Articles | Volume 25, issue 5
Research article
18 May 2021
Research article |  | 18 May 2021

Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy

Everett Snieder, Karen Abogadil, and Usman T. Khan

Related authors

Dissolved oxygen prediction using a possibility theory based fuzzy neural network
Usman T. Khan and Caterina Valeo
Hydrol. Earth Syst. Sci., 20, 2267–2293,,, 2016
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach
Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall
Hydrol. Earth Syst. Sci., 26, 5685–5695,,, 2022
Short summary
Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964,,, 2022
Short summary
Forecasting green roof detention performance by temporal downscaling of precipitation time-series projections
Vincent Pons, Rasmus Benestad, Edvard Sivertsen, Tone Merete Muthanna, and Jean-Luc Bertrand-Krajewski
Hydrol. Earth Syst. Sci., 26, 2855–2874,,, 2022
Short summary
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935,,, 2021
Short summary
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
Yang Yang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 25, 5839–5858,,, 2021
Short summary

Cited articles

Abbot, J. and Marohasy, J.: Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks, Atmos. Res., 138, 166–178,, 2014. a
Abrahart, R. J., Heppenstall, A. J., and See, L. M.: Timing error correction procedure applied to neural network rainfall-runoff modelling, Hydrolog. Sci. J., 52, 414–431,, 2007. a, b, c, d
Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby, R. L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Prog. Phys. Geog., 36, 480–513,, 2012. a, b, c
Alobaidi, M. H., Meguid, M. A., and Chebana, F.: Predicting seismic-induced liquefaction through ensemble learning frameworks, Sci. Rep.-UK, 9, 11786,, 2019. a, b, c, d, e
Anctil, F. and Lauzon, N.: Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions, Hydrol. Earth Syst. Sci., 8, 940–958,, 2004. a, b, c
Short summary
Flow distributions are highly skewed, resulting in low prediction accuracy of high flows when using artificial neural networks for flood forecasting. We investigate the use of resampling and ensemble techniques to address the problem of skewed datasets to improve high flow prediction. The methods are implemented both independently and in combined, hybrid techniques. This research presents the first analysis of the effects of combining these methods on high flow prediction accuracy.