Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-333-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-333-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
Liguang Jiang
Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
Christian Tøttrup
DHI-GRAS, Hørsholm, 2970, Denmark
Peter Bauer-Gottwein
Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
Related authors
No articles found.
Theerapol Charoensuk, Claudia Katrine Corvenius Lorentzen, Anne Beukel Bak, Jakob Luchner, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 29, 5065–5097, https://doi.org/10.5194/hess-29-5065-2025, https://doi.org/10.5194/hess-29-5065-2025, 2025
Short summary
Short summary
The objective of this study is to enhance the performance of 1D–2D flood models using satellite Earth observation data. The main factor influencing a 1D–2D flood model is the accuracy of the digital elevation model (DEM). Two workflows are introduced to improve the 1D–2D flood model: (1) in the DEM analysis workflow, 10 DEM products are evaluated using the ICESat-2 ATL08 benchmark, while (2) in the flood map analysis workflow, flood extent maps derived from multi-mission satellite datasets are compared with simulated flood maps.
Xinyu Chen, Liguang Jiang, Yuning Luo, and Junguo Liu
Earth Syst. Sci. Data, 15, 4463–4479, https://doi.org/10.5194/essd-15-4463-2023, https://doi.org/10.5194/essd-15-4463-2023, 2023
Short summary
Short summary
River flow is experiencing changes under the impacts of climate change and human activities. For example, flood events are occurring more often and are more destructive in many places worldwide. To deal with such issues, hydrologists endeavor to understand the features of extreme events as well as other hydrological changes. One key approach is analyzing flow characteristics, represented by hydrological indices. Building such a comprehensive global large-sample dataset is essential.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021, https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.
Cited articles
Abiodun, B. J., Makhanya, N., Petja, B., Abatan, A. A., and Oguntunde, P. G.:
Future projection of droughts over major river basins in Southern Africa at
specific global warming levels, Theor. Appl. Climatol., 137, 1785–1799, https://doi.org/10.1007/s00704-018-2693-0, 2019. a
Arsen, A., Crétaux, J. F., and Abarca del Rio, R.: Use of SARAL/AltiKa
over Mountainous Lakes, Intercomparison with Envisat Mission, Mar. Geod., 38, 534–548, https://doi.org/10.1080/01490419.2014.1002590, 2015. a
Beilfuss, R.: A Risky Climate for Southern African Hydro: Assessing
Hydrological Risks and Consequences for Zambezi River Basin Dams, International Rivers, Berkeley, USA, 1–60, https://doi.org/10.13140/RG.2.2.30193.48486, 2012. a
Berry, P. A. M., Smith, R. G., and Benveniste, J.: ACE2: the new global
digital elevation model, in: Gravity, geoid and earth observation, edited by:
Mertika, S., Springer, Berlin, Heidelberg, 231–237, https://doi.org/10.1007/978-3-642-10634-7_30, 2010. a
Berry, P. A. M., Smith, R., and Benveniste, J.: Altimeter Corrected Elevations, Version 2 (ACE2), NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, https://doi.org/10.7927/H40G3H78, 2019. a
Biancamaria, S., Schaedele, T., Blumstein, D., Frappart, F., Boy, F.,
Desjonquères, J. D., Pottier, C., Blarel, F., and Niño, F.: Validation of Jason-3 tracking modes over French rivers, Remote Sens. Environ., 209, 77–89, https://doi.org/10.1016/j.rse.2018.02.037, 2018. a
Boergens, E., Buhl, S., Dettmering, D., Klüppelberg, C., and Seitz, F.:
Combination of multi-mission altimetry data along the Mekong River with
spatio-temporal kriging, J. Geod., 91, 519–534, https://doi.org/10.1007/s00190-016-0980-z, 2017. a
Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J. P., Seyler, F., Onguéné, R., Etamé, J., Paiz, M. C., and Braun, J. J.: Monitoring water levels and discharges using radar altimetry in an ungauged river basin: The case of the Ogooué, Remote Sens., 10, 350, https://doi.org/10.3390/rs10020350, 2018. a
da Silva, J. S., Seyler, F., Calmant, S., Filho, O. C. R., Roux, E., Araújo, A. A. M., and Guyot, J. L.: Water level dynamics of Amazon
wetlands at the watershed scale by satellite altimetry, Int. J. Remote Sens., 33, 3323–3353, https://doi.org/10.1080/01431161.2010.531914, 2012. a
Dettmering, D., Schwatke, C., Boergens, E., and Seitz, F.: Potential of
ENVISAT radar altimetry for water level monitoring in the Pantanal wetland,
Remote Sens., 8, 596, https://doi.org/10.3390/rs8070596, 2016. a, b, c
Domeneghetti, A.: On the use of SRTM and altimetry data for flood modeling in
data-sparse regions, Water Resour. Res., 52, 2901–2918,
https://doi.org/10.1002/2015WR017967, 2016. a
Domeneghetti, A., Tarpanelli, A., Brocca, L., Barbetta, S., Moramarco, T.,
Castellarin, A., and Brath, A.: The use of remote sensing-derived water
surface data for hydraulic model calibration, Remote Sens. Environ., 149, 130–141, https://doi.org/10.1016/j.rse.2014.04.007, 2014. a
Dubey, A. K., Gupta, P. K., Dutta, S., and Singh, R. P.: An improved
methodology to estimate river stage and discharge using Jason-2 satellite
data, J. Hydrol., 529, 1776–1787, https://doi.org/10.1016/j.jhydrol.2015.08.009, 2015. a
Finsen, F., Milzow, C., Smith, R., Berry, P., and Bauer-Gottwein, P.: Using
radar altimetry to update a large-scale hydrological model of the Brahmaputra
river basin Flemming Finsen, Christian Milzow, Richard Smith, Philippa
Berry, Hydrol. Res., 45, 148–164, https://doi.org/10.2166/nh.2013.191, 2014. a
Getirana, A. C. V. and Peters-Lidard, C.: Estimating water discharge from
large radar altimetry datasets, Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, 2013. a
Hannah, D. M., Demuth, S., van Lanen, H. A., Looser, U., Prudhomme, C., Rees,
G., Stahl, K., and Tallaksen, L. M.: Large-scale river flow archives: Importance, current status and future needs, Hydrol. Process., 25, 1191–1200, https://doi.org/10.1002/hyp.7794, 2011. a
Jiang, L., Nielsen, K., Andersen, O. B., and Bauer-Gottwein, P.: Monitoring
recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn
mode data, J. Hydrol., 544, 109–124, https://doi.org/10.1016/j.jhydrol.2016.11.024, 2017a. a
Jiang, L., Nielsen, K., Andersen, O. B., and Bauer-Gottwein, P.: CryoSat-2
radar altimetry for monitoring freshwater resources of China, Remote Sens.
Environ., 200, 125–139, https://doi.org/10.1016/j.rse.2017.08.015, 2017b. a, b
Jiang, L., Baltazar, O., Nielsen, K., Zhang, G., and Bauer-Gottwein, P.:
Influence of local geoid variation on water surface elevation estimates
derived from multi-mission altimetry for Lake Namco, Remote Sens. Environ., 221, 65–79, https://doi.org/10.1016/j.rse.2018.11.004, 2019a. a
Jiang, L., Madsen, H., and Bauer-Gottwein, P.: Simultaneous calibration of
multiple hydrodynamic model parameters using satellite altimetry observations
of water surface elevation in the Songhua River, Remote Sens. Environ., 225, 229–247, https://doi.org/10.1016/j.rse.2019.03.014, 2019b. a, b, c
Kittel, C. M. M., Nielsen, K., Tøttrup, C., and Bauer-Gottwein, P.:
Informing a hydrological model of the Ogooué with multi-mission remote
sensing data, Hydrol. Earth Syst. Sci., 22, 1453–1472,
https://doi.org/10.5194/hess-22-1453-2018, 2018. a, b
Kittel, C. M. M., Jiang, L., Tøttrup, C., and Bauer-Gottwein, P.: Sentinel-3A and Sentinel-3B radar altimetry water surface elevation in the Zambezi catchment [Data set], Zenodo, https://doi.org/10.5281/zenodo.4300845, 2021. a
Kleinherenbrink, M., Lindenbergh, R. C., and Ditmar, P. G.: Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat
SARIn waveforms, J. Hydrol, 521, 119–131, https://doi.org/10.1016/j.jhydrol.2014.11.063, 2015. a
Liu, G., Schwartz, F. W., Tseng, K.-H., and Shum, C. K.: Discharge and
water-depth estimates for ungauged rivers: Combining hydrologic, hydraulic,
and inverse modeling with stage and water-area measurements from satellites,
Water Resour. Res., 51, 6017–6035, https://doi.org/10.1002/2015WR016971, 2015. a
Michailovsky, C. I. and Bauer-Gottwein, P.: Operational reservoir inflow
forecasting with radar altimetry: the Zambezi case study, Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, 2014. a
Michailovsky, C. I., McEnnis, S., Berry, P. A. M., Smith, R., and
Bauer-Gottwein, P.: River monitoring from satellite radar altimetry in the
Zambezi River basin, Hydrol. Earth Syst. Sci., 16, 2181–2192,
https://doi.org/10.5194/hess-16-2181-2012, 2012. a, b, c, d
Michailovsky, C. I., Milzow, C., and Bauer-Gottwein, P.: Assimilation of radar altimetry to a routing model of the Brahmaputra River, Water Resour. Res., 49, 4807–4816, https://doi.org/10.1002/wrcr.20345, 2013. a
Myers, E., Hess, K., Yang, Z., Xu, J., Wong, A., Doyle, D., Woolard, J., White, S., Le, B., Gill, S., and Hovis, G.: VDatum and strategies for national coverage, in: IEEE Oceans Conference Record, 29 September–4 October 2007, Vancouver, BC, Canada, https://doi.org/10.1109/OCEANS.2007.4449348, 2007. a
Nielsen, K., Stenseng, L., Andersen, O. B., and Knudsen, P.: The performance
and potentials of the CryoSat-2 SAR and SARIn modes for lake level
estimation, Water (Switzerland), 9, 374, https://doi.org/10.3390/w9060374, 2017. a
Ovando, A., Martinez, J. M., Tomasella, J., Rodriguez, D. A., and von Randow,
C.: Multi-temporal flood mapping and satellite altimetry used to evaluate
the flood dynamics of the Bolivian Amazon wetlands, Int. J. Appl. Earth Obs. Geoinf., 69, 27–40, https://doi.org/10.1016/j.jag.2018.02.013, 2018. a
Park, E.: Characterizing channel-floodplain connectivity using satellite
altimetry: Mechanism, hydrogeomorphic control, and sediment budget, Remote
Sens. Environ., 243, 111783, https://doi.org/10.1016/j.rse.2020.111783, 2020. a, b, c
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016. a
Schneider, R., Godiksen, P. N., Villadsen, H., Madsen, H., and Bauer-Gottwein, P.: Application of CryoSat-2 altimetry data for river analysis and modelling, Hydrol. Earth Syst. Sci., 21, 751–764,
https://doi.org/10.5194/hess-21-751-2017, 2017. a
Schneider, R., Ridler, M. E., Godiksen, P. N., Madsen, H., and Bauer-Gottwein, P.: A data assimilation system combining CryoSat-2 data and hydrodynamic river models, J. Hydrol., 557, 197–210, https://doi.org/10.1016/j.jhydrol.2017.11.052, 2018a. a
Schneider, R., Tarpanelli, A., Nielsen, K., Madsen, H., and Bauer-Gottwein, P.: Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model, Adv. Water Resour., 112, 17–26, https://doi.org/10.1016/j.advwatres.2017.11.027, 2018b. a
Villadsen, H., Andersen, O. B., Stenseng, L., Nielsen, K., and Knudsen, P.:
CryoSat-2 altimetry for river level monitoring – Evaluation in the
Ganges–Brahmaputra River basin, Remote Sens. Environ., 168, 80–89, https://doi.org/10.1016/j.rse.2015.05.025, 2015. a
Villadsen, H., Deng, X., Andersen, O. B., Stenseng, L., Nielsen, K., and
Knudsen, P.: Improved inland water levels from SAR altimetry using novel
empirical and physical retrackers, J. Hydrol., 537, 234–247,
https://doi.org/10.1016/j.jhydrol.2016.03.051, 2016. a, b, c, d
Vörösmarty, C., Askew, A., Grabs, W., Barry, R. G., Birkett, C.,
Döll, P., Goodison, B., Hall, A., Jenne, R., Kitaev, L., Landwehr, J.,
Keeler, M., Leavesley, G., Schaake, J., Strzepek, K., Sundarvel, S. S.,
Takeuchi, K., and Webster, F.: Global water data: A newly endangered species, Eos Trans. AGU, 82, 54–58, https://doi.org/10.1029/01EO00031, 2001. a
Vu, P. L., Frappart, F., Darrozes, J., Marieu, V., Blarel, F., Ramillien, G.,
Bonnefond, P., and Birol, F.: Multi-satellite altimeter validation along the
French Atlantic coast in the southern Bay of Biscay from ERS-2 to SARAL, Remote Sens., 10, 93, https://doi.org/10.3390/rs10010093, 2018. a
Wingham, D. J., Rapley, C. G., and Griffiths, H.: New Techniques in Satellite
Altimeter Tracking Systems, in: Digest – International Geoscience and Remote
Sensing Symposium (IGARSS), September 1986, Zurich, Switzerland, 1339–1344, 1986. a
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.: CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields, Adv.n Space Res., 37, 841–871,
https://doi.org/10.1016/j.asr.2005.07.027, 2006. a
Yamakazi, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map of global terrain elevations Dai, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017. a, b
Yan, D., Wang, K., Qin, T., Weng, B., Wang, H., Bi, W., Li, X., Li, M., Lv, Z., Liu, F., He, S., Ma, J., Shen, Z., Wang, J., Bai, H., Man, Z., Sun, C., Liu, M., Shi, X., Jing, L., Sun, R., Cao, S., Hao, C., Wang, L., Pei, M.,
Dorjsuren, B., Gedefaw, M., Girma, A., and Abiyu, A.: A data set of global
river networks and corresponding water resources zones divisions, Scient.
Data, 6, 219, https://doi.org/10.1038/s41597-019-0243-y, 2019.
a, b
Zakharova, E. A., Kouraev, A. V., Rémy, F., Zemtsov, V. A., and Kirpotin,
S. N.: Seasonal variability of the Western Siberia wetlands from satellite
radar altimetry, J. Hydrol., 512, 366–378, https://doi.org/10.1016/j.jhydrol.2014.03.002, 2014. a, b, c
Zhang, X., Jiang, L., Kittel, C. M. M., and Yao, Z.: On the performance of
Sentinel-3 altimetry over new reservoirs: Approaches to determine on-board
a-priori elevation, Geophys. Res. Lett., 47, 1–11, https://doi.org/10.1029/2020GL088770, 2020. a
Short summary
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain water level observations. Improvements in instrument design have increased the capabilities of altimeters to observe inland water bodies, including rivers. In this study, we demonstrate how a dense Sentinel-3 water surface elevation monitoring network can be established at catchment scale using publicly accessible processing platforms. The network can serve as a useful supplement to ground observations.
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain...