Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Daniel Garaboa-Paz
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Damián Insua-Costa
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Gonzalo Miguez-Macho
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Vicente Pérez-Muñuzuri
CRETUS, Nonlinear Physics Group, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
Related authors
No articles found.
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-192, https://doi.org/10.5194/nhess-2024-192, 2024
Preprint under review for NHESS
Short summary
Short summary
This study explores the 2022 heatwaves in the Pyrenees, examining the factors that contributed to their intensity and distribution. The June event was driven by strong winds that created uneven temperature patterns, while the July heatwave featured calmer conditions and more uniform temperatures. Human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2412, https://doi.org/10.5194/egusphere-2024-2412, 2024
Short summary
Short summary
Access to deep moisture below the earth's surface is important for vegetation in areas of the Amazon where there is little precipitation for part of the year. Most existing numerical models of the earth system cannot capture where and when deep root water uptake occurs. In this study, we address this by adding a new root water uptake feature to an existing model. Adding this feature increases dry month transpiration and improves the model's simulation of the annual transpiration cycle.
Alfredo Crespo-Otero, Damián Insua-Costa, Emilio Hernández-García, Cristóbal López, and Gonzalo Míguez-Macho
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-18, https://doi.org/10.5194/esd-2024-18, 2024
Revised manuscript under review for ESD
Short summary
Short summary
We evaluated two Lagrangian moisture tracking tools, WaterSip and UTrack, and compared them against the WRF model with Water Vapor Tracers. Our results show that UTrack, which relies on evaporation and precipitable water data, has a slightly better agreement with WRF-WVTs than WaterSip, based on specific humidity data. Implementing simple physics-based changes substantially improved both methodologies, reducing discrepancies by about 50 % and narrowing the the disparities among all approaches.
Xavier Fonseca, Gonzalo Miguez-Macho, José A. Cortes-Vazquez, and Antonio Vaamonde
Geosci. Commun., 5, 177–188, https://doi.org/10.5194/gc-5-177-2022, https://doi.org/10.5194/gc-5-177-2022, 2022
Short summary
Short summary
In this paper, we discuss the instrumental role of the press in informing and educating the public on the subject of climate science and climate change. We illustrate this using an example of a dissemination format called Weather Stories, published daily in one of the most read newspapers in Spain. The particularities of this journalistic format are described using a practical example of a relatively complex physical concept: the jet stream.
Breogán Gómez and Gonzalo Miguez-Macho
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-71, https://doi.org/10.5194/esd-2020-71, 2020
Publication in ESD not foreseen
Short summary
Short summary
Spectral nudging imposes the large scale fields from a global model into a regional model. We study which are the best scales on a tropical setting and how long is needed to run the model before it is in balance with the nudging force. Optimal results are obtained when nudging is applied in the Rossby Radius scales for at least 72 h to 96 h. We also propose a new method where a different scale is used for each nudged variable, which bests other configurations when applied in 4 hurricanes cases.
Zhe Zhang, Yanping Li, Michael Barlage, Fei Chen, Gonzalo Miguez-Macho, Andrew Ireson, and Zhenhua Li
Hydrol. Earth Syst. Sci., 24, 655–672, https://doi.org/10.5194/hess-24-655-2020, https://doi.org/10.5194/hess-24-655-2020, 2020
Short summary
Short summary
The groundwater regime in cold regions is strongly impacted by the soil freeze–thaw processes and semiarid climatic conditions. In this paper, we incorporate groundwater dynamics in the Noah-MP land surface model to simulate the water exchange between the unsaturated soil zone and an unconfined aquifer in the Prairie Pothole Region. The water table dynamics are reasonably simulated. The water budget of groundwater aquifer under current and future climate are also investigated.
Alberto Martínez-de la Torre and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 23, 4909–4932, https://doi.org/10.5194/hess-23-4909-2019, https://doi.org/10.5194/hess-23-4909-2019, 2019
Short summary
Short summary
Over semi-arid regions, it is essential to have a correct representation of the groundwater processes in climate modelling. We present a land surface and groundwater model that incorporates groundwater–soil interactions, groundwater–rivers flow and lateral transport at the subsurface. We study the groundwater influence on soil moisture distribution and memory, and on evapotranspiration in the Iberian Peninsula. Shallow water table regions persist and provide water to the surface during droughts.
Damián Insua-Costa, Gonzalo Miguez-Macho, and María Carmen Llasat
Hydrol. Earth Syst. Sci., 23, 3885–3900, https://doi.org/10.5194/hess-23-3885-2019, https://doi.org/10.5194/hess-23-3885-2019, 2019
Short summary
Short summary
Here, we study the main moisture sources of the two famous western Mediterranean flood events of autumn 1982 (October and November). Results confirm the hypothesis that a large amount of precipitable water was involved, which was to a great extent advected from the tropics and subtropics. This remote moisture transport occurred at medium levels of the atmosphere via moisture plumes or atmospheric rivers. During the October event the contribution of local sources was also important.
Miguel A. Prósper, Ian Sosa Tinoco, Carlos Otero-Casal, and Gonzalo Miguez-Macho
Earth Syst. Dynam., 10, 485–499, https://doi.org/10.5194/esd-10-485-2019, https://doi.org/10.5194/esd-10-485-2019, 2019
Short summary
Short summary
We study the fine-scale structure of Tehuano winds in the Isthmus of Tehuantepec, focusing on the flow beyond the well-known strong gap wind jet. We use high-resolution WRF model simulations to show that different downslope windstorm conditions and hydraulic jumps with rotor circulations develop in the mountains east of Chivela Pass depending on crest height and thermodynamic conditions of the air mass. The intense turbulent flows can have a large impact on the existent wind farms in the region.
Suyog Chaudhari, Yadu Pokhrel, Emilio Moran, and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 23, 2841–2862, https://doi.org/10.5194/hess-23-2841-2019, https://doi.org/10.5194/hess-23-2841-2019, 2019
Short summary
Short summary
Comprehensive characterization of extreme drought events in the Amazon is provided with respect to their cause, type, spatial extent, and impact on different water stores. Basin-averaged trends in water storage indicate that the Amazon is getting wetter; however its southern and southeastern portions are getting drier. Water deficit is found to be 3-fold higher than the total water supplied during some drought years. Water deficit due to low precipitation events is absorbed by the groundwater.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Rogier Westerhoff, Paul White, and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 22, 6449–6472, https://doi.org/10.5194/hess-22-6449-2018, https://doi.org/10.5194/hess-22-6449-2018, 2018
Short summary
Short summary
Our study improved a global-scale groundwater model to build the first nationwide estimate of the water table surface in New Zealand. By identifying the main alluvial aquifers with high spatial detail, we showed that this model can help better delineate aquifer boundaries. In catchment studies we demonstrated excellent correlation with ground observations and provided water table estimates where data were sparse and across regions, which could help solve trans-boundary issues between catchments.
Jorge Eiras-Barca, Nieves Lorenzo, Juan Taboada, Alba Robles, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci., 18, 1633–1645, https://doi.org/10.5194/nhess-18-1633-2018, https://doi.org/10.5194/nhess-18-1633-2018, 2018
Short summary
Short summary
This paper analyzes the connection between the so-called atmospheric rivers (ARs, long and narrow structures of anomalously high water vapor flux located in the warm sector of extratropical cyclones) and floods in the northwestern region of the Iberian Peninsula through the use of the
weather typesclassification adopting the subjective procedure of Lamb.
Vicente Pérez-Muñuzuri, Jorge Eiras-Barca, and Daniel Garaboa-Paz
Earth Syst. Dynam., 9, 785–795, https://doi.org/10.5194/esd-9-785-2018, https://doi.org/10.5194/esd-9-785-2018, 2018
Short summary
Short summary
Two Lagrangian tracer tools are evaluated for studies on atmospheric moisture sources and pathways. Usual Lagrangian methods consider the initial moisture volume to remain constant and the particle to follow flow path lines exactly. In a different approach, the initial volume can be considered to depend on time as it is advected by the flow due to thermodynamic processes. Drag and buoyancy forces must then be considered.
Damián Insua-Costa and Gonzalo Miguez-Macho
Earth Syst. Dynam., 9, 167–185, https://doi.org/10.5194/esd-9-167-2018, https://doi.org/10.5194/esd-9-167-2018, 2018
Short summary
Short summary
We present here a newly implemented water vapor tracer tool into the WRF meteorological model (WRF-WVT). A detailed validation shows high accuracy, with an error of much less than 1 % in moisture traceability. As an example application, we show that for the 2014 Great Lake-effect snowstorm, above 30 % of precipitation in the regions immediately downwind originated from lake evaporation, with contributions exceeding 50 % in the areas with highest snowfall accumulations.
Jorge Eiras-Barca, Alexandre M. Ramos, Joaquim G. Pinto, Ricardo M. Trigo, Margarida L. R. Liberato, and Gonzalo Miguez-Macho
Earth Syst. Dynam., 9, 91–102, https://doi.org/10.5194/esd-9-91-2018, https://doi.org/10.5194/esd-9-91-2018, 2018
Short summary
Short summary
This paper analyses the potential role of atmospheric rivers in the explosive cyclone deepening. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific basins for the extended winter months (ONDJFM).
Jorge Eiras-Barca, Francina Dominguez, Huancui Hu, Daniel Garaboa-Paz, and Gonzalo Miguez-Macho
Earth Syst. Dynam., 8, 1247–1261, https://doi.org/10.5194/esd-8-1247-2017, https://doi.org/10.5194/esd-8-1247-2017, 2017
Short summary
Short summary
This paper analyzes the origin of the moisture in two extremely important atmospheric river (and extreme precipitation) events. The distribution of the moisture with regard to the low-level jet is analyzed as well, and the classic association of the atmospheric river to the former is discussed.
Daniel Garaboa-Paz, Jorge Eiras-Barca, and Vicente Pérez-Muñuzuri
Earth Syst. Dynam., 8, 865–873, https://doi.org/10.5194/esd-8-865-2017, https://doi.org/10.5194/esd-8-865-2017, 2017
Short summary
Short summary
For the first time, a climatology of Lyapunov exponents (FTLE) for the period 1979–2014 has been established. This climatology is able to reproduce the main large-scale structures observed in the troposphere. The mean FTLE has been shown to correlate with the baroclinic Eady growth rate within timescales of a few days. As a case study, the contribution of atmospheric rivers to this climatology and their contribution to rainfalls over the Sahara and UK regions have been studied.
Daniel Garaboa-Paz, Nieves Lorenzo, and Vicente Pérez-Muñuzuri
Nonlin. Processes Geophys., 24, 227–235, https://doi.org/10.5194/npg-24-227-2017, https://doi.org/10.5194/npg-24-227-2017, 2017
Short summary
Short summary
This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain.
Pere Quintana-Seguí, Marco Turco, Sixto Herrera, and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 21, 2187–2201, https://doi.org/10.5194/hess-21-2187-2017, https://doi.org/10.5194/hess-21-2187-2017, 2017
Short summary
Short summary
The quality of two high-resolution precipitation datasets for Spain at the daily time scale is reported: the new SAFRAN-based dataset and Spain02. ERA-Interim is also included. The precipitation products are compared with observations. SAFRAN and Spain02 have very similar scores, and they perform better than ERA-Interim. The high-resolution gridded products overestimate the number of precipitation days. Both SAFRAN and Spain02 underestimate high precipitation events.
D. Garaboa-Paz and V. Pérez-Muñuzuri
Nonlin. Processes Geophys., 22, 571–577, https://doi.org/10.5194/npg-22-571-2015, https://doi.org/10.5194/npg-22-571-2015, 2015
Short summary
Short summary
The present study aims to improve the calculus of finite-time Lyapunov exponents (FTLEs) applied to describe the transport of inertial particles in a fluid flow. To this aim, the deformation tensor is modified to take into account that the stretching rate between particles separated by a certain distance is influenced by the initial velocity of the particles. Results are presented for two different flows and compared with the classical method by Shadden (2005).
V. Pérez-Muñuzuri and F. Huhn
Nonlin. Processes Geophys., 20, 987–991, https://doi.org/10.5194/npg-20-987-2013, https://doi.org/10.5194/npg-20-987-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Assessing rainfall radar errors with an inverse stochastic modelling framework
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
An increase in the spatial extent of European floods over the last 70 years
140-year daily ensemble streamflow reconstructions over 661 catchments in France
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Improving runoff simulation in the Western United States with Noah-MP and variable infiltration capacity
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Downscaling the probability of heavy rainfall over the Nordic countries
Modelling convective cell lifecycles with a copula-based approach
What Are the Key Soil Hydrological Processes to Control Soil Moisture Memory?
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Global total precipitable water variations and trends over the period 1958–2021
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Identification of compound drought and heatwave events on a daily scale and across four seasons
Observation-driven model for calculating water harvesting potential from advective fog in (semi-)arid coastal regions
Potential for historically unprecedented Australian droughts from natural variability and climate change
Review of Gridded Climate Products and Their Use in Hydrological Analyses Reveals Overlaps, Gaps, and Need for More Objective Approach to Model Forcings
Flood risk assessment for Indian sub-continental river basins
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Divergent future drought projections in UK river flows and groundwater levels
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Accounting for hydroclimatic properties in flood frequency analysis procedures
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024, https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Short summary
Having accurate up-to-date maps of soil moisture is important for many purposes. However, current modelled and remotely sensed maps are rather coarse and not very accurate. Here, we demonstrate a simple but accurate approach that is closely linked to direct measurements of soil moisture at a network sites across the UK, to the water balance (precipitation minus drainage and evaporation) measured at a large number of catchments (1212) and to remotely sensed satellite estimates.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024, https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
Short summary
The accurate estimation of precipitation and its spatial variability within a watershed is crucial for reliable discharge simulations. The study is the first detailed analysis of the potential usage of the cellular automata technique to merge different rainfall data inputs to hydrological models. This work shows an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024, https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Short summary
The Gran Chaco is a large, dry forest in South America that has been heavily deforested, particularly in the dry Chaco subregion. This deforestation, mainly driven by the expansion of the agricultural frontier, has changed the land's characteristics, affecting the local and regional climate. The study reveals that deforestation has resulted in reduced precipitation, soil moisture, and runoff, and if intensive agriculture continues, it could make summers in this arid region even drier and hotter.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1463, https://doi.org/10.5194/egusphere-2024-1463, 2024
Short summary
Short summary
The paper presents a method for deriving the chance of heavy downpour, the maximum amount expected at various intervals, and explain how the rainfall changes. It suggests that increases are more due to increased amounts on wet days rather than more wet days, and the rainfall intensity is found to be sensitive to future greenhouse gas emissions while the number of wet days appears to be less affected.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
EGUsphere, https://doi.org/10.5194/egusphere-2024-1540, https://doi.org/10.5194/egusphere-2024-1540, 2024
Short summary
Short summary
This study presents a new algorithm to better model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and to reconstruct storm cell lifecycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential model for realistic rainfall patterns, enhancing its hydrological applicability.
Mohammad Ali Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1256, https://doi.org/10.5194/egusphere-2024-1256, 2024
Short summary
Short summary
This study investigates how key hydrological processes enhance soil water retention and release in land surface models, crucial for accurate weather and climate forecasting. Experiments show that soil hydraulics effectively sustain soil moisture. Additionally, allowing surface water ponding and improving soil permeability through macropores both enhance soil moisture persistency in the models.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024, https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Short summary
This study examines centuries of nonstationary trends in meteorological drought and pluvial climatology. A novel approach merges tree-ring proxy data (North American Seasonal Precipitation Atlas – NASPA) with instrumental precipitation datasets by temporally downscaling proxy data, correcting biases, and analyzing shared trends in normal and extreme precipitation anomalies. We identify regions experiencing recent unprecedented shifts towards drier or wetter conditions and shifts in seasonality.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo de Rio
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-110, https://doi.org/10.5194/hess-2024-110, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water resources are fundamental for social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligates us to find new water resources. Fog harvesting emerges as a complementary one in regions where it is abundant but untapped. This research proposes a model to estimate fog harvesting potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where fog harvesting could be a viable water source.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-58, https://doi.org/10.5194/hess-2024-58, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We assess 60 gridded climate datasets [ground- (G), satellite- (S), reanalysis-based (R)]. Higher-density station data and less-hilly terrain improved climate data. In mountainous and humid regions, dataset types performed similarly; but R outperformed G when underlying data had low station density. G outperformed S or R datasets, though better streamflow modeling did not always follow. Hydrologic analyses need datasets that better represent climate variable dependencies and complex topography.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024, https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024, https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Cited articles
EMDAT.database: https://public.emdat.be/data, last access: 15 December 2021. a
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013. a, b
Buzzi, A., Tartaglione, N., and Malguzzi, P.: Numerical simulations of the
1994 piedmont flood: Role of orography and moist processes, Mon. Weather
Rev., 126, 2369–2383, https://doi.org/10.1175/1520-0493(1998)126<2369:NSOTPF>2.0.CO;2, 1998. a
Ciric, D., Nieto, R., Losada, L., Drumond, A., and Gimeno, L.: The
mediterranean moisture contribution to climatological and extreme monthly
continental precipitation, Water, 10, 519, https://doi.org/10.3390/w10040519,
2018. a
Dayan, U., Nissen, K., and Ulbrich, U.: Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean, Nat. Hazards Earth Syst. Sci., 15, 2525–2544, https://doi.org/10.5194/nhess-15-2525-2015, 2015. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J.,
Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N.,
and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R., Moreira, L., and Gimeno, L.: The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis, Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, 2014. a
Duffourg, F. and Ducrocq, V.: Origin of the moisture feeding the Heavy Precipitating Systems over Southeastern France, Nat. Hazards Earth Syst. Sci., 11, 1163–1178, https://doi.org/10.5194/nhess-11-1163-2011, 2011. a
ECMWF: ECMWF Reanalysis – Interim (ERA-Interim), available at: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim, last access: 16 December 2021. a
Eiras-Barca, J., Dominguez, F., Hu, H., Garaboa-Paz, D., and Miguez-Macho, G.: Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool, Earth Syst. Dynam., 8, 1247–1261, https://doi.org/10.5194/esd-8-1247-2017, 2017. a
Emanuel, K. A. and Živković-Rothman, M.: Development and
evaluation of a convection scheme for use in climate models, J.
Atmos. Sci., 56, 1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2,
1999. a
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L.,
Drumond, A., Durn-Quesada, A. M., and Nieto, R.: Oceanic and terrestrial
sources of continental precipitation, Rev. Geophys., 40, 1443–1450,
https://doi.org/10.1029/2012RG000389, 2012. a
Gimeno, L., Nieto, R., Drumond, A., Castillo, R., and Trigo, R.: Influence of
the intensification of the major oceanic moisture sources on continental
precipitation, Geophys. Res. Lett., 40, 1443–1450, https://doi.org/10.1002/grl.50338, 2013. a
Hanna, S. R.: Applications in air pollution modeling. Atmospheric
Turbulence and Air Pollution Modelling: A Course Held
in The Hague, 21–25 September 1981, edited by: Nieuwstadt, F. T. M. and
van Dop, H., and Reidel, D., 275–310, 1982. a
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341,
https://doi.org/10.1175/MWR3199.1, 2006. a
Hu, H. and Dominguez, F.: Understanding the Role of Tropical Moisture in
Atmospheric Rivers, J. Geophys. Res.-Atmos., 124, 13826–13842,
https://doi.org/10.1029/2019JD030867, 2019. a
Insua-Costa, D. and Miguez-Macho, G.: A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm, Earth Syst. Dynam., 9, 167–185, https://doi.org/10.5194/esd-9-167-2018, 2018. a, b
Insua-Costa, D., Miguez-Macho, G., and Llasat, M. C.: Local and remote moisture sources for extreme precipitation: a study of the two catastrophic 1982 western Mediterranean episodes, Hydrol. Earth Syst. Sci., 23, 3885–3900, https://doi.org/10.5194/hess-23-3885-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n
James, P., Stohl, A., Forster, C., Eckhardt, S., Seibert, P., and Frank, A.: A
15-year climatology of stratosphere-troposphere exchange with a Lagrangian
particle dispersion model: 1. Methodology and validation, J.
Geophys. Res.-Atmos., 108, 8519, https://doi.org/10.1029/2002jd002637, 2003. a
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume
model and its application in convective parameterization, J.
Atmos. Sci., 47, 2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2,
1990. a
Krichak, S. O., Barkan, J., Breitgand, J. S., Gualdi, S., and Feldstein, S. B.:
The role of the export of tropical moisture into midlatitudes for extreme
precipitation events in the Mediterranean region, Theor. Appl.
Climatol., 121, 499–515, https://doi.org/10.1007/s00704-014-1244-6, 2015. a
Lavers, D. A. and Villarini, G.: The contribution of atmospheric rivers to
precipitation in Europe and the United States, J. Hydrol., 2015, 382–390,
https://doi.org/10.1016/j.jhydrol.2014.12.010, 2015. a
Llasat, M. C.: High magnitude storms and floods, The Physical Geography of
the Mediterranean, edited by: Woodward, JC, Oxford University Press, Oxford,
513–540, 2009. a
Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., and Nicolaides, K.: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database, Adv. Geosci., 23, 47–55, https://doi.org/10.5194/adgeo-23-47-2010, 2010. a
Mariotti, A., Struglia, M. V., Zeng, N., and Lau, K. M.: The hydrological
cycle in the Mediterranean region and implications for the water budget of
the Mediterranean sea, J. Climate, 15, 1674–1690,
https://doi.org/10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2, 2002. a
Nieto, R., Gimeno, L., de la Torre, L., Ribera, P., Gallego, D.,
García-Herrera, R., García, J. A., Nuñez, M., Redaño,
A., and Lorente, J.: Climatological features of cutoff low systems in the
Northern Hemisphere, J. Climate, 18, 3085–3103, https://doi.org/10.1175/JCLI3386.1, 2005. a
Nieto, R., Gimeno, L., Drumond, A., and Hernandez, E.: A Lagrangian
identification of the main moisture sources and sinks affecting the
Mediterranean area, WSEAS Transactions on Environment and Development, 6, 365–374, 2010. a
Pérez-Muñuzuri, V., Eiras-Barca, J., and Garaboa-Paz, D.: Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events, Earth Syst. Dynam., 9, 785–795, https://doi.org/10.5194/esd-9-785-2018, 2018. a
Pinto, J. G., Ulbrich, S., Parodi, A., Rudari, R., Boni, G., and Ulbrich, U.:
Identification and ranking of extraordinary rainfall events over Northwest
Italy: The role of Atlantic moisture, J. Geophys. Res.-Atmos. 118, 2085–2097, https://doi.org/10.1002/jgrd.50179, 2013. a
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019. a
Reale, O., Feudale, L., and Turato, B.: Evaporative moisture sources during a
sequence of floods in the Mediterranean region, Geophys. Res.
Lett., 28, 2085–2088, https://doi.org/10.1029/2000GL012379, 2001. a
Romero, R., Doswell, C. A., and Ramis, C.: Mesoscale numerical study of two
cases of long-lived quasi-stationary convective systems over eastern Spain,
Mon. Weather Rev., 128, 3731–3751,
https://doi.org/10.1175/1520-0493(2001)129<3731:MNSOTC>2.0.CO;2, 2000. a
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of
the global water cycle: Part 1: Method description, validation, and
demonstration for the August 2002 flooding in central Europe, J.
Hydrometeorol., 5, 656–678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2,
2004. a, b
Stohl, A., Forster, C., and Sodemann, H.: Remote sources of water vapor
forming precipitation on the Norwegian west coast at 60∘ N – A tale of
hurricanes and an atmospheric river, J. Geophys. Res.-Atmos., 113, D05102, https://doi.org/10.1029/2007JD009006, 2008. a, b
Sun, B. and Wang, H.: Moisture sources of semiarid grassland in China using
the lagrangian particle model FLEXPART, J. Climate, 27, 2457–2474,
https://doi.org/10.1175/JCLI-D-13-00517.1, 2014. a
Trapero, L., Bech, J., Duffourg, F., Esteban, P., and Lorente, J.: Mesoscale numerical analysis of the historical November 1982 heavy precipitation event over Andorra (Eastern Pyrenees), Nat. Hazards Earth Syst. Sci., 13, 2969–2990, https://doi.org/10.5194/nhess-13-2969-2013, 2013. a
Tuinenburg, O.: Referee comment 2, https://doi.org/10.5194/hess-2020-651-RC2, 2021. a
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture and associated uncertainties, Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, 2020. a
Turato, B., Reale, O., and Siccardi, F.: Water vapor sources of the October
2000 Piedmont flood, J. Hydrometeorol., 5, 693–712,
https://doi.org/10.1175/1525-7541(2004)005<0693:WVSOTO>2.0.CO;2, 2004. a
van der Ent, R.: Community comment 1, https://doi.org/10.5194/hess-2020-651-CC1, 2021. a
van der Ent, R. J., Tuinenburg, O. A., Knoche, H.-R., Kunstmann, H., and Savenije, H. H. G.: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, 2013. a, b, c
Winschall, A., Pfahl, S., Sodemann, H., and Wernli, H.: Impact of North
Atlantic evaporation hot spots on southern Alpine heavy precipitation
events, Q. J. Roy. Meteor. Soc., 138, 1245–1258,
https://doi.org/10.1002/qj.987, 2012.
a, b
Winschall, A., Pfahl, S., Sodemann, H., and Wernli, H.: Comparison of Eulerian and Lagrangian moisture source diagnostics – the flood event in eastern Europe in May 2010, Atmos. Chem. Phys., 14, 6605–6619, https://doi.org/10.5194/acp-14-6605-2014, 2014. a
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing...