranked
variables are maximum catchment altitude, mean catchment
slope and dry days in summer for both variable ranking meth-
ods. Topological descriptors play a somewhat more domi-
nant role for summer low flow, as four (glmrank) and five
(lassorank) variables are highly ranked. Apart from mean
catchment slope and maximum catchment altitude, differ-
ence in catchment altitude and stream-network density are
also found for both variable ranking methods. Two meteoro-
logical variables – aridity in winter (both methods) or autumn
(lassorank) and the annual temperature range (lassorank) – are
found by each of the methods for summer q95 in addition
to the dry days in summer. Finally, geological features such
as the proportion of flysch or land use variables such as the
fraction of grassland are highly ranked for both approaches.

5 Discussion

5.1 Predictive performance and benchmarking

We showed that statistical learning models can yield high
prediction accuracy. It is now interesting to assess how the
models fit into the picture of existing national and interna-
tional studies. We first assess the performance relative to
low-flow regionalization studies for the Austrian study area.
Laaha and Blöschl (2006) fitted a multiple-regression model

to annual low-flow q95 on 325 (sub-)catchments. They re-
ported a performance ofR2

CV = 0.70 when the study area was
subdivided into regions that exhibit similar seasonal char-
acteristics of low flow. In a subsequent study, Laaha et al.
(2014) showed that top kriging can outperform regional re-
gression, especially when interpolating between gauges at
the larger rivers. Top kriging (TK, Skøien et al., 2006) is a
geostatistical method that uses stream-network distance for
low-flow prediction and was shown to be more adequate than
ordinary kriging approaches. For comparison of our results
with the current benchmark (TK), we used the same 10-fold
CV runs as for our statistical learning models. TK yields a
median R2

CV of 0.68 for winter low flow, which is slightly be-
low the SVR and the GLM and equivalent to the RF model.
TK performs similarly to most models for summer q95, with
a median R2

CV of 0.84, and performs quite similarly to the
two boosting approaches. Hence, we show that statistical
learning models can perform as well as or even better than
the current benchmark TK for summer and winter low flow
in the Austrian study area.

It is also interesting to compare our findings to existing
studies that assess statistical learning methods for low-flow
estimation. However, comparison of performance metrics
across studies is not straightforward. Worland et al. (2018)
and Ferreira et al. (2021) assessed their prediction models
for low-flow characteristics such as Q95 and a quite simi-
lar characteristic 7Q10, but these were not standardized by
catchment area as in our study. This can lead to superior per-
formance metrics, particularly if there are significant vari-
ations in catchment size within the sample. Worland et al.
(2018) reported a Nash–Sutcliffe efficiency (NSE) (which is
equivalent to the R2

CV in this study) of 0.92 for the meta M5-
cubist model, and Ferreira et al. (2021) reported a NSE value
of almost 1. However, the scatterplots of the studies suggest
that errors are still considerable, especially for the low ob-
servation values. Although the studies are not directly com-
parable to our study in terms of performance, a qualitative
comparison is still warranted. Both studies found tree-based
methods, including the ensemble M5-cubist model (Worland
et al., 2018), the RF (Zhang et al., 2018), and tree-based
boosting (Tyralis et al., 2021) with a higher prediction ac-
curacy than the other models. Our study complements ex-
isting studies by examining additional learning models. Our
results suggest that the SVR and the GAM boosting model
can outperform tree-based models for the Austrian setting.
However, differences in performance are rather small, so that
other methods (e.g., GLM, lasso, and tree-based RF) can also
be considered well suited.

