Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2543-2021
https://doi.org/10.5194/hess-25-2543-2021
Research article
 | 
18 May 2021
Research article |  | 18 May 2021

Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy

Everett Snieder, Karen Abogadil, and Usman T. Khan

Related authors

A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Exploring the driving factors of compound flood severity in coastal cities: a comprehensive analytical approach
Yan Liu, Ting Zhang, Yi Ding, Aiqing Kang, Xiaohui Lei, and Jianzhu Li
Hydrol. Earth Syst. Sci., 28, 5541–5555, https://doi.org/10.5194/hess-28-5541-2024,https://doi.org/10.5194/hess-28-5541-2024, 2024
Short summary
Enhancing generalizability of data-driven urban flood models by incorporating contextual information
Tabea Cache, Milton Salvador Gomez, Tom Beucler, Jovan Blagojevic, João Paulo Leitao, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 5443–5458, https://doi.org/10.5194/hess-28-5443-2024,https://doi.org/10.5194/hess-28-5443-2024, 2024
Short summary
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic systems in a suburban watershed
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Laurence Lin, Amanda K. Suchy, Jonathan M. Duncan, and Arthur J. Gold
Hydrol. Earth Syst. Sci., 28, 4599–4621, https://doi.org/10.5194/hess-28-4599-2024,https://doi.org/10.5194/hess-28-4599-2024, 2024
Short summary
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Pluvial and compound flooding in a coupled coastal system modeling framework: New York City during post-tropical cyclone Ida (2021)
Shima Kasaei, Philip M. Orton, David K. Ralston, and John C. Warner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2058,https://doi.org/10.5194/egusphere-2024-2058, 2024
Short summary

Cited articles

Abbot, J. and Marohasy, J.: Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks, Atmos. Res., 138, 166–178, https://doi.org/10.1016/j.atmosres.2013.11.002, 2014. a
Abrahart, R. J., Heppenstall, A. J., and See, L. M.: Timing error correction procedure applied to neural network rainfall-runoff modelling, Hydrolog. Sci. J., 52, 414–431, https://doi.org/10.1623/hysj.52.3.414, 2007. a, b, c, d
Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby, R. L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Prog. Phys. Geog., 36, 480–513, https://doi.org/10.1177/0309133312444943, 2012. a, b, c
Alobaidi, M. H., Meguid, M. A., and Chebana, F.: Predicting seismic-induced liquefaction through ensemble learning frameworks, Sci. Rep.-UK, 9, 11786, https://doi.org/10.1038/s41598-019-48044-0, 2019. a, b, c, d, e
Anctil, F. and Lauzon, N.: Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions, Hydrol. Earth Syst. Sci., 8, 940–958, https://doi.org/10.5194/hess-8-940-2004, 2004. a, b, c
Download
Short summary
Flow distributions are highly skewed, resulting in low prediction accuracy of high flows when...
Share