Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Daniel Garaboa-Paz
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Damián Insua-Costa
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Gonzalo Miguez-Macho
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Vicente Pérez-Muñuzuri
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Related authors
No articles found.
Alfredo Crespo-Otero, Damián Insua-Costa, Emilio Hernández-García, Cristóbal López, and Gonzalo Míguez-Macho
Earth Syst. Dynam., 16, 1483–1501, https://doi.org/10.5194/esd-16-1483-2025, https://doi.org/10.5194/esd-16-1483-2025, 2025
Short summary
Short summary
We evaluated two Lagrangian moisture tracking tools for computing moisture sources in precipitation events related to atmospheric rivers (ARs) and compared them against the Weather Research and Forecasting (WRF) model with water vapor tracers. Our results show that both tools (the Sodemann et al., 2008, and Dirmeyer and Brubaker, 1999, methodologies) present a systematic underestimation of remote sources. Implementing simple physics-based changes substantially improved both methods, narrowing the disparities among all approaches.
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci., 25, 2503–2518, https://doi.org/10.5194/nhess-25-2503-2025, https://doi.org/10.5194/nhess-25-2503-2025, 2025
Short summary
Short summary
This study investigates the intense heatwaves of 2022 in the Pyrenees. The interplay of the synoptic circulation with the complex topography and the pre-existing soil moisture deficits played an important role in driving the spatial variability of their temperature anomalies. Moreover, human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025, https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Short summary
Access to deep moisture below the Earth's surface is important for vegetation in areas of the Amazon where there is little precipitation for part of the year. Most existing numerical models of the Earth system do not adequately capture where and when deep root water uptake occurs. We address this by adding deep soil layers and a root water uptake feature to an existing model. Out modifications lead to increased dry-month transpiration and improved simulation of the annual transpiration cycle.
Xavier Fonseca, Gonzalo Miguez-Macho, José A. Cortes-Vazquez, and Antonio Vaamonde
Geosci. Commun., 5, 177–188, https://doi.org/10.5194/gc-5-177-2022, https://doi.org/10.5194/gc-5-177-2022, 2022
Short summary
Short summary
In this paper, we discuss the instrumental role of the press in informing and educating the public on the subject of climate science and climate change. We illustrate this using an example of a dissemination format called Weather Stories, published daily in one of the most read newspapers in Spain. The particularities of this journalistic format are described using a practical example of a relatively complex physical concept: the jet stream.
Breogán Gómez and Gonzalo Miguez-Macho
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-71, https://doi.org/10.5194/esd-2020-71, 2020
Publication in ESD not foreseen
Short summary
Short summary
Spectral nudging imposes the large scale fields from a global model into a regional model. We study which are the best scales on a tropical setting and how long is needed to run the model before it is in balance with the nudging force. Optimal results are obtained when nudging is applied in the Rossby Radius scales for at least 72 h to 96 h. We also propose a new method where a different scale is used for each nudged variable, which bests other configurations when applied in 4 hurricanes cases.
Cited articles
EMDAT.database: https://public.emdat.be/data, last access: 15 December 2021. a
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013. a, b
Buzzi, A., Tartaglione, N., and Malguzzi, P.: Numerical simulations of the
1994 piedmont flood: Role of orography and moist processes, Mon. Weather
Rev., 126, 2369–2383, https://doi.org/10.1175/1520-0493(1998)126<2369:NSOTPF>2.0.CO;2, 1998. a
Ciric, D., Nieto, R., Losada, L., Drumond, A., and Gimeno, L.: The
mediterranean moisture contribution to climatological and extreme monthly
continental precipitation, Water, 10, 519, https://doi.org/10.3390/w10040519,
2018. a
Dayan, U., Nissen, K., and Ulbrich, U.: Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean, Nat. Hazards Earth Syst. Sci., 15, 2525–2544, https://doi.org/10.5194/nhess-15-2525-2015, 2015. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J.,
Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N.,
and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R., Moreira, L., and Gimeno, L.: The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis, Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, 2014. a
Duffourg, F. and Ducrocq, V.: Origin of the moisture feeding the Heavy Precipitating Systems over Southeastern France, Nat. Hazards Earth Syst. Sci., 11, 1163–1178, https://doi.org/10.5194/nhess-11-1163-2011, 2011. a
ECMWF: ECMWF Reanalysis – Interim (ERA-Interim), available at: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim, last access: 16 December 2021. a
Eiras-Barca, J., Dominguez, F., Hu, H., Garaboa-Paz, D., and Miguez-Macho, G.: Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool, Earth Syst. Dynam., 8, 1247–1261, https://doi.org/10.5194/esd-8-1247-2017, 2017. a
Emanuel, K. A. and Živković-Rothman, M.: Development and
evaluation of a convection scheme for use in climate models, J.
Atmos. Sci., 56, 1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2,
1999. a
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L.,
Drumond, A., Durn-Quesada, A. M., and Nieto, R.: Oceanic and terrestrial
sources of continental precipitation, Rev. Geophys., 40, 1443–1450,
https://doi.org/10.1029/2012RG000389, 2012. a
Gimeno, L., Nieto, R., Drumond, A., Castillo, R., and Trigo, R.: Influence of
the intensification of the major oceanic moisture sources on continental
precipitation, Geophys. Res. Lett., 40, 1443–1450, https://doi.org/10.1002/grl.50338, 2013. a
Hanna, S. R.: Applications in air pollution modeling. Atmospheric
Turbulence and Air Pollution Modelling: A Course Held
in The Hague, 21–25 September 1981, edited by: Nieuwstadt, F. T. M. and
van Dop, H., and Reidel, D., 275–310, 1982. a
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341,
https://doi.org/10.1175/MWR3199.1, 2006. a
Hu, H. and Dominguez, F.: Understanding the Role of Tropical Moisture in
Atmospheric Rivers, J. Geophys. Res.-Atmos., 124, 13826–13842,
https://doi.org/10.1029/2019JD030867, 2019. a
Insua-Costa, D. and Miguez-Macho, G.: A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm, Earth Syst. Dynam., 9, 167–185, https://doi.org/10.5194/esd-9-167-2018, 2018. a, b
Insua-Costa, D., Miguez-Macho, G., and Llasat, M. C.: Local and remote moisture sources for extreme precipitation: a study of the two catastrophic 1982 western Mediterranean episodes, Hydrol. Earth Syst. Sci., 23, 3885–3900, https://doi.org/10.5194/hess-23-3885-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n
James, P., Stohl, A., Forster, C., Eckhardt, S., Seibert, P., and Frank, A.: A
15-year climatology of stratosphere-troposphere exchange with a Lagrangian
particle dispersion model: 1. Methodology and validation, J.
Geophys. Res.-Atmos., 108, 8519, https://doi.org/10.1029/2002jd002637, 2003. a
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume
model and its application in convective parameterization, J.
Atmos. Sci., 47, 2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2,
1990. a
Krichak, S. O., Barkan, J., Breitgand, J. S., Gualdi, S., and Feldstein, S. B.:
The role of the export of tropical moisture into midlatitudes for extreme
precipitation events in the Mediterranean region, Theor. Appl.
