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Abstract. The role of rainfall space–time structure, as well
as its complex interactions with land surface properties, in
flood response remains an open research issue. This study
contributes to this understanding, specifically for small (<
15 km2) urban watersheds. Using a flood frequency anal-
ysis framework that combines stochastic storm transposi-
tion (SST)-based rainfall scenarios with the physically based
distributed Gridded Surface Subsurface Hydrologic Analy-
sis (GSSHA) model, we examine the role of rainfall spatial
and temporal variability in flood frequency across drainage
basin scales in the highly urbanized Dead Run watershed
(14.3 km2), Maryland, USA. The results show the complexi-
ties of flood response within several subwatersheds for both
short (< 50 years) and long (> 100 years) rainfall return pe-
riods. The impact of impervious area on flood response de-
creases with increasing rainfall return period. For extreme
storms, the maximum discharge is closely linked to the spa-
tial structure of rainfall, especially storm core spatial cover-
age. The spatial heterogeneity of rainfall increases flood peak
magnitudes by 50 % on average at the watershed outlet and
its subwatersheds for both small and large return periods. The
framework of SST–GSSHA-coupled frequency analysis also
highlights the fact that spatially distributed rainfall scenarios
are needed in quick-response flood frequency, even for rela-
tively small basin scales.

1 Introduction

Rainfall spatiotemporal structure plays an important role in
flood generation in urban watersheds (Saghafian et al., 1995;
Smith et al., 2005a; Emmanuel et al., 2012; Nikolopoulos et
al., 2014). Spatial heterogeneities in land use and land cover
complicate the translation of rainfall spatiotemporal distribu-
tion into flood responses (Ogden et al., 2011; Galster et al.,
2006; Morin et al., 2006; Ntelekos et al., 2008; ten Veldhuis
et al., 2018; Yin et al., 2016), especially for small catchments
(Faurès et al., 1995; Smith et al., 2005b; Zhou et al., 2017,
2019; Yang et al., 2020). The influence of rainfall spatial–
temporal structure on flood frequency analysis in urban areas
remains an open research issue.

Previous studies have demonstrated the sensitivity of hy-
drological response to rainfall variability in both space and
time (Smith et al., 2012; Ochoa-Rodriguez et al., 2015;
Rafieeinasab et al., 2015). Following the advent of rainfall
measurement using weather radar (Fulton et al., 1998; Kra-
jewski and Smith, 2002), many studies have highlighted the
use of high-resolution rainfall data in assessing rainfall vari-
ability over a range of spatial and temporal scales (Berne
et al., 2004; Gebremichael and Krajewski, 2004; Moreau et
al., 2009; Emmanuel et al., 2012) and how their use could
improve runoff estimation (Morin et al., 2006; Smith et al.,
2007; Schellart et al., 2012; Wright et al., 2014b; Gourley et
al., 2017; Rafieeinasab et al., 2015).
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There are conflicting findings on the relative importance
of rainfall temporal and spatial characteristics. Paschalis
et al. (2014), Ochoa-Rodriguez et al. (2015) and Yang et
al. (2016) found that “coarsening” temporal resolution has
a stronger impact on flood response than coarsening spatial
resolution. Adams et al. (2012) found the space–time averag-
ing effects of routing through the catchment notably remove
the impact of spatially variable rainfall at a 150 km2 catch-
ment scale. Bruni et al. (2015), in contrast, found a higher
sensitivity of modeled flow peaks to spatial resolution rather
than the temporal resolution. Peleg et al. (2017) showed an
increasing contribution of the spatial variability of rainfall to
the variability of flow discharge with longer return periods.
Cristiano et al. (2018, 2019) found the spatial aggregation
of rainfall data can have a strong effect on hydrological re-
sponses. Zhu et al. (2018) examined the influence of rainfall
variability on flood frequency analysis and addressed the im-
pact of antecedent moisture in flood generation for various
basin scales.

Stochastic storm transposition (SST) was developed as a
physically based stochastic rainfall generator for rainfall fre-
quency analysis. Previous studies show that SST with rel-
atively short records (10 or more years) of high-resolution
radar rainfall fields can produce reasonable rainfall scenar-
ios with realistic spatial–temporal structure, which cannot be
provided by conventional design storm methods. In the con-
ventional approach, the idealized assumptions include ideal-
ized rainfall temporal structure, uniformed spatial distribu-
tion and 1 : 1 rainfall–flood return period equivalence (see
Wright et al., 2013, 2017; Zhou et al., 2019, and references
therein). These assumptions ignore the interaction between
the spatiotemporal structure of rainfall and flood response,
which increases the uncertainty of frequency estimations.
Coupled with hydrological models, the SST-based frame-
work can be used for multiscale rainfall frequency analy-
sis and flood frequency analysis that accounts for rainfall
variability and surface characteristics (Wright et al., 2014a,
2020; Yu et al., 2019; Perez et al., 2019).

Previous studies have demonstrated that the relationship
between rainfall and flood is scale-dependent, varying with
rainfall patterns, basin characteristics and runoff generation
processes. However, there is still no clear answer on the rel-
ative importance of the temporal and spatial features of rain-
fall in flood responses (Cristiano et al., 2017). Moreover,
studies focusing on small (< 15 km2) urbanized basins are
relatively few (Peleg et al., 2017), and the issues remain
poorly understood.

This study contributes to the understanding of the inter-
action between rainfall variability and flood response over
small-scale urbanized watersheds (< 15 km2) for a short-
duration rainfall and quick hydrologic response setting. We
build on the SST-based rainfall study of Zhou et al. (2019)
using the physically based hydrological model implemen-
tation introduced by Smith et al. (2015) for the Dead Run
watershed outside of Baltimore, Maryland, USA. The frame-

work of SST-based rainfall frequency analysis coupled with
a hydrological model provides an effective approach for a de-
tailed flood frequency study (Wright et al., 2014a; Yu et al.,
2019). Under the framework, we characterize the spatial and
temporal features of rainfall events under different return pe-
riods and examine their roles in determining flood frequency
in small urban watersheds. The following questions will be
addressed: (1) how does flood frequency in small urban wa-
tersheds vary with space–time rainfall structure and rainfall
magnitude? (2) What are the dominant space–time features
of rainfall that control flood peak distribution in small ur-
ban watersheds? By answering the above questions, the study
can improve the understanding of interactions between rain-
fall and flood processes in small urbanized areas. In addi-
tion, some idealized assumptions used in the conventional
rainfall–flood frequency analysis will be questioned.

The paper is organized as follows. In Sect. 2, we intro-
duce the study region and describe the SST-based method-
ology, the Gridded Surface Subsurface Hydrologic Analysis
(GSSHA) model and the metrics used to characterize rain-
fall and flood response. In Sect. 3, we present model val-
idation and analyses of flood frequency distributions and
rainfall–flood relationships. A summary and conclusions are
presented in Sect. 4.

2 Data and method

2.1 Study region and data

The study focuses on the highly urbanized 14.3 km2 Dead
Run (DR) watershed located west of Baltimore, Maryland,
USA (Fig. 1). DR is a tributary to the Gwynns Falls water-
shed, which is the principal study catchment of the Baltimore
Ecosystem Study (BES; Pickett and Cadenasso, 2006). The
basin has an impervious fraction of approximately 52.3 %
(Table 1). The watershed has a dense network of six stream
gauges, with drainage areas ranging from 1.2 to 14.3 km2

(Fig. 1; Table 1). The subwatersheds were developed af-
ter the implementation of the Maryland Stormwater Man-
agement Act of 1982 (Maryland, 1982), with many deten-
tion infrastructures such as small local ponds. The wealth of
data for Dead Run provides exceptional resources to exam-
ine rainfall and hydrologic response (Beighley and Moglen,
2002; Meierdiercks et al., 2010; Nelson et al., 2006; Smith
et al., 2015; Miller et al., 2021). For example, Meierdier-
cks et al. (2010) analyzed the impact of storm drains and
detention basins on a single storm event in DR, while Og-
den et al. (2011) used the Gridded Surface Subsurface Hy-
drologic Analysis (GSSHA) model to analyze the effects of
storm drains, impervious area and drainage density on hydro-
logic response. Smith et al. (2015) created a DR model using
GSSHA to examine the effects of storage and runoff gener-
ation processes through analyses of a large number of storm
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events. Miller et al. (2021) examined the role of stormwater
management in urban flood response.

High-resolution (15 min temporal resolution, 1 km2 spa-
tial resolution) radar rainfall fields for the 2000–2015 period
were derived from volume scan reflectivity fields from the
Sterling, Virginia WSR-88D (Weather Surveillance Radar-
1988 Doppler) radar. The two-dimensional radar rainfall
fields are then developed from the reflectivity fields using the
Hydro-NEXRAD algorithms (Krajewski et al., 2011) which
have been used in rainfall and hydrological studies (Smith et
al., 2007, 2012, 2013; Lin et al., 2010; Wright et al., 2014b;
Zhou et al., 2017). The Hydro-NEXRAD algorithms include
quality control algorithms, Z–R conversion of reflectivity to
rainfall rate, time integration and spatial mapping algorithms
(Seo et al., 2011). To improve the rainfall estimates, a mul-
tiplicative mean field bias correction (Smith and Krajewski,
1991; Wright et al., 2012) is applied on a daily basis using
a network of 54 rain gauges in and around the Baltimore

County. The bias computation takes the form Bi =

∑
Si

Gij∑
Si

Rij
,

where Gij is the rainfall accumulation for gage j on day i,
Rij is the daily rainfall accumulation for the co-located radar
pixel accumulation on day i and Si is the index of the rain
gage stations for which both the rain gage and the radar report
positive rainfall accumulations for day i. Each 15 min radar
rainfall field from day i is then multiplied by Bi . The reader
is directed to Zhou et al. (2019) and references therein for
further details on the rainfall data and bias correction meth-
ods.

Instantaneous discharge data with a resolution of 5 min
from the US Geological Survey (USGS) were used for DR-
1, DR-2, DR-5 and Franklintown. For DR-3 and DR-4, the
discharge data are converted through stage–discharge curves
from Lindner and Miller (2012). Streamflow observations for
the outlet station at Franklintown extend back to 1960. The
subwatersheds have records beginning in 2008.

2.2 GSSHA hydrological model

The distributed physics-based GSSHA model is used to
simulate multiscale flood responses. GSSHA is a two-
dimensional, distributed-parameter raster-based (i.e. square
computational cell-based) hydrologic modeling system. It
uses explicit finite difference and finite volume methods in
two dimensions on a structured grid to simulate overland
flow and in one dimension to simulate channel flow (Downer
and Ogden, 2004, 2006). Previous studies of the GSSHA
model show that the model with fine grid resolution can
produce adequate simulations of flood response, especially
when driven by high-resolution radar rainfall fields (Sharif et
al., 2010, 2013; Wright et al., 2014a; Cristiano et al., 2019).

In this study, we use the Dead Run model created by Smith
et al. (2015). A brief description of the model is provided
here; see Smith et al. (2015) for more details. The delineation

of the watershed and channel network was based on a 30 m
USGS digital elevation model (Gesch et al., 2002). Channel
flow overland flow was set with different Manning’s rough-
ness coefficients. Additional stream channels were added
based on the Baltimore County hydrography geographic in-
formation system (GIS) map. Stream cross sections were ex-
tracted from a 1 m resolution topography data set for Dead
Run developed from lidar. Storm sewers in DR-2 and DR-
5 were added using the Baltimore County Stormwater Man-
agement GIS map and digitized storm sewer maps. The semi-
circle’s diameter was set to the pipe diameter. Detention
basins were represented within the channel with cross sec-
tions extracted from the 1 m lidar topographic data.

Several aspects of the model were modified from those
used in Smith et al. (2015), primarily to improve computa-
tional speed. Infiltration is calculated using Richards’ equa-
tion (RE) in Smith et al. (2015), while this study uses the
three-layer Green–Ampt (GA) scheme. A uniform value of
Manning’s roughness coefficient of 0.01 is set for all the
stream channels for model simplification. Initial soil mois-
ture is approximated to be one-third of the field capacity for
each storm event.

2.3 SST procedure

The rainfall scenarios in this study are developed using
RainyDay, an open-source SST software package (Wright et
al., 2017). The steps used are briefly summarized here; the
reader is directed to Zhou et al. (2019) and references therein
for further details.

The first step is to identify a geospatial “transposition do-
main” that contains the watershed of interest. In this study,
we use a square 7000 km2 transposition domain centered on
the DR watershed. Zhou et al. (2019) presented a detailed ex-
amination of heterogeneity in extreme rainfall over the trans-
position domain using a variety of metrics, including storm
counts, mean storm depths and intensities, convective activ-
ity indicated by lightning observations and analysis of spatial
and temporal rainfall structure.

The second step is to identify the largest m storms within
the domain at the t h timescale. This collection of storms is
referred to as a storm catalog. The storms are selected with
respect to the size, shape and orientation of the DR water-
shed. We henceforth refer to these as “DR-shaped storms.”
The m DR-shaped storms are selected from an n-year rain-
fall record, such that an average of λ=m/n storms per record
year is included in the storm catalog. In this study, we chose
m= 200 storms over the 16-year radar record.

The third step is to randomly sample a subset of k storms
from the storm catalog, where k refers to a stochastic num-
ber of storms per year. The k is assumed to follow a Poisson-
distributed number of storm occurrences with a rate param-
eter λ=m/n storms per year. All rainfall fields associated
with a storm are transposed by an east–west distance 1x
and a north–south distance 1y, where 1x and 1y are drawn
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Figure 1. Overview of the Dead Run study region including (a) the location of DR, elevation and transposition domain of SST and (b) land
use and land cover and stream gages. The red outline and grey outline in (a) indicate the boundary of the DR watershed and Baltimore City,
respectively.

Table 1. Characteristics of the Dead Run watershed (Smith et al., 2015).

USGS ID Area Developed Imperviousness Detention-
(km2) landa (%) (%) controlled

areab (%)

DR1 01589317 1.32 99 % 73.6 41.9
DR2 01589316 1.92 98 % 55.5 18.5
DR3 01589320 4.95 98 % 62.2 24.4
DR4 01589315 6.29 98 % 51.5 12.2
DR5 01589312 2.05 96 % 47.9 3.2
Franklintown 01589330 14.3 96 % 52.3 25.1

Note: a Developed land includes “developed, open space” (> 20 % impervious surface), “developed, low
intensity” (20 %–49 % impervious surface), “developed, medium intensity” (50 %–79 % impervious surface)
and “developed, high intensity” (80 % or more impervious surface). Data source: USGS 2012 National Land
Cover Dataset (NLCD). b Detention-controlled area refers to the area controlled by detention infrastructure.

from distributions DX(x) and DY (y), which are bounded by
the limits of the transposition domain. Based on the spatial
heterogeneity analysis of extreme rainfall in the domain, dis-
tributionsDX(x) andDY (y) can be set as uniform or nonuni-
form. In Zhou et al. (2019) and this study, since the assump-
tion of regional homogeneity cannot be relaxed, we used the
nonuniform distribution. A two-dimensional probability den-
sity function (PDF) of spatial storm occurrence (Wright et
al., 2017) is used as the basis for nonuniform spatial trans-
position (Fig. A1). This step can be understood as gener-
ating a “synthetic year” of extreme rainfall events over the
domain based on resampling and transposing observations.
For each of the k transposed storms, compute the t h basin-
average rainfall depth over the watershed. Among the k rain-
fall depths, the maximum depth is retained as a synthetic t h

annual rainfall maximum for the watershed, while the trans-
posed rainfall fields are saved for use as inputs to a GSSHA
model simulation.

The fourth step repeats Step 3 S times to recreate multi-
ple years of synthetic t h “annual” rainfall maxima and as-
sociated transposed rainfall fields for the watershed. In this
study, these steps are repeated S = 300 times, and the or-
dered “annual” maxima are used to generate rainfall return
period estimates up to 200 years. A total of 300 such realiza-
tions of 200-year series are generated, and the median value
of 300 realizations is used to generate estimates for return
periods up to 200 years.
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2.4 Characteristics of rainfall and hydrologic response

2.4.1 Spatiotemporal characteristics of rainfall

Rainfall statistics were computed for each event, based on
radar rainfall data at 15 min, 1 km2 resolution, to charac-
terize the spatial and temporal variability of rainfall (fol-
lowing Smith et al., 2002, 2005a; see also Zoccatelli et al.,
2011 and Emmanuel et al., 2015). The basin-average rainfall
rate (mm h−1) at time t during the storm is given by

M(t)=

∫
A

R(t,x)dx, (1)

where A is the drainage area (km2), R(t,x) is the rain
rate (mm h−1) at radar grid x at time t and T (h) is the
time period of the rainfall event. Peak basin-average rainfall
rate (mm h−1) is denoted

Mmax =max{M(t); t ∈ [0,T ]}, (2)

and the storm total rainfall depth (mm) is

Rsum =

T∑
0
M(t). (3)

To characterize the spatial properties of rainfall, several di-
mensionless quantities are computed. Fractional coverage of
storm core at t is given by

Z(t)=
1
A

∫
A

I(R(t,x))dx, (4)

where I(R(t,x)) is the indicator function and equals 1 when
R(t,x) > 25 mm h−1 or 0 otherwise.

Rainfall location is given by

L(t)=

∫
A

ω(t,x)d(x)dx, (5)

where ω(t,x)= R(t,x)∫
A

R(t,x)dx , d(x) is the linear distance from

point x to the outlet. The rainfall-weighted flow distance is

RWD(t)=
∫
A

ω(t,x)df(x)dx, (6)

where distance function df(x) is the flow distance between
point x and the outlet. It is calculated as the sum of the over-
land flow distance from x to the nearest channel and the dis-
tance along the channel to the basin outlet. The flow distance
df(x) is normalized by the maximum flow distance, ranging
from 0 to 1. RWD with values close to 0 indicates that rainfall
is distributed near the basin outlet, with values close to 1 indi-
cating rainfall concentrated at the far periphery of the basin.

For a uniformly distributed rainfall, the mean RWD is

RWD=
∫
A

df(x)dx. (7)

The dispersion of RWD is

S(t)=
1
s

∫
A

ω(t,x)
[
df(x)− d

]2
dx, (8)

where s =
∫
A

[df(x)− d]
2dx, and S is a spatial indicator. S

with values< 1 indicates that rainfall is a unimodal distribu-
tion, that is, spatially one peak over the watershed, and S with
values> 1 indicates that rainfall is a multimodal distribution.

Equations (1)–(3) are typical rainfall characteristics used
in conventional rainfall–flood analysis since they reflect the
general information of rainfall. Since the basin-averaged in-
dex will ignore the potential spatial heterogeneity over the
watershed, Eqs. (4)–(8) describe the spatial distribution of
rainfall within the area.

2.4.2 Spatiotemporal characteristics of hydrologic
response

Flood peak (Qpeak, mm3 s−1), total runoff (Qsum, mm) and
lag time (Tlag, min) are defined as

Qpeak =max {Q(t); t ∈ Td} (9)

Qsum =

Td∑
0
Q(t) (10)

Tlag = TFpeak− TRpeak, (11)

respectively, where Q(t) is the flow discharge at time t , and
Td is the duration of hydrological response, which is from the
start of rainfall event to the time when f (t) < 0.05 ·Qpeak.

3 Results and discussion

3.1 Model validation

We validated the Dead Run GSSHA model through analy-
ses of the 21 largest warm season (April–September) flood
events, with peak discharges ranging from 70.3 to 253 m3 s−1

in the 2008–2012 period. The simulated discharge was com-
pared to USGS streamflow observations for all six gaging
stations. We assessed peak discharge, peak time and Nash–
Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) to ex-
amine the performance of the model.

Peak discharge difference is calculated as the difference
between the modeled peak and measured peak as a percent-
age of the measured peak (Fig. 2a). The peak discharge is un-
derestimated at DR2, DR4, DR5 and Franklintown. The me-
dian peak discharge difference at the downstream Franklin-
town gage was −14 %. For the subwatersheds, the modeled
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peak at DR2 matches observations best, with a median differ-
ence of−7.8 %. This represents relatively good performance
in reproducing peak discharges for such a large collection
of flood events, with various peak discharges ranging from
70 to 253 m3 s−1. The peaks at DR1 are overestimated sub-
stantially by 57 % on average. The issue at DR1 was shown
before in Smith et al. (2015), who speculate that the water-
shed contains a large land area that is not represented fully
on county storm sewer maps.

The peak time difference is calculated as the time differ-
ence between the simulated peak time and measured peak
time (Fig. 2b). The median difference ranges from −15 to
+10 min, which is within the temporal resolution of the data
(15 min for rainfall, 5 min for streamflow). It should be noted
that there are several large peak time differences that oc-
curred within the 21 storm events. These are due to the storms
that produce multiple discharge peaks. The measured dis-
charge may have the first peak as the largest, while the mod-
eled discharge has the next peak as the largest which is hun-
dreds of minutes later. Nonetheless, the figure shows that the
timing of the peak flow is well captured by the model.

The median Nash–Sutcliffe efficiency (NSE) for the
21 events at Franklintown is 0.77 (Fig. 2c). The best NSE at
Franklintown is 0.97, indicating that the match between the
model and measured data was nearly exact. For the subwater-
sheds, the best median NSE is at DR-4 with a value of 0.74,
while the least median NSE is at DR-1 with a value of 0.21.
The results show that the main tendency of flood response is
captured by the model.

The hydrograph of the 14 August 2011 storm event
is shown as a representative of flood simulations for the
21 events (Fig. 3). The peak discharge difference is −12 %
at Franklintown with an NSE of 0.93. Modeled hydrographs
match the measured data well at the outlet of the watershed.
For the subwatersheds, the peak discharge difference ranges
from −38 % at DR4 to 12 % at DR-1. The shape and timing
of the modeled response are similar to the measured hydro-
graph. But the peak discharge is underestimated by more than
30 % at DR-4.

It should be noted that the error in simulated response may
be attributable to measurement errors tied to stage–discharge
curves and conversions of radar reflectivity to rainfall rate,
as well as to the features that were simplified within the
model, such as initial soil moisture and some aspects of the
storm drain network (Smith et al., 2015). For example, it has
been documented that the average error of discharge between
USGS direct measurements and stage–discharge curves for
Franklintown is 17.4 % between 2008 and 2010 (Lindner and
Miller, 2012); this error likely grows for high flow condi-
tions. Furthermore, for the rainfall data set used in this study,
the median difference of the storm total rainfall between a
rain gage and the bias-corrected radar rainfall data for all the
pixel of gages over the 21 storms is 22.6 % (Smith et al.,
2015). It may also increase the error in the measurements
and modeling results.

Overall, the validation shows that the hydrological model
can capture the main shape and timing of the measured re-
sponse in Dead Run. We conclude, therefore, that the model
is suitable for the subsequent flood frequency analysis.

3.2 Flood frequency distribution

Under the SST framework, 3 h rainfall scenarios for 10-, 50-,
100- and 200-year return periods were generated (Fig. A2).
For each rainfall return period, 300 realizations of rainfall
events are used as input to drive the hydrological model.
Henceforth, for each rainfall return period, 300 flood re-
sponses can be simulated for Franklintown and the five
DR subwatersheds.

3.2.1 Flow discharge estimates

The distribution of maximum discharge at the Franklintown
gage for rainfall return periods ranging from 10 to 200 years
is illustrated in Fig. 4a. To compare the distributions of rain-
fall and flood peaks, the values are normalized to range
from 0 to 1. The normalization is the ratio of values minus
the minimum to the maximum minus minimum. The most
striking feature is that the distributions of total rainfall and
flood peaks are highly variable across the four return peri-
ods. The kernel density distribution of rainfall shows a peak
at the position of 50th quantile for four return periods. The
distribution of flood peaks is more complex. For the 100-
year rainfall return period, the kernel density distribution of
flood peaks shows a multimodal trend with two small peaks
around the 25th and 75th quantiles, which contrasts with the
unimodal distribution of rainfall. The following results will
show that the flood peak is highly related to spatial rainfall
features, implying that the multimodal distribution of flood
peaks is associated with the spatial distribution of rainfall.
The pronounced difference in the distributions of total rain-
fall and flood peaks highlights the complex relationship be-
tween rainfall properties and flood response in this relatively
small urbanized watershed.

The flood response time is calculated as the difference be-
tween the time of maximum rainfall rate and maximum dis-
charge (Fig. 4b). Median values of response time are similar
under all return periods, ranging from 70 to 83 min, which,
given the temporal resolution of rainfall is 15 min, can be
similar for all four return periods. It can be concluded that
although the flood peak magnitude increases with rainfall re-
turn period, the response time is consistent for various rain-
fall scenarios. This implies in this small highly urbanized
watershed the response time is more linked to the drainage
system rather than to rainfall characteristics.

Figure 5 demonstrates the simulated hydrographs for the
four return periods. The upper and lower spread (75th and
25th quantiles) of the hydrograph indicate the range of vari-
ability of simulated hydrographs. For the 10-year return pe-
riod, the hydrograph is relatively smooth, with a smaller
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Figure 2. Comparison of (a) flood peak discharges, (b) response times and (c) NSE for 21 historical rainfall events.

Figure 3. Hydrographs and rainfall for the 14 August 2011 storm event. Time refers to minutes from the start of the model simulation.

spread. With increasing return periods, the hydrograph is
peakier, with a shorter duration of high magnitude discharge.
The hydrograph for the 50-year return period shows a tran-
sitional shape between small (10-year) and large (100- and
200-year) rainfall return periods. For the 100-year return pe-
riod, the upper spread shows a tendency toward dual peaks,
which cannot be revealed from conventional design flood
practices. Since in the conventional rainfall flood frequency
approach, the design storm is temporally idealized as a uni-
modal peak process, using these design storms, the flood re-
sponse is generally simulated as a unimodal peak process.
The above results imply the uncertainty and insufficiency of
flood frequency analysis using the conventional methods. For
the 200-year return period, the hydrograph is peakiest with a
large upper spread.

3.2.2 Spatial distribution of flood magnitude

The distribution of flood peaks over the five subwatersheds
exhibits contrasting variation with rainfall return periods
ranging from 10 to 200 years (Fig. 6). Generally, the basin
scale plays an important role in determining the distribution
of flood magnitudes. Under the 10-year rainfall return period,
DR1 and DR2, with similar basin scales of 1.32 and 1.92 km2

respectively, have higher flood peaks and interquartile ranges
than other subwatersheds. DR5 (2.05 km2) has compara-
ble flood magnitude with DR4 (6.3 km2) and Franklintown
(14.3 km2), while it has a larger interquartile range than the
latter two. DR3, with a basin scale of 4.95 km2, has compara-
ble flood magnitudes with DR1 and DR2. Under the 200-year
rainfall return period, DR2 and DR3 have a slightly larger
flood magnitude than DR1. DR5 has the largest interquar-
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Figure 4. Violin plots of (a) normalized flood peak and normalized total rainfall and (b) response time from 10- to 200-year rainfall return
periods. (The red dot indicates the mean value. The dashed line in the middle indicates the median value. Upper and lower dashed lines
indicate the 75th and 25th quantiles, respectively.) The rainfall return periods are calculated with respect to the average rainfall rate over the
entire DR watershed.

Figure 5. Time series of simulated hydrographs for Franklintown based on the 3 h design storms from 10- to 200-year return periods with
spatially uniform (blue) and spatially distributed (red) rainfall. The grey bar indicates the median value of the basin-averaged rainfall rate.

tile range than others, though its flood peaks are smaller than
other small watersheds.

Results show that sub-basin flood distributions vary sig-
nificantly with rainfall return periods. DR1, with a 33 %
larger impervious area and more than double the stormwater-
detention-controlled area than DR2 (Table 1), has a 26 %
larger median flood peak under a small rainfall return period.
For large return periods, DR2 has a slightly larger median
peak and a larger peak and interquartile range than DR1. The
contrasting peaks in DR1 and DR2 imply that flood peaks
are less impacted by impervious areas for extreme storms,
while for small rainfall events, detention infrastructure may

play less of a role in the detention of flood peaks. DR5,
with the smallest detention-controlled area, has the small-
est flood peaks under a small rainfall return period. Under
a large return period, however, it has the largest changes in
peak discharges, with comparable flood peaks with subwa-
tersheds larger than 6 km2. DR3 and DR4, with a basin scale
of 4.95 and 6.29 km2, have contrasting flood magnitude un-
der small and large return periods. DR3, with a larger im-
pervious area and detention-controlled area, has larger flood
peaks than DR4. The difference is more significant for small
rainfall events, with the median value of flood peak for DR3
more than double that of DR4. From these results, it implies
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Figure 6. Box plots of normalized flood peaks for Franklintown and five subwatersheds.

that the impervious area and detention-controlled area play
a significant role in determining the peak discharges, but the
impact reduces with increasing rainfall return period. The de-
tention infrastructure impacts flood peak and its variability. It
should be noted that difficulties remain in attributing specific
changes in urban flood peak distributions to specific urban-
ization characteristics (Zhou et al., 2017). The role of specific
urban features in flood responses is beyond the scope of this
paper (see Miller et al., 2021, for additional discussion based
on analyses of Dead Run discharge observations).

We further examine the spatial distribution of flood mag-
nitude over the Dead Run watershed under the 100-year re-
turn period of flood at Franklintown (Fig. 7). The dimension-
less flood index is used to compare flood peak magnitudes
over the watershed (Lu et al., 2017). The flood index is com-
puted as the maximum flow discharge divided by the com-
puted 10-year flood (Q10-yr) at the same location, which is
set as the median value of 10-year peak discharge at the wa-
tershed outlet for each 100-year design storm simulation. At
Franklintown, the flood index and its interquartile range are
largest across the watersheds, with the median value greater
than 2.5. The flood index in the five subwatersheds is rela-
tively lower, within a median value between 1.5 and 2. DR2,
as a subwatershed of DR3, has a larger median value than
DR1 and DR3. The flood indices at DR1 and DR3 have simi-
lar median values and interquartile ranges. Values in DR4 are
higher than its subwatershed, DR5, with a median value of 2.
The variability of flood magnitudes, indicated by the coeffi-
cient of variation (CV), is stable among the watersheds, rang-
ing from 0.30 to 0.39. The spatial distribution of flood mag-
nitude points to the significant heterogeneity of flood distri-
butions over the 14.3 km2 watershed. For storm events that
produce the same peak discharge return period at the water-
shed outlet, the subsequent upstream flood response can vary
substantially in the Dead Run watershed.

Figure 7. Box plot of flood index across the DR subwatersheds for
the 100-year design storms.

3.3 Rainfall–flood relationships

3.3.1 Rainfall structure and flood response

We investigate the relationship between the spatial and tem-
poral characteristics of rainfall and flood response for small
and large rainfall return periods based on Spearman’s rank
correlation (Fig. A3). The peak rainfall rate (Mmax), total
rainfall (Rsum), fractional coverage (Z), rainfall location (L),
rainfall-weighted flow distance (RWD) and the dispersion of
RWD (S) are used to characterize rainfall space–time struc-
ture. For the 10-year return period, the flood peak is slightly
correlated with total rainfall, peak rainfall rate and storm core
coverage, with a correlation coefficient of 0.16. For the 200-
year return period, in contrast, there is no significant corre-
lation between these features, with correlation coefficients
of −0.09, 0.07 and −0.02, respectively, implying a com-
plex and nonlinear relationship between extreme storms and
floods in the watershed.
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We used random forest regression models to examine
the importance of rainfall characteristics to the flood re-
sponse. Random forests (RF) is an ensemble learning method
(Breiman, 2001) that aggregates results from multiple mod-
els to achieve better accuracy. RF is one of the most widely
used methods for regression and classification. Moreover,
it is relatively easy to train and test. In this study, rainfall
space–time structure characteristics are used as RF model
features. The flood peak is set as the model target. The re-
lationship between rainfall structure and flood peak is then
explored under the RF-based regression method. The main
parameters of the RF model are tuned by a grid search ap-
proach (Probst et al., 2019). The prediction performance
is assessed using mean absolute error (MAE), root mean
square error (RMSE) and explained variance regression
score (E score) (Achen, 2017). Smaller values of MAE and
RMSE indicate better model performance. E score ranges
from 0 to 1, and a larger value indicates a better model (the
training process of the RF model is shown in Fig. A4).

The difference in feature importance is compared between
the 10- and 200-year return periods (Fig. 8). For the 10-
year return period, peak rainfall rate (Mmax) and total rain-
fall (Rsum) are the most two important features, with a feature
importance of 0.17. For the 200-year return period, however,
the dispersion of RWD (S) and fractional coverage of storm
core (Z) are more important than Mmax and Rsum. The rain-
fall location (L) has the smallest importance for both return
periods. The results demonstrate the different relationships
between rainfall structure and flood response under small
and extreme rainfall events. For extreme storms, the maxi-
mum discharge is more closely linked to the spatial struc-
ture of rainfall, which is consistent with the results in Peleg
et al. (2017) and Zhu et al. (2018). Though it appears that
the difference is moderate, for such a small watershed, the
tendency of the change of the spatiotemporal rainfall feature
importance is noteworthy.

3.3.2 Rainfall return period vs. flood return period

In conventional design storm/flood practices, the return pe-
riod of rainfall and peak discharge is often assumed to be
equivalent (Rahman et al., 2002). Under the SST framework,
we can examine this assumption (Wright et al., 2014a). At
the 14.3 km2 basin scale, for each SST realization contain-
ing 100 rainfall scenarios with a return period from 5 years
up to 100 years, the peak discharge can be simulated and or-
dered. Flood frequency for return periods from 5 years up
to 100 years is then estimated from the ordered peaks. We
ran 30 SST realizations in total. Spearman’s rank correlation
of the two return periods is 0.5 (Fig. 9). The results quanti-
tatively confirm that the assumption of a 1 : 1 return period
equivalency between design storm and design flood cannot
hold, even in a small highly urbanized watershed where the
drainage network and rainfall structure play an important role
in flood response. Similar results can be found between sub-

Figure 8. Feature importance analysis of RF model for space–time
rainfall structure and 10-year (red) and 200-year (blue) flood peaks.

Figure 9. Scatterplot comparison return periods for rainfall and
peak discharge for individual SST-based simulations.

basins flood and DR-scale rainfall return periods (results not
shown for the sake of brevity).

3.3.3 Impact of rainfall spatial heterogeneity on flood
responses

We also compared the simulated flood response resulting
when rainfall is uniform over the watershed, rather than spa-
tially distributed as in previous analyses (Fig. 4 and Table 2).
Generally, flood peaks generated from uniform rainfall have
lower peaks than from nonuniform rainfall. The difference
increases with the return period. Under the 10-year return
period, the shapes of the two hydrographs have similar up-
per and lower bounds (75 % and 25 % quantiles). The me-
dian flood peak using nonuniform scenarios is 22 % higher
than the uniform scenarios. Under the 200-year return pe-
riod, the hydrograph resulting from nonuniform rainfall is
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Table 2. The median flood peak reductions using spatially uniform
and spatially distributed rainfall.

T = 10 yr T = 50 yr T = 100 yr T = 200 yr

DR1 14 % 20 % 13 % 26 %
DR2 19 % 40 % 28 % 42 %
DR3 24 % 33 % 27 % 31 %
DR4 32 % 51 % 38 % 35 %
DR5 15 % 75 % 37 % 30 %
Franklin 22 % 36 % 31 % 42 %

much peakier than the uniform SST scenarios, with higher
upper and lower bounds. The lower bound of hydrograph by
nonuniform SST scenarios is close to the median hydrograph
of uniform SST scenarios.

The impact of rainfall spatial heterogeneity among the
five subwatersheds is different. DR1, with a basin scale of
1.32 km2 and located in the northwest boundary of the wa-
tershed, was the least impacted by rainfall spatial distribu-
tion for all return periods. In DR2, on the other hand, which
is similar in drainage area to DR1, the flood peak increased
by 46 % for the 200-year return period. For DR3 and DR4,
the spatial heterogeneity of rainfall contributes more to the
flood peaks in DR4 than in DR3. The most striking difference
in flood peaks is in DR5 for the 50-year return period. The
difference in flood magnitude is 75 %. As mentioned above,
DR5 is the sub-basin with the least detention-controlled area.
This finding is likely tied to the complex relationship be-
tween space–time rainfall structure and the drainage net-
work. We can thus conclude that the spatial heterogeneity
of rainfall can increase flood peaks dramatically under both
small and large return periods. The impact increases with the
return period. This result shows that the assumption of spa-
tially uniform rainfall will underestimate flood frequency.

4 Summary and conclusions

This paper addresses the problem of the impacts of short-
duration rainfall variability on hydrologic response in the
small urbanized watershed. By coupling a high-resolution
radar rainfall data set and stochastic storm transposi-
tion (SST) with the GSSHA distributed physics-based model
(see also Wright et al., 2014a; Zhu et al., 2018), the rela-
tionships between rainfall spatiotemporal structure and ur-
ban flood response are examined. The main findings are as
follows:

1. The flood frequency distributions for subwatersheds
within the highly urbanized 14.3 km2 Dead Run water-
shed demonstrate the complexities of flood response for
both short and long rainfall return periods. For 3 h ex-
treme storms, the large variability of flood magnitude
shows a pronounced role of rainfall space–time struc-
ture in flood production. This calls into question the

common design storm assumption of spatially uniform
rainfall. The response time is less affected by rainfall
structure and appears to be more closely associated with
the basin scale and drainage network features.

2. The spatial heterogeneity of flood frequency over the
14.3 km2 watershed is striking for the 100-year return
period. The intercomparison between subwatersheds
shows that the impact of impervious area decreases with
increasing return periods. For the 100-year return pe-
riod, storm events that produce the same peak discharge
return period at the basin outlet can be the result of very
different upstream flood responses, even in a small-scale
watershed.

3. The relationship between the space–time structure of
rainfall and flood response is complex. For smaller and
more frequent rainfall events, flood peaks are more
closely linked to the temporal features of rainfall (to-
tal rainfall and peak rainfall rate). For extreme storms,
the maximum discharge is closely linked to the spatial
structure of rainfall (storm core coverage). This find-
ing is broadly consistent with Peleg et al. (2017) and
Zhu et al. (2018), despite the very different drainage
scales considered in those studies. There is no signif-
icant correlation between rainfall peak, total rainfall
and flood peaks, implying an important role of surface
properties in urbanized watersheds. Similar to Wright
et al. (2014a), this comparison calls into question the
conventional design storm assumption of a 1 : 1 equiva-
lency between rainfall and flood peak return periods.

4. The spatial heterogeneity of rainfall is a key driver of
flood response across scales. Relative to spatially uni-
form rainfall, spatially distributed rainfall can increase
flood peaks by 50 % on average at the watershed outlet
and its subwatersheds for both small and large return
periods. This finding is broadly consistent with prior
results at much larger scales in an agricultural setting
(Zhu et al., 2018) and suggests both spatial and temporal
rainfall distributions need to be considered in flood fre-
quency analyses, even in relatively small urban water-
sheds. This study also implies that the drainage network
substantially alters the impact of rainfall characteristics
on runoff.

Coupling the GSSHA model and SST-based rainfall fre-
quency analysis, this study provides an effective approach
for regional flood frequency analysis for urban watersheds.
Some idealized assumptions used in conventional methods
are questioned. The approach can be used to explore the dom-
inant control on the upper tail of urban flood peaks, with-
out many of the limiting assumptions associated with design
storm methods. The study area could be extended in future
work with larger basin scales and by manipulating the spa-
tial heterogeneity of basin characteristics within GSSHA or
other similar modeling systems.
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Appendix A

Figure A1. Maps of mean storm total rainfall (a) and probability of storm occurrence (b) for the 200 storms in the 3 h storm catalog. (The
black dots indicate the locations of rainfall centroids.)

Figure A2. Composite map of rainfall distribution for the 10-, 50-, 100- and 200-year return periods.
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Figure A3. Correlation between space–time rainfall structure and flood responses at Franklintown under 10- and 200-year return periods.
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Figure A4. The parameter tuning process of the RF model (using RMSE as an example).
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