Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of the spatiotemporal structure of rainfall on flood frequency over a small urban watershed: an approach coupling stochastic storm transposition and hydrologic modeling
Zhengzheng Zhou
CORRESPONDING AUTHOR
Department of Hydraulic Engineering, Tongji University, Shanghai,
China
James A. Smith
Department of Civil and Environmental Engineering, Princeton
University, Princeton, USA
Mary Lynn Baeck
Department of Civil and Environmental Engineering, Princeton
University, Princeton, USA
Daniel B. Wright
Department of Civil and Environmental Engineering, University of
Wisconsin-Madison, Madison, USA
Brianne K. Smith
Department of Earth and Environmental Sciences, City University of New York – Brooklyn College, New York, USA
Shuguang Liu
CORRESPONDING AUTHOR
Department of Hydraulic Engineering, Tongji University, Shanghai,
China
Related authors
Qi Zhuang, Marika Koukoula, Shuguang Liu, Zhengzheng Zhou, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1002, https://doi.org/10.5194/egusphere-2025-1002, 2025
Short summary
Short summary
Understanding how projected urbanization and climate change affect typhoons, which may cause the most destructive natural catastrophes, is crucial. Based on numerical simulations of five landfalling typhoons in Shanghai, China, our results highlight that warming sea surface temperatures significantly shift typhoon tracks with intensified structures (increased size, intensity, and affected time) on the big scale. At the meantime, urbanization further enhances local rainfall intensity.
Wenyue Zou, Ruidong Li, Daniel B. Wright, Jovan Blagojevic, Peter Molnar, Mohammad A. Hussain, Yue Zhu, Yongkun Li, Guangheng Ni, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4099, https://doi.org/10.5194/egusphere-2025-4099, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We present a framework using observed rainfall and temperature to generate realistic storms and simulate street-scale flooding for present and future climates. It integrates temperature-based rainfall scaling, storm-frequency estimation, and urban flood modeling, demonstrated in Beijing to assess changes in regional storm and flood depth, timing, and flow velocity. The workflow is data-light, physically grounded, and transferable worldwide.
Qi Zhuang, Marika Koukoula, Shuguang Liu, Zhengzheng Zhou, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1002, https://doi.org/10.5194/egusphere-2025-1002, 2025
Short summary
Short summary
Understanding how projected urbanization and climate change affect typhoons, which may cause the most destructive natural catastrophes, is crucial. Based on numerical simulations of five landfalling typhoons in Shanghai, China, our results highlight that warming sea surface temperatures significantly shift typhoon tracks with intensified structures (increased size, intensity, and affected time) on the big scale. At the meantime, urbanization further enhances local rainfall intensity.
Yuan Liu and Daniel B. Wright
Hydrol. Earth Syst. Sci., 26, 5241–5267, https://doi.org/10.5194/hess-26-5241-2022, https://doi.org/10.5194/hess-26-5241-2022, 2022
Short summary
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.
Cited articles
Achen, C. H.: What Does “Explained Variance” Explain?: Reply, Polit. Anal., 2, 173–184, https://doi.org/10.1093/pan/2.1.173, 2017.
Adams, R., Western, A. W., and Seed, A. W.: An analysis of the impact of
spatial variability in rainfall on runoff and sediment predictions from a
distributed model, Hydrol. Process., 26, 3263–3280, https://doi.org/10.1002/hyp.8435, 2012.
Beighley, R. E. and Moglen, G. E.: Trend Assessment in Rainfall-Runoff Behavior in Urbanizing Watersheds, J. Hydrol. Eng., 7, 27–34, https://doi.org/10.1061/(ASCE)1084-0699(2002)7:1(27), 2002.
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial
resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001.
Bruni, G., Reinoso, R., van de Giesen, N. C., Clemens, F. H. L. R., and ten Veldhuis, J. A. E.: On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution, Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, 2015.
Cristiano, E., ten Veldhuis, M. C., and van de Giesen, N.: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review, Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, 2017.
Cristiano, E., ten Veldhuis, M.-C., Wright, D. B., Smith, J. A., and van de
Giesen, N.: The Influence of Rainfall and Catchment Critical Scales on Urban
Hydrological Response Sensitivity, Water Resour. Res., 55, 3375–3390,
https://doi.org/10.1029/2018WR024143, 2019.