One major research gap addressed by this study is the sep-
arate evaluation of statistical learning models for seasonal
low-flow processes. All statistical learning models of this pa-
per can be classified as global models, as all gauges are con-
sidered in the same model without catchment grouping. Ear-
lier studies showed that regional regression can increase the
prediction accuracy compared to global regression (Laaha
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Figure 6. Reduction of R2
CV is computed with respect to the model performance without any variable preselection. Each point is the median

number of variables of one CV run and one prediction model and the related R2
CV. Each line shows (horizontal: number of variables, vertical:

reduction in R2
CV) the upper and lower quartiles for a variable ranking method. Colors can be found in Ram and Wickham (2018).

and Blöschl, 2006, 2007) as different low-flow generation
processes apply to summer and winter regions. Here we pur-
sue a different strategy in which we separate summer and
winter processes by a temporal stratification into summer and
winter low flows. We found that analyzing winter and sum-
mer low-flow indices individually leads to increased predic-
tion accuracy, especially for summer q95. This emphasizes
that prediction accuracy of a specific model is influenced
by the underlying hydrological process, and different mod-
els can be suitable for different applications (Worland et al.,
2018). For comparison, preliminary results without consid-
eration of the seasonal regime of our study area have led to a
prediction accuracy of a median (R2

CV) of 0.66 to 0.74 which
is very similar to the earlier studies on annual low flow (TK
0.75).

5.2 Predictive performance as a function of catchment
characteristics

In a comparative assessment of low-flow studies based on
the PUB assessment report (Blöschl et al., 2013), Salinas
et al. (2013) showed that prediction accuracy is not only a
function of model selection, but also of the specific setting
of the study area. The assessment did not contain statistical
learning models, so we want to embed our results in their
findings. Figure 9, which is equivalent to Fig. 5 of Salinas
et al. (2013), shows the ANECV as a function of the arid-
ity index, the catchment area and the catchment altitude. Our
study confirms the finding of the PUB assessment report that
the prediction accuracy decreases as the aridity of the study
area increases (Salinas et al., 2013). Although stations with

an aridity index over 1 are missing, the trend is clearly evi-
dent. No trend is evident for the winter low flows, which are
more driven by freezing processes than by a climatic water
balance deficit. Decreasing performance in arid regions for
drought detection was also found by Haslinger et al. (2014).
This effect may be additionally intensified because in arid
regions the mean of observations can be near zero.

Another hypothesis of Salinas et al. (2013) is that a higher
elevation increases the prediction accuracy. In this context
we found remarkably divergent results for summer and win-
ter low flow. Whereas our findings for summer low flow
are in line with Salinas et al. (2013), we could not iden-
tify a clear tendency for winter low flow. Catchments located
in lowlands and mountainous areas have a somewhat larger
ANECV than catchments with an elevation between 450 and
1500 m. This suggests that winter low flows are more pre-
dictable in colder mid-mountain catchments than in warmer
lowland catchments, where occurrence of frost events varies
from year to year. Finally, we can show that prediction accu-
racy is increasing with catchment size, which is fully consis-
tent with Salinas et al. (2013).

Another finding of (Salinas et al., 2013) that is not cap-
tured by Fig. 9 is that predictions of low flows in cold cli-
mates are reaching a lower prediction accuracy than in hu-
mid and thus warmer climates. A comparable effect can be
observed when comparing the results for winter low flow and
summer low flow, where the best-performing model in winter
has a R2

CV of 0.70 and 0.86 in summer. This divergence can
be explained by the more complex hydrological processes
of winter low flows (Salinas et al., 2013). It is shown here
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Figure 7. Count of all variable rankings of all 1000 iterations on a log scale for winter low flow. The 10 best variables are listed after their
averaged rank.

that this performance gap applies to seasonal climates with a
warm season and a frost period in the same way as between
cold and humid climates.

5.3 Linear vs. nonlinear models

All studies that conducted a comparative assessment of sta-
tistical learning models for low-flow estimation highlighted
that nonlinear models are superior with respect to linear ap-
proaches (e.g., Worland et al., 2018; Ferreira et al., 2021;
Zhang et al., 2018; Tyralis et al., 2021). In principle this is
consistent with our findings, where winter low flow is best
predicted by the SVR model and summer q95 is best ap-
proached by the GAM model. However, we showed that lin-
ear statistical learning models such as GLM or sPLS perform

almost as well in our study. To shed more light on this issue,
we assessed the relative value of the GAM over the GLM
boosting model in more detail. Both models are equivalent
in case of linear relationships, but the GAM offers the pos-
sibility of extending the GLM with nonlinear relationships
if these improve the model. The comparison shows that the
GAM is selecting additional nonlinear effects to increase the
goodness of fit. However, the additional effects do not in-
crease the predictive performance of the model. In fact, the
R2

CV of the GAM is only 1 % higher for summer but 3 %
lower for winter low flow when using the model without
variable preselection. This suggests that nonlinear processes,
which are to be expected in such a heterogeneous study area
as Austria, can be sufficiently captured by the superposition
of linear terms, so there is no need to add nonlinear effects or
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Figure 8. Count of all variable rankings of all 1000 iterations on a log scale for summer low flow. The 10 best variables are listed after their
averaged rank.

to use a nonlinear model. This is additionally supported by
the performance of the three variable ranking methods. The
nonlinear approach of conditional forest leads only to a small
reduction of the set of predictors, with performance similar
to (winter q95) or worse than (summer q95) the two linear
ranking methods.

6 Conclusions

In this study we investigated a broad range of statistical
learning methods for a comprehensive dataset of 260 catch-
ments in Austria. The results showed that all statistical learn-
ing models perform well and are therefore well suited for
low-flow regionalization. Performance is particularly high

for summer low flow (R2
CV = 0.86) but still leads to satis-

factory results for winter low flow (R2
CV = 0.70). The best-

performing models are support vector regression (winter) and
nonlinear model-based boosting (summer), but linear mod-
els exhibit similar prediction accuracy. No superior model
could be found for either low-flow process, as relative dif-
ferences between learning methods are actually small. The
models perform similarly to or slightly better than a top-
kriging model that constitutes the current benchmark for the
study area.

Variable preselection is shown on average to reduce the
predictor set (on median) from 87 variables to 12 for win-
ter and 8 for summer low flow. This is achieved by a small
loss in performance, which is about 5 % for winter low flow
and only 1 % for summer low flow. The results suggest that
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Figure 9. ANECV for summer and winter q95 as a function of the aridity index (a), elevation (b), and catchment area (c). Only the best-
performing models are shown (winter SVR, summer GAM, both without variable preselection). The box plots summarize the ANECV
averaged over all 10 CV runs for each of the 260 stations.

variable preselection can help to create parsimonious learn-
ing models that are easier to interpret and more robust when
predicting at ungauged sites. The RF (summer) provides the
model with the smallest number of predictors, which con-
sists of only three variables and has a performance loss of
less than 1 %.

Linear prediction models such as the linear model-based
boosting reveal high prediction accuracy. Nonlinear terms
were shown to increase the goodness of fit of the models but
did not improve predictions at ungauged sites. Our results
suggest that nonlinear low-flow relationships can be suffi-
ciently captured by linear learning models, so there is no
need to use more complex models or to add nonlinear effects.
This finding is confirmed by our variable ranking methods,
where linear approaches seem to be sufficient for our estima-
tion problem.

Variable rankings allow some conclusions about the im-
portance of predictor variables. Topographic variables repre-
senting altitude and slope are among the most highly ranked
predictors for summer and winter low flows. Specific low
flow is mainly increasing with topographic predictors, ex-
cept that the percentage of slight slope in the catchment has a
decreasing effect. Among meteorological predictors, charac-
teristics representing snowmelt, aridity, and dry spells appear
more important than precipitation characteristics. The aridity
and number of dry days reduce specific low flow, whereas
snowmelt has an increasing effect. The best-rated geologi-
cal characteristics are the area fractions of limestone, flysch
and Quaternary sediments. Limestone and Quaternary sed-
iments both lead to higher low flows, whereas flysch has a
decreasing effect. Overall, topological, meteorological and
catchment characteristics appear similarly important for low-
flow regionalization. However, the interpretation of the vari-
able ranking should be considered with caution as substitut-

ing top-ranked variables in highly correlated data can lead to
similar performance.

Finally, the study shows that when performing low-flow
regionalization in a seasonal climate with a cold winter sea-
son, the temporal stratification into summer and winter low
flows increases the predictive performance of all learning
models. This suggests that conducting separate analyses of
winter and summer low flows provides a data-efficient al-
ternative to catchment grouping that is recommended other-
wise.
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Appendix A

Figure A1. Error bars showing the range of predictions of the 10 CV runs for each model without variable preselection. Two outliers are not
shown for the summer PCR model and the winter GLM, PCR, lasso, and GAM models to improve visual clarity.

Figure A2. Box plots of the number of variables selected in each CV fold (100 times).
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Figure A3. Count of all variable rankings of all 1000 iterations on a log scale for summer low flow. The 10 best variables are listed after their
averaged rank.
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Chun, H. and Keleş, S.: Sparse partial least squares regression
for simultaneous dimension reduction and variable selection, J.
Roy. Stat. Soc. B Met., 72, 3–25, https://doi.org/10.1111/j.1467-
9868.2009.00723.x, 2010.

Chung, D., Chun, H., and Keles, S.: spls: Sparse Partial Least
Squares (SPLS) Regression and Classification, r package ver-
sion 2.2-3, available at: https://CRAN.R-project.org/package=
spls (last access: 15 September 2021), 2019.

Dawson, C. and Wilby, R.: Hydrological modelling using ar-
tificial neural networks, Prog. Phys. Geog., 25, 80–108,
https://doi.org/10.1177/030913330102500104, 2001.

de Jong, S.: SIMPLS: An alternative approach to partial least
squares regression, Chemometr. Intell. Lab., 18, 251–263,
https://doi.org/10.1016/0169-7439(93)85002-X, 1993.

Efron, B.: Prediction, estimation, and attribution, Int. Stat. Rev.,
88, S28–S59, https://doi.org/10.1080/01621459.2020.1762613,
2020.

Efthymiadis, D., Jones, P. D., Briffa, K. R., Auer, I., Böhm, R.,
Schöner, W., Frei, C., and Schmidli, J.: Construction of a 10-
min-gridded precipitation data set for the Greater Alpine Re-
gion for 1800–2003, J. Geophys. Res.-Atmos., 111, D01105,
https://doi.org/10.1029/2005JD006120, 2006.

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlen-
brook, S., and Savenije, H. H. G.: A framework to assess the re-
alism of model structures using hydrological signatures, Hydrol.
Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-
1893-2013, 2013.

Fahrmeir, L., Kneib, T., and Lang, S.: Penalized structured addi-
tive regression for space-time data: a Bayesian perspective, Stat.
Sinica, 14, 731–761, 2004.

Ferreira, R. G., da Silva, D. D., Elesbon, A. A. A., Fernandes-
Filho, E. I., Veloso, G. V., de Souza Fraga, M., and Ferreira,
L. B.: Machine learning models for streamflow regionaliza-
tion in a tropical watershed, J. Environ. Manage., 280, 111713,
https://doi.org/10.1016/j.jenvman.2020.111713, 2021.

Friedman, J., Hastie, T., and Tibshirani, R.: Regularization paths for
generalized linear models via coordinate descent, J. Stat. Softw.,
33, 1–22, 2010.

Fuka, D., Walter, M., Archibald, J., Steenhuis, T., and Eas-
ton, Z.: EcoHydRology: A Community Modeling Foundation
for Eco-Hydrology, r package version 0.4.12.1, available at:
https://CRAN.R-project.org/package=EcoHydRology (last ac-
cess: 15 September 2021), 2018.

Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized
trees, Mach. Learn., 63, 3–42, https://doi.org/10.1007/s10994-
006-6226-1, 2006.

Granitto, P. M., Furlanello, C., Biasioli, F., and Gasperi, F.: Recur-
sive feature elimination with random forest for PTR-MS analysis
of agroindustrial products, Chemometr. Intell. Lab., 83, 83–90,
https://doi.org/10.1016/j.chemolab.2006.01.007, 2006.

Guyon, I. and Elisseeff, A.: An introduction to variable and feature
selection, J. Mach. Learn. Res., 3, 1157–1182, 2003.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.: Gene selection
for cancer classification using support vector machines, Mach.
Learn., 46, 389–422, https://doi.org/10.1023/A:1012487302797,
2002.

Hargreaves, G. H.: Defining and using reference evap-
otranspiration, J. Irrig. Drain. E., 120, 1132–1139,
https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132),
1994.

Haslinger, K., Koffler, D., Schöner, W., and Laaha, G.: Exploring
the link between meteorological drought and streamflow: Effects
of climate-catchment interaction, Water Resour. Res., 50, 2468–
2487, https://doi.org/10.1002/2013WR015051, 2014.

Hastie, T., Tibshirani, R., and Friedman, J. (Eds.): The elements of
statistical learning, vol. 2, Springer series in statistics New York,
Springer, New York, https://doi.org/10.1007/978-0-387-84858-
7, 2009.

Hiebl, J. and Frei, C.: Daily temperature grids for Austria since
1961 – concept, creation and applicability, Theor. Appl. Clima-
tol., 124, 161–178, https://doi.org/10.1007/s00704-015-1411-4,
2016.

Hiebl, J. and Frei, C.: Daily precipitation grids for Austria since
1961 – Development and evaluation of a spatial dataset for
hydroclimatic monitoring and modelling, Theor. Appl. Clima-
tol., 132, 327–345, https://doi.org/10.1007/s00704-017-2093-x,
2018.

Hofner, B., Mayr, A., Robinzonov, N., and Schmid, M.:
Model-based boosting in R: a hands-on tutorial us-
ing the R package mboost, Computat. Stat., 29, 3–35,
https://doi.org/10.1007/s00180-012-0382-5, 2014.

Hydrol. Earth Syst. Sci., 26, 129–148, 2022 https://doi.org/10.5194/hess-26-129-2022

https://doi.org/10.1177/0309133312444943
https://doi.org/10.1073/pnas.102102699
https://CRAN.R-project.org/package=SPEI
https://CRAN.R-project.org/package=SPEI
https://doi.org/10.1017/CBO9781139235761
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/07-STS242
https://doi.org/10.1016/j.jhydrol.2009.09.032
https://doi.org/10.5194/hess-15-715-2011
https://doi.org/10.5194/asr-6-39-2011
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://CRAN.R-project.org/package=spls
https://CRAN.R-project.org/package=spls
https://doi.org/10.1177/030913330102500104
https://doi.org/10.1016/0169-7439(93)85002-X
https://doi.org/10.1080/01621459.2020.1762613
https://doi.org/10.1029/2005JD006120
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.1016/j.jenvman.2020.111713
https://CRAN.R-project.org/package=EcoHydRology
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1016/j.chemolab.2006.01.007
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
https://doi.org/10.1002/2013WR015051
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/s00704-015-1411-4
https://doi.org/10.1007/s00704-017-2093-x
https://doi.org/10.1007/s00180-012-0382-5


J. Laimighofer et al.: Parsimonious models 147

Hofner, B., Boccuto, L., and Göker, M.: Controlling false discover-
ies in high-dimensional situations: boosting with stability selec-
tion, BMC Bioinformatics, 16, 1–17, 2015.

Hothorn, T., Hornik, K., and Zeileis, A.: Unbiased recursive parti-
tioning: A conditional inference framework, J. Comput. Graph.
Stat., 15, 651–674, https://doi.org/10.1198/106186006X133933,
2006.

Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., and Hofner,
B.: mboost: Model-Based Boosting, R package version 2.9-5,
available at: https://CRAN.R-project.org/package=mboost (last
access: 15 September 2021), 2021.

Kneib, T., Hothorn, T., and Tutz, G.: Variable selection and model
choice in geoadditive regression models, Biometrics, 65, 626–
634, https://doi.org/10.1111/j.1541-0420.2008.01112.x, 2009.

Kohavi, R. and John, G. H.: Wrappers for feature subset selec-
tion, Artif. Intell., 97, 273–324, https://doi.org/10.1016/S0004-
3702(97)00043-X, 1997.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K.,
Hochreiter, S., and Nearing, G. S.: Toward improved pre-
dictions in ungauged basins: Exploiting the power of
machine learning, Water Resour. Res., 55, 11344–11354,
https://doi.org/10.1029/2019WR026065, 2019a.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter,
S., and Nearing, G.: Towards learning universal, regional, and
local hydrological behaviors via machine learning applied to
large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110,
https://doi.org/10.5194/hess-23-5089-2019, 2019b.

Kroll, C. N. and Song, P.: Impact of multicollinearity on small sam-
ple hydrologic regression models, Water Resour. Res., 49, 3756–
3769, https://doi.org/10.1002/wrcr.20315, 2013.

Kuhn, M.: caret: Classification and Regression Training, r pack-
age version 6.0-88, available at: https://CRAN.R-project.org/
package=caret (last access: 15 Septepmber 2021), 2021.

Kuhn, M. and Johnson, K.: Feature engineering and selection: A
practical approach for predictive models, 1st ed., Chapman and
Hall/CRC, https://doi.org/10.1201/9781315108230, 2019.

Laaha, G. and Blöschl, G.: Low flow estimates from short stream
flow records – a comparison of methods, J. Hydrol., 306, 264–
286, https://doi.org/10.1016/j.jhydrol.2004.09.012, 2005.

Laaha, G. and Blöschl, G.: A comparison of low flow regionalisa-
tion methods – catchment grouping, J. Hydrol., 323, 193–214,
https://doi.org/10.1016/j.jhydrol.2005.09.001, 2006.

Laaha, G. and Blöschl, G.: A national low flow estima-
tion procedure for Austria, Hydrolog. Sci. J., 52, 625–644,
https://doi.org/10.1623/hysj.52.4.625, 2007.

Laaha, G., Skøien, J., and Blöschl, G.: Spatial predic-
tion on river networks: comparison of top-kriging with
regional regression, Hydrol. Process., 28, 315–324,
https://doi.org/10.1002/hyp.9578, 2014.

Mayr, A. and Hofner, B.: Boosting for statistical modelling-
A non-technical introduction, Stat. Model., 18, 365–384,
https://doi.org/10.1177/1471082X17748086, 2018.

Meinshausen, N. and Bühlmann, P.: Stability selection, J. Roy.
Stat. Soc. B Met., 72, 417–473, https://doi.org/10.1111/j.1467-
9868.2010.00740.x, 2010.

Melcher, M., Scharl, T., Luchner, M., Striedner, G., and Leisch, F.:
Boosted structured additive regression for Escherichia coli fed-
batch fermentation modeling, Biotechnol. Bioeng., 114, 321–
334, https://doi.org/10.1002/bit.26073, 2017.

Mevik, B.-H., Wehrens, R., and Liland, K. H.: pls: Partial Least
Squares and Principal Component Regression, r package ver-
sion 2.7-3, available at: https://CRAN.R-project.org/package=
pls (last access: 15 September 2021), 2020.

Mewes, B., Oppel, H., Marx, V., and Hartmann, A.: Information-
Based Machine Learning for Tracer Signature Predic-
tion in Karstic Environments, Water Resour. Res., 56,
e2018WR024558, https://doi.org/10.1029/2018WR024558,
2020.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch,
F.: e1071: Misc Functions of the Department of Statistics, Proba-
bility Theory Group (Formerly: E1071), TU Wien, r package ver-
sion 1.7-7, available at: https://CRAN.R-project.org/package=
e1071 (last access: 15 September 2021), 2021.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S.,
Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.:
What role does hydrological science play in the age of ma-
chine learning?, Water Resour. Res., 57, e2020WR028091,
https://doi.org/10.1029/2020WR028091, 2021.

Nosrati, K., Laaha, G., Sharifnia, S. A., and Rahimi, M.: Re-
gional low flow analysis in Sefidrood Drainage Basin, Iran us-
ing principal component regression, Hydrol. Res., 46, 121–135,
https://doi.org/10.2166/nh.2014.087, 2015.

Oppel, H. and Mewes, B.: On the automation of flood event sep-
aration from continuous time series, Frontiers in Water, 2, 18,
https://doi.org/10.3389/frwa.2020.00018, 2020.

Ouarda, T., Charron, C., Hundecha, Y., St-Hilaire, A., and Chebana,
F.: Introduction of the GAM model for regional low-flow fre-
quency analysis at ungauged basins and comparison with com-
monly used approaches, Environ. Modell. Softw., 109, 256–271,
https://doi.org/10.1016/j.envsoft.2018.08.031, 2018.

Sujay Raghavendra, N. and Deka, P. C.: Support vector machine ap-
plications in the field of hydrology: A review, Applied Soft Com-
puting, 19, 372–386, https://doi.org/10.1016/j.asoc.2014.02.002,
2014.

Ram, K. and Wickham, H.: wesanderson: A Wes Anderson Palette
Generator, r package version 0.3.6, available at: https://CRAN.
R-project.org/package=wesanderson (last access: 15 Septem-
ber 2021), 2018.

Salinas, J. L., Laaha, G., Rogger, M., Parajka, J., Viglione,
A., Sivapalan, M., and Blöschl, G.: Comparative assess-
ment of predictions in ungauged basins – Part 2: Flood and
low flow studies, Hydrol. Earth Syst. Sci., 17, 2637–2652,
https://doi.org/10.5194/hess-17-2637-2013, 2013.

Schmid, M. and Hothorn, T.: Boosting additive models using
component-wise P-splines, Comput. Stat. Data An., 53, 298–311,
https://doi.org/10.1016/j.csda.2008.09.009, 2008.

See, L., Solomatine, D., Abrahart, R., and Toth, E.: Hydroinformat-
ics: computational intelligence and technological developments
in water science applications, Hydrolog. Sci. J., 52, 391–396,
https://doi.org/10.1623/hysj.52.3.391, 2007.

Seibold, H., Bernau, C., Boulesteix, A.-L., and De Bin, R.: On the
choice and influence of the number of boosting steps for high-
dimensional linear Cox-models, Comput. Stat., 33, 1195–1215,
https://doi.org/10.1007/s00180-017-0773-8, 2018.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R.:
Regularization Paths for Cox’s Proportional Hazards
Model via Coordinate Descent, J. Stat. Softw., 39, 1–13,
https://doi.org/10.18637/jss.v039.i05, 2011.

https://doi.org/10.5194/hess-26-129-2022 Hydrol. Earth Syst. Sci., 26, 129–148, 2022

https://doi.org/10.1198/106186006X133933
https://CRAN.R-project.org/package=mboost
https://doi.org/10.1111/j.1541-0420.2008.01112.x
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1029/2019WR026065
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.1002/wrcr.20315
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1201/9781315108230
https://doi.org/10.1016/j.jhydrol.2004.09.012
https://doi.org/10.1016/j.jhydrol.2005.09.001
https://doi.org/10.1623/hysj.52.4.625
https://doi.org/10.1002/hyp.9578
https://doi.org/10.1177/1471082X17748086
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1002/bit.26073
https://CRAN.R-project.org/package=pls
https://CRAN.R-project.org/package=pls
https://doi.org/10.1029/2018WR024558
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://doi.org/10.1029/2020WR028091
https://doi.org/10.2166/nh.2014.087
https://doi.org/10.3389/frwa.2020.00018
https://doi.org/10.1016/j.envsoft.2018.08.031
https://doi.org/10.1016/j.asoc.2014.02.002
https://CRAN.R-project.org/package=wesanderson
https://CRAN.R-project.org/package=wesanderson
https://doi.org/10.5194/hess-17-2637-2013
https://doi.org/10.1016/j.csda.2008.09.009
https://doi.org/10.1623/hysj.52.3.391
https://doi.org/10.1007/s00180-017-0773-8
https://doi.org/10.18637/jss.v039.i05


148 J. Laimighofer et al.: Parsimonious models

Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging – geostatis-
tics on stream networks, Hydrol. Earth Syst. Sci., 10, 277–287,
https://doi.org/10.5194/hess-10-277-2006, 2006.

Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol.,
240, 147–186, https://doi.org/10.1016/S0022-1694(00)00340-1,
2001.

Solomatine, D. P. and Ostfeld, A.: Data-driven modelling: some
past experiences and new approaches, J. Hydroinform., 10, 3–
22, https://doi.org/10.2166/hydro.2008.015, 2008.

Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.:
Bias in random forest variable importance measures: Illustra-
tions, sources and a solution, BMC Bioinformatics, 8, 1–21,
https://doi.org/10.1186/1471-2105-8-25, 2007.

Strobl, C., Malley, J., and Tutz, G.: An introduction to recursive par-
titioning: rationale, application, and characteristics of classifica-
tion and regression trees, bagging, and random forests, Psychol.
Methods, 14, 323, https://doi.org/10.1037/a0016973, 2009.

Tabari, H., Kisi, O., Ezani, A., and Talaee, P. H.: SVM,
ANFIS, regression and climate based models for reference
evapotranspiration modeling using limited climatic data in
a semi-arid highland environment, J. Hydrol., 444, 78–89,
https://doi.org/10.1016/j.jhydrol.2012.04.007, 2012.

Tibshirani, R.: Regression shrinkage and selection via
the lasso, J. Roy. Stat. Soc. B Meth, 58, 267–288,
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x, 1996.

Tyralis, H., Papacharalampous, G., and Langousis, A.: A brief
review of random forests for water scientists and practition-
ers and their recent history in water resources, Water, 11, 910,
https://doi.org/10.3390/w11050910, 2019.

Tyralis, H., Papacharalampous, G., Langousis, A., and Papalexiou,
S. M.: Explanation and probabilistic prediction of hydrological
signatures with statistical boosting algorithms, Remote Sensing,
13, 333, https://doi.org/10.3390/rs13030333, 2021.

Vapnik, V.: The nature of statistical learning theory, Springer
Science & Business Media, https://doi.org/10.1007/978-1-4757-
3264-1, 2000.

Varmuza, K. and Filzmoser, P.: Introduction to multivari-
ate statistical analysis in chemometrics, CRC Press,
https://doi.org/10.1201/9781420059496, 2016.

Walter, M. T., Brooks, E. S., McCool, D. K., King, L. G., Molnau,
M., and Boll, J.: Process-based snowmelt modeling: does it re-
quire more input data than temperature-index modeling?, J. Hy-
drol., 300, 65–75, https://doi.org/10.1016/j.jhydrol.2004.05.002,
2005.

Wold, H.: Estimation of principal components and related models
by iterative least squares, edited by: Krishnajah, P. R., Multivari-
ate analysis, New York, Academic Press, 391–420, 1966.

Worland, S. C., Farmer, W. H., and Kiang, J. E.: Improving pre-
dictions of hydrological low-flow indices in ungaged basins us-
ing machine learning, Environ. Modell. Softw., 101, 169–182,
https://doi.org/10.1016/j.envsoft.2017.12.021, 2018.

Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation
of Random Forests for High Dimensional Data in C++ and R,
J. Stat. Softw., 77, 1–17, https://doi.org/10.18637/jss.v077.i01,
2017.

Zhang, Y., Chiew, F. H., Li, M., and Post, D.: Predict-
ing runoff signatures using regression and hydrological
modeling approaches, Water Resour. Res., 54, 7859–7878,
https://doi.org/10.1029/2018WR023325, 2018.

Hydrol. Earth Syst. Sci., 26, 129–148, 2022 https://doi.org/10.5194/hess-26-129-2022

https://doi.org/10.5194/hess-10-277-2006
https://doi.org/10.1016/S0022-1694(00)00340-1
https://doi.org/10.2166/hydro.2008.015
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1037/a0016973
https://doi.org/10.1016/j.jhydrol.2012.04.007
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.3390/w11050910
https://doi.org/10.3390/rs13030333
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1201/9781420059496
https://doi.org/10.1016/j.jhydrol.2004.05.002
https://doi.org/10.1016/j.envsoft.2017.12.021
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1029/2018WR023325

	Abstract
	Introduction
	Data
	Catchment characteristics
	Climate characteristics

	Methods
	Models
	Lasso
	PCR
	sPLS
	Linear and nonlinear model-based boosting
	RF
	SVR

	Variable preselection for parsimonious models
	Variable ranking methods
	Model-specific preselection of variables
	Performance evaluation metrics


	Results
	Model performance without variable preselection
	Effect of variable preselection
	Importance of predictors (from variable rankings)

	Discussion
	Predictive performance and benchmarking
	Predictive performance as a function of catchment characteristics
	Linear vs. nonlinear models

	Conclusions
	Appendix A
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