Climatol., 121, 499–515, https://doi.org/10.1007/s00704-014-1244-6, 2015. a
Lavers, D. A. and Villarini, G.: The contribution of atmospheric rivers to
precipitation in Europe and the United States, J. Hydrol., 2015, 382–390,
https://doi.org/10.1016/j.jhydrol.2014.12.010, 2015. a
Llasat, M. C.: High magnitude storms and floods, The Physical Geography of
the Mediterranean, edited by: Woodward, JC, Oxford University Press, Oxford,
513–540, 2009. a
Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., and Nicolaides, K.: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database, Adv. Geosci., 23, 47–55, https://doi.org/10.5194/adgeo-23-47-2010, 2010. a
Mariotti, A., Struglia, M. V., Zeng, N., and Lau, K. M.: The hydrological
cycle in the Mediterranean region and implications for the water budget of
the Mediterranean sea, J. Climate, 15, 1674–1690,
https://doi.org/10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2, 2002. a
Nieto, R., Gimeno, L., de la Torre, L., Ribera, P., Gallego, D.,
García-Herrera, R., García, J. A., Nuñez, M., Redaño,
A., and Lorente, J.: Climatological features of cutoff low systems in the
Northern Hemisphere, J. Climate, 18, 3085–3103, https://doi.org/10.1175/JCLI3386.1, 2005. a
Nieto, R., Gimeno, L., Drumond, A., and Hernandez, E.: A Lagrangian
identification of the main moisture sources and sinks affecting the
Mediterranean area, WSEAS Transactions on Environment and Development, 6, 365–374, 2010. a
Pérez-Muñuzuri, V., Eiras-Barca, J., and Garaboa-Paz, D.: Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events, Earth Syst. Dynam., 9, 785–795, https://doi.org/10.5194/esd-9-785-2018, 2018. a
Pinto, J. G., Ulbrich, S., Parodi, A., Rudari, R., Boni, G., and Ulbrich, U.:
Identification and ranking of extraordinary rainfall events over Northwest
Italy: The role of Atlantic moisture, J. Geophys. Res.-Atmos. 118, 2085–2097, https://doi.org/10.1002/jgrd.50179, 2013. a
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019. a
Reale, O., Feudale, L., and Turato, B.: Evaporative moisture sources during a
sequence of floods in the Mediterranean region, Geophys. Res.
Lett., 28, 2085–2088, https://doi.org/10.1029/2000GL012379, 2001. a
Romero, R., Doswell, C. A., and Ramis, C.: Mesoscale numerical study of two
cases of long-lived quasi-stationary convective systems over eastern Spain,
Mon. Weather Rev., 128, 3731–3751,
https://doi.org/10.1175/1520-0493(2001)129<3731:MNSOTC>2.0.CO;2, 2000. a
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of
the global water cycle: Part 1: Method description, validation, and
demonstration for the August 2002 flooding in central Europe, J.
Hydrometeorol., 5, 656–678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2,
2004. a, b
Stohl, A., Forster, C., and Sodemann, H.: Remote sources of water vapor
forming precipitation on the Norwegian west coast at 60∘ N – A tale of
hurricanes and an atmospheric river, J. Geophys. Res.-Atmos., 113, D05102, https://doi.org/10.1029/2007JD009006, 2008. a, b
Sun, B. and Wang, H.: Moisture sources of semiarid grassland in China using
the lagrangian particle model FLEXPART, J. Climate, 27, 2457–2474,
https://doi.org/10.1175/JCLI-D-13-00517.1, 2014. a
Trapero, L., Bech, J., Duffourg, F., Esteban, P., and Lorente, J.: Mesoscale numerical analysis of the historical November 1982 heavy precipitation event over Andorra (Eastern Pyrenees), Nat. Hazards Earth Syst. Sci., 13, 2969–2990, https://doi.org/10.5194/nhess-13-2969-2013, 2013. a
Tuinenburg, O.: Referee comment 2, https://doi.org/10.5194/hess-2020-651-RC2, 2021. a
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture and associated uncertainties, Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, 2020. a
Turato, B., Reale, O., and Siccardi, F.: Water vapor sources of the October
2000 Piedmont flood, J. Hydrometeorol., 5, 693–712,
https://doi.org/10.1175/1525-7541(2004)005<0693:WVSOTO>2.0.CO;2, 2004. a
van der Ent, R.: Community comment 1, https://doi.org/10.5194/hess-2020-651-CC1, 2021. a
van der Ent, R. J., Tuinenburg, O. A., Knoche, H.-R., Kunstmann, H., and Savenije, H. H. G.: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, 2013. a, b, c
Winschall, A., Pfahl, S., Sodemann, H., and Wernli, H.: Impact of North
Atlantic evaporation hot spots on southern Alpine heavy precipitation
events, Q. J. Roy. Meteor. Soc., 138, 1245–1258,
https://doi.org/10.1002/qj.987, 2012.
a, b
Winschall, A., Pfahl, S., Sodemann, H., and Wernli, H.: Comparison of Eulerian and Lagrangian moisture source diagnostics – the flood event in eastern Europe in May 2010, Atmos. Chem. Phys., 14, 6605–6619, https://doi.org/10.5194/acp-14-6605-2014, 2014. a
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing...