Articles | Volume 25, issue 6
Hydrol. Earth Syst. Sci., 25, 3653–3673, 2021
https://doi.org/10.5194/hess-25-3653-2021
Hydrol. Earth Syst. Sci., 25, 3653–3673, 2021
https://doi.org/10.5194/hess-25-3653-2021
Research article
30 Jun 2021
Research article | 30 Jun 2021

The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau

Yi Nan et al.

Related authors

Assessing the influence of water sampling strategy on the performance of tracer-aided hydrological modeling in a mountainous basin on the Tibetan Plateau
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022,https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021,https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the influence of water sampling strategy on the performance of tracer-aided hydrological modeling in a mountainous basin on the Tibetan Plateau
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022,https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Flood forecasting with machine learning models in an operational framework
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022,https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022,https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
High-resolution satellite products improve hydrological modeling in northern Italy
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022,https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022,https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary

Cited articles

Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017. 
Benettin, P. and Bertuzzo, E.: tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions, Geosci. Model Dev., 11, 1627–1639, https://doi.org/10.5194/gmd-11-1627-2018, 2018. 
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001. 
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfall-runoff models, Water Resour. Res., 47, W02515, https://doi.org/10.1029/2010WR009547, 2011. 
Birkel, C., Soulsby, C., and Tetzlaff, D.: Developing a consistent process-based conceptualization of catchment functioning using measurements of internal state variables, Water Resour. Res., 50, 3481–3501, https://doi.org/10.1002/2013WR014925, 2014. 
Download
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.