Cristiano, E., ten Veldhuis, M. C., Gaitan, S., Ochoa Rodriguez, S., and van de Giesen, N.: Critical scales to explain urban hydrological response: an
application in Cranbrook, London, Hydrol. Earth Syst. Sci., 22, 2425–2447,
https://doi.org/10.5194/hess-22-2425-2018, 2018.
Downer, C. W. and Ogden, F. L.: GSSHA: Model to simulate diverse stream flow
producing processes, J. Hydrol. Eng., 9, 161–174, https://doi.org/10.1061/(ASCE)1084-0699(2004)9:3(161), 2004.
Downer, C. W. and Ogden, F. L.: Gridded Surface Subsurface Hydrologic
Analysis (GSSHA) User's Manual, Version 1.43 for Watershed Modeling System 6.1, Engineer Research And Development Center, Coastal And Hydraulics Lab, Vicksburg, MS, 2006.
Emmanuel, I., Andrieu, H., Leblois, E., and Flahaut, B.: Temporal and spatial variability of rainfall at the urban hydrological scale, J. Hydrol., 430–431, 162–172, https://doi.org/10.1016/j.jhydrol.2012.02.013, 2012.
Emmanuel, I., Andrieu, H., Leblois, E., Janey, N., and Payrastre, O.: Influence of rainfall spatial variability on rainfall–runoff modelling:
Benefit of a simulation approach?, J. Hydrol., 531, 337–348,
https://doi.org/10.1016/j.jhydrol.2015.04.058, 2015.
Faurès, J.-M., Goodrich, D. C., Woolhiser, D. A., and Sorooshian, S.:
Impact of small-scale spatial rainfall variability on runoff modeling, J. Hydrol., 173, 309–326, https://doi.org/10.1016/0022-1694(95)02704-S, 1995.
Fulton, R. A., Breidenbach, J. P., Seo, D.-J., Miller, D. A., and O'Bannon,
T.: The WSR-88D rainfall algorithm, Weather Forecast., 13, 377–395,
https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2, 1998.
Galster, J. C., Pazzaglia, F. J., Hargreaves, B. R., Morris, D. P., Peters,
S. C., and Weisman, R. N.: Effects of urbanization on watershed hydrology: The scaling of discharge with drainage area, Geology, 34, 713–716,
https://doi.org/10.1130/g22633.1, 2006.
Gebremichael, M. and Krajewski, W. F.: Assessment of the statistical characterization of small-scale rainfall variability from radar: Analysis of
TRMM ground validation datasets, J. Appl. Meteorol., 43, 1180–1199, https://doi.org/10.1175/1520-0450(2004)043<1180:AOTSCO>2.0.CO;2, 2004.
Gesch, D. B., Oimoen, M. J., Greenlee, S. K., Nelson, C. A., Steuck, M. J.,
and Tyler, D. J.: The national elevation data set, Photogram. Eng. Remote Sens., 68, 5–11, 2002.
Gourley, J. J., Flamig, Z. L., Vergara, H., Kirstetter, P.-E., Clark, R. A.,
Argyle, E., Arthur, A., Martinaitis, S., Terti, G., Erlingis, J. M., Hong, Y., and Howard, K. W.: The FLASH Project: Improving the Tools for Flash Flood Monitoring and Prediction across the United States, B. Am. Meteorol. Soc., 98, 361–372, https://doi.org/10.1175/bams-d-15-00247.1, 2017.
Krajewski, W. and Smith, J.: Radar hydrology: rainfall estimation, Adv. Water
Resour., 25, 1387–1394, https://doi.org/10.1016/S0309-1708(02)00062-3, 2002.
Krajewski, W. F., Kruger, A., Smith, J. A., Lawrence, R., Gunyon, C., Goska,
R., Seo, B.-C., Domaszczynski, P., Baeck, M. L., and Ramamurthy, M. K.: Towards better utilization of NEXRAD data in hydrology: an overview of
Hydro-NEXRAD, J. Hydroinform., 13, 255–266, https://doi.org/10.2166/hydro.2010.056, 2011.
Lin, N., Smith, J. A., Villarini, G., Marchok, T. P., and Baeck, M. L.: Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003),
Weather Forecast., 25, 1342–1361, https://doi.org/10.1175/2010WAF2222349.1, 2010.
Lindner, G. A. and Miller, A. J.: Numerical Modeling of Stage-Discharge
Relationships in Urban Streams, J. Hydrol. Eng., 17, 590–596, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000459, 2012.
Lu, P., Smith, J. A., and Lin, N.: Spatial Characterization of Flood Magnitudes over the Drainage Network of the Delaware River Basin, J. Hydrometeorol., 18, 957–976, https://doi.org/10.1175/jhm-d-16-0071.1, 2017.
Maryland, S. o.: Department of the Environment: Water management, stormwater management, Off. of the Secretary of State, Div. of State Documents, Baltimore, MD, 1982.
Meierdiercks, K. L., Smith, J. A., Baeck, M. L., and Miller, A. J.: Analyses of urban drainage network structure and its impact on hydrologic response, J. Am. Water Resour. Assoc., 46, 932–943, 2010.
Miller, A. J., Welty, C., Duncan, J. M., Baeck, M. L., and Smith, J. A.:
Assessing urban rainfall-runoff response to stormwater management extent,
Hydrol. Process., 35, e14287, https://doi.org/10.1002/hyp.14287, 2021.
Moreau, E., Testud, J., and Le Bouar, E.: Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of
rainfall estimates, Adv. Water Resour., 32, 1011–1019,
https://doi.org/10.1016/j.advwatres.2008.11.007, 2009.
Morin, E., Goodrich, D. C., Maddox, R. A., Gao, X., Gupta, H. V., and Sorooshian, S.: Spatial patterns in thunderstorm rainfall events and their
coupling with watershed hydrological response, Adv. Water Resour., 29, 843–860, 2006.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nelson, P. A., Smith, J. A., and Miller, A. J.: Evolution of channel morphology and hydrologic response in an urbanizing drainage basin, Earth Surf. Proc. Land., 31, 1063–1079, https://doi.org/10.1002/esp.1308, 2006.
Nikolopoulos, E. I., Borga, M., Zoccatelli, D., and Anagnostou, E. N.: Catchment-scale storm velocity: Quantification, scale dependence and effect on flood response, Hydrolog. Sci. J., 59, 1363–1376,
https://doi.org/10.1080/02626667.2014.923889, 2014.
Ntelekos, A. A., Smith, J. A., Baeck, M. L., Krajewski, W. F., Miller, A. J., and Goska, R.: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore MD Metropolitan Region, Water Resour. Res., 44, 1–19, https://doi.org/10.1029/2007WR006346, 2008.
Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R. D., Reinoso-Rondinel,
R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., and van Assel, J.:
Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation, J. Hydrol., 531, 389–407, https://doi.org/10.1016/j.jhydrol.2015.05.035, 2015.
Ogden, F. L., Raj Pradhan, N., Downer, C. W., and Zahner, J. A.: Relative
importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment, Water
Resour. Res., 47, W12503, https://doi.org/10.1029/2011wr010550, 2011.
Paschalis, A., Fatichi, S., Molnar, P., Rimkus, S., and Burlando, P.: On the
effects of small scale space–time variability of rainfall on basin flood
response, J. Hydrol., 514, 313–327, https://doi.org/10.1016/j.jhydrol.2014.04.014, 2014.
Peleg, N., Blumensaat, F., Molnar, P., Fatichi, S., and Burlando, P.: Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling, Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, 2017.
Perez, G., Mantilla, R., Krajewski, W. F., and Wright, D. B.: Using Physically Based Synthetic Peak Flows to Assess Local and Regional Flood Frequency Analysis Methods, Water Resour. Res., 55, 8384–8403,
https://doi.org/10.1029/2019WR024827, 2019.
Pickett, S. T. A. and Cadenasso, M. L.: Advancing urban ecological studies:
Frameworks, concepts, and results from the Baltimore Ecosystem Study, Aust. Ecol., 31, 114–125, https://doi.org/10.1111/j.1442-9993.2006.01586.x, 2006.
Probst, P., Wright, M. N., and Boulesteix, A. L.: Hyperparameters and tuning
strategies for random forest, Wiley Interdisciplin. Rev.: Data Min. Knowl. Discov., 9, e1301, https://doi.org/10.1002/widm.1301, 2019.
Rafieeinasab, A., Norouzi, A., Kim, S., Habibi, H., Nazari, B., Seo, D.-J.,
Lee, H., Cosgrove, B., and Cui, Z.: Toward high-resolution flash flood prediction in large urban areas – Analysis of sensitivity to spatiotemporal
resolution of rainfall input and hydrologic modeling, J. Hydrol., 531, 370–388, https://doi.org/10.1016/j.jhydrol.2015.08.045, 2015.
Rahman, A., Weinmann, P. E., Hoang, T. M. T., and Laurenson, E. M.: Monte
Carlo simulation of flood frequency curves from rainfall, J. Hydrol., 256, 196–210, https://doi.org/10.1016/S0022-1694(01)00533-9, 2002.
Saghafian, B., Julien, P. Y., and Ogden, F. L.: Similarity in catchment
response: 1. Stationary rainstorms, Water Resour. Res., 31, 1533–1541,
https://doi.org/10.1029/95WR00518, 1995.
Schellart, A. N. A., Shepherd, W. J., and Saul, A. J.: Influence of rainfall
estimation error and spatial variability on sewer flow prediction at a small
urban scale, Adv. Water Resour., 45, 65–75, https://doi.org/10.1016/j.advwatres.2011.10.012, 2012.
Seo, B.-C., Krajewski, W. F., Kruger, A., Domaszczynski, P., Smith, J. A., and Steiner, M.: Radar-rainfall estimation algorithms of Hydro-NEXRAD, J. Hydroinform., 13, 277–291, https://doi.org/10.2166/hydro.2010.003, 2011.
Sharif, H. O., Hassan, A. A., Bin-Shafique, S., Xie, H., and Zeitler, J.:
Hydrologic modeling of an extreme flood in the Guadalupe River in Texas, J. Am. Water Resour. Assoc., 46, 881–891, https://doi.org/10.1111/j.1752-1688.2010.00459.x, 2010.
Sharif, H. O., Chintalapudi, S., Hassan, A. A., Xie, H., and Zeitler, J.:
Physically Based Hydrological Modeling of the 2002 Floods in San Antonio, Texas, J. Hydrol. Eng., 18, 228–236, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000475, 2013.
Smith, J. A. and Baeck, M. L.: Baltimore MD HydroNEXRAD (KLW) radar rainfall, available at: http://arks.princeton.edu/ark:/88435/dsp01q524jr55d (last access: 27 August 2021), 2019.
Smith, B., Smith, J., Baeck, M., and Miller, A.: Exploring storage and runoff generation processes for urban flooding through a physically based watershed model, Water Resour. Res., 51, 1552–1569, https://doi.org/10.1002/2014WR016085, 2015.
Smith, B. K., Smith, J. A., Baeck, M. L., Villarini, G., and Wright, D. B.:
Spectrum of storm event hydrologic response in urban watersheds, Water Resour. Res., 49, 2649–2663, https://doi.org/10.1002/wrcr.20223, 2013.
Smith, J. A. and Krajewski, W. F.: Estimation of the mean field bias of radar rainfall estimates, J. Appl. Meteorol., 30, 397–412, 1991.
Smith, J. A., Baeck, M. L., Morrison, J. E., Sturdevant-Rees, P., Turner-Gillespie, D. F., and Bates, P. D.: The regional hydrology of extreme
floods in an urbanizing drainage basin, J. Hydrometeorol., 3, 267–282, https://doi.org/10.1175/1525-7541(2002)003<0267:TRHOEF>2.0.CO;2, 2002.
Smith, J. A., Baeck, M. L., Meierdiercks, K. L., Nelson, P. A., Miller, A. J., and Holland, E. J.: Field studies of the storm event hydrologic response in an urbanizing watershed, Water Resour. Res., 41, W10413,
https://doi.org/10.1029/2004wr003712, 2005a.
Smith, J. A., Miller, A. J., Baeck, M. L., Nelson, P. A., Fisher, G. T., and
Meierdiercks, K. L.: Extraordinary Flood Response of a Small Urban Watershed
to Short-Duration Convective Rainfall, J. Hydrometeorol., 6, 599–617, https://doi.org/10.1175/JHM426.1, 2005b.
Smith, J. A., Baeck, M. L., Meierdiercks, K. L., Miller, A. J., and Krajewski, W. F.: Radar rainfall estimation for flash flood forecasting in small urban watersheds, Adv. Water Resour., 30, 2087–2097,
https://doi.org/10.1016/j.advwatres.2006.09.007, 2007.
Smith, J. A., Baeck, M. L., Villarini, G., Welty, C., Miller, A. J., and Krajewski, W. F.: Analyses of a long-term, high-resolution radar rainfall
data set for the Baltimore metropolitan region, Water Resour. Res., 48, 1–14, https://doi.org/10.1029/2011wr010641, 2012.
ten Veldhuis, M. C., Zhou, Z., Yang, L., Liu, S., and Smith, J.: The role of
storm scale, position and movement in controlling urban flood response, Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018, 2018.
Wright, D. B., Smith, J. A., Villarini, G., and Baeck, M. L.: Hydroclimatology of flash flooding in Atlanta, Water Resour. Res., 48,
W04524, https://doi.org/10.1029/2011wr011371, 2012.
Wright, D. B., Smith, J. A., Villarini, G., and Baeck, M. L.: Estimating the
frequency of extreme rainfall using weather radar and stochastic storm
transposition, J. Hydrol., 488, 150–165, https://doi.org/10.1016/j.jhydrol.2013.03.003, 2013.
Wright, D. B., Smith, J. A., and Baeck, M. L.: Flood frequency analysis
using radar rainfall fields and stochastic storm transposition, Water Resour. Res., 50, 1592–1615, https://doi.org/10.1002/2013WR014224, 2014a.
Wright, D. B., Smith, J. A., Villarini, G., and Baeck, M. L.: Long-term
high-resolution radar rainfall fields for urban hydrology, J. Am. Water Resour. Assoc., 50, 713–734, https://doi.org/10.1111/jawr.12139, 2014b.
Wright, D. B., Mantilla, R., and Peters-Lidard, C. D.: A remote sensing-based tool for assessing rainfall-driven hazards, Environ. Model. Softw., 90, 34–54, https://doi.org/10.1016/j.envsoft.2016.12.006, 2017.
Wright, D. B., Yu, G., and England, J. F.: Six decades of rainfall and flood
frequency analysis using stochastic storm transposition: Review, progress,
and prospects, J. Hydrol., 585, 124816, https://doi.org/10.1016/j.jhydrol.2020.124816, 2020.
Yang, L., Smith, J. A., Baeck, M. L., and Zhang, Y.: Flash flooding in small
urban watersheds: Storm event hydrologic response, Water Resour. Res.,
52, 4571–4589, https://doi.org/10.1002/2015WR018326, 2016.
Yang, Y., Sun, L., Li, R., Yin, J., and Yu, D.: Linking a Storm Water Management Model to a Novel Two-Dimensional Model for Urban Pluvial Flood
Modeling, Int. J. Disast. Risk Sci., 11, 508–518, https://doi.org/10.1007/s13753-020-00278-7, 2020.
Yin, J., Yu, D., Yin, Z., Liu, M., and He, Q.: Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China, J. Hydrol., 537, 138–145, https://doi.org/10.1016/j.jhydrol.2016.03.037, 2016.
Yu, G., Wright, D. B., Zhu, Z., Smith, C., and Holman, K. D.: Process-based
flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality, Hydrol. Earth Syst. Sci., 23, 2225–2243,
https://doi.org/10.5194/hess-23-2225-2019, 2019.
Zhou, Z., Smith, J. A., Yang, L., Baeck, M. L., Chaney, M., Ten Veldhuis, M.-C., Deng, H., and Liu, S.: The complexities of urban flood response:
Flood frequency analyses for the Charlotte Metropolitan Region, Water
Resour. Res., 53, 7401–7425, https://doi.org/10.1002/2016WR019997, 2017.
Zhou, Z., Smith, J. A., Wright, D. B., Baeck, M. L., and Liu, S.: Storm
catalog-based analysis of rainfall heterogeneity and frequency in a complex
terrain, Water Resour. Res., 55, 1871–1889, https://doi.org/10.1029/2018WR023567, 2019.
Zhu, Z., Wright, D. B., and Yu, G.: The Impact of Rainfall Space-Time Structure in Flood Frequency Analysis, Water Resour. Res., 54, 8983–8998, https://doi.org/10.1029/2018wr023550, 2018.
Zoccatelli, D., Borga, M., Viglione, A., Chirico, G. B., and Blöschl,
G.: Spatial moments of catchment rainfall: rainfall spatial organisation,
basin morphology, and flood response, Hydrol. Earth Syst. Sci., 15, 3767–3783, https://doi.org/10.5194/hess-15-3767-2011, 2011.
Short summary
The role of rainfall space–time structure in flood response is an important research issue in urban hydrology. This study contributes to this understanding in small urban watersheds. Combining stochastically based rainfall scenarios with a hydrological model, the results show the complexities of flood response for various return periods, implying the common assumptions of spatially uniform rainfall in urban flood frequency are problematic, even for relatively small basin scales.
The role of rainfall space–time structure in flood response is an important research issue in...