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Abstract. Data-driven flow-forecasting models, such as ar-
tificial neural networks (ANNs), are increasingly featured
in research for their potential use in operational riverine
flood warning systems. However, the distributions of ob-
served flow data are imbalanced, resulting in poor predic-
tion accuracy on high flows in terms of both amplitude
and timing error. Resampling and ensemble techniques have
been shown to improve model performance on imbalanced
datasets. However, the efficacy of these methods (individu-
ally or combined) has not been explicitly evaluated for im-
proving high-flow forecasts. In this research, we systemati-
cally evaluate and compare three resampling methods, ran-
dom undersampling (RUS), random oversampling (ROS),
and the synthetic minority oversampling technique for re-
gression (SMOTER), and four ensemble techniques, ran-
domised weights and biases, bagging, adaptive boosting (Ad-
aBoost), and least-squares boosting (LSBoost), on their abil-
ity to improve high stage prediction accuracy using ANNs.
These methods are implemented both independently and in
combined hybrid techniques, where the resampling methods
are embedded within the ensemble methods. This system-
atic approach for embedding resampling methods is a novel
contribution. This research presents the first analysis of the
effects of combining these methods on high stage predic-
tion accuracy. Data from two Canadian watersheds (the Bow
River in Alberta and the Don River in Ontario), represent-
ing distinct hydrological systems, are used as the basis for
the comparison of the methods. The models are evaluated
on overall performance and on typical and high stage sub-
sets. The results of this research indicate that resampling pro-
duces marginal improvements to high stage prediction ac-
curacy, whereas ensemble methods produce more substan-
tial improvements, with or without resampling. Many of the

techniques used produced an asymmetric trade-off between
typical and high stage performance; reduction of high stage
error resulted in disproportionately larger error on a typi-
cal stage. The methods proposed in this study highlight the
diversity-in-learning concept and help support future stud-
ies on adapting ensemble algorithms for resampling. This re-
search contains many of the first instances of such methods
for flow forecasting and, moreover, their efficacy in address-
ing the imbalance problem and heteroscedasticity, which are
commonly observed in high-flow and flood-forecasting mod-
els.

1 Introduction

Data-driven models such as artificial neural networks
(ANNs) have been widely and successfully used over the last
3 decades for hydrological forecasting applications (Govin-
daraju, 2000; Abrahart et al., 2012; Dawson and Wilby,
2001). However, some studies have noted that these models
can exhibit poor performance during high-flow (or stage) hy-
drological events (Sudheer et al., 2003; Abrahart et al., 2007;
de Vos and Rientjes, 2009), with poor performance manifest-
ing as late predictions (i.e. timing error), underpredictions, or
both. For flow-forecasting applications such as riverine flood
warning systems, the accuracy of high stage predictions is
more important than that of a typical stage. One cause of
poor model accuracy on a high stage is the scarcity of rep-
resentative sample observations available with which to train
such models (Moniz et al., 2017a). This is because stage data
typically exhibit a strong positive skew, referred to as an im-
balanced domain; thus, there may only be a small number of
flood observations within decades of samples. Consequently,
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objective functions that are traditionally used for training
ANNs (e.g. mean squared error, MSE, sum of squared er-
ror SSE), which equally consider all samples, are biased to-
wards values that occur most frequently and are reflected by
poor model performance on high-flow or stage observations
(Pisa et al., 2019). Sudheer et al. (2003) also point out that
such objective functions are not optimal for non-normally
distributed data. This problem is exacerbated when such met-
rics are also used to assess model performance; regrettably,
such metrics are the most widely used in water resource ap-
plications (Maier et al., 2010). As a result, studies that assess
models using traditional performance metrics risk overlook-
ing deficiencies in high stage performance.

Real-time data-driven flow-forecasting models frequently
use antecedent input variables (also referred to as autore-
gressive inputs) for predictions. Several studies have at-
tributed poor model prediction on high stage to model over-
reliance on antecedent variables (Snieder et al., 2020; Abra-
hart et al., 2007; de Vos and Rientjes, 2009; Tongal and
Booij, 2018). Consequently, the model predictions are sim-
ilar to the most recent antecedent conditions, sometimes de-
scribed as a lagged prediction (Tongal and Booij, 2018). In
other words, the real-time observed stage at the target gauge
is used as the predicted value for a given lead time. This is-
sue is closely linked to the imbalanced domain problem as
frequently occurring stage values typically exhibit low tem-
poral variability compared to infrequent, high stage values;
this phenomenon is further described in Sect. 2.

Improving the accuracy of high stage or flow forecasts has
been the focus of many studies. Several studies have exam-
ined the use of preprocessing techniques to improve model
performance. Sudheer et al. (2003) propose using a Wilson–
Hilferty transformation to change the skewed distribution
of stage data. The study found that transforming the target
data reduces annual peak flow error produced by ANN-based
daily flow-forecasting models. Wang et al. (2006) evaluate
three strategies for categorising streamflow samples, based
on a fixed-value flow threshold, unsupervised clustering, and
periodicity; separate ANN models are trained to predict each
flow category and combined to form a final prediction. The
periodicity-based ANN, which detects periodicity from the
autocorrelation function of the target variable, is found to
perform the best out of the three schemes considered. Flem-
ing et al. (2015) address the issue of poor high-flow perfor-
mance by isolating a subset of daily high flows by threshold-
ing based on a fixed value. By doing so, traditional objective
functions (e.g. MSE) become less influenced by the imbal-
ance of the training dataset. ANN-based ensembles trained
on high flows are found to perform well, though the improve-
ments to high-flow accuracy are not directly quantified, as the
high-flow ensemble is not compared directly to a counterpart
trained using the full training dataset.

An alternative approach to improving high-flow forecast
accuracy has been to characterise model error as having am-
plitude and temporal components (Seibert et al., 2016). Abra-

hart et al. (2007) use a specialised learning technique in
which models are optimised based on a combination of root
mean square error (RMSE) and a timing error correction fac-
tor, which is found to improve model timing for short lead
times but has little impact on higher lead times. de Vos and
Rientjes (2009) use a similar approach, in which models that
exhibit a timing error are penalised during calibration. The
technique is found to generally reduce timing error at the ex-
pense of amplitude error.

Finally, there is considerable evidence that ensemble-
based and resampling techniques improve prediction accu-
racy of infrequent samples (Galar et al., 2012). Ensemble
methods, such as bootstrap aggregating (bagging) and boost-
ing, are known for their ability to improve model generalisa-
tion. Such methods are widely used in classification studies
and are increasingly being adapted for regression tasks (Mo-
niz et al., 2017b). However, ensemble methods alone do not
directly address the imbalance problem, as they typically do
not explicitly consider the distribution of the target dataset.
Thus, ensemble methods are often combined with prepro-
cessing strategies to address the imbalance problem (Galar
et al., 2012). Resampling, which is typically used as a pre-
processing method, can be used to create more uniformly dis-
tributed target datasets or generate synthetic data with which
to train models (Moniz et al., 2017a). Resampling also pro-
motes diversity in learning when embedded in ensemble al-
gorithms (rather than when used as a preprocessing strat-
egy). Examples of such combinations appear in the machine-
learning literature but are typically developed for ad hoc ap-
plications (Galar et al., 2012).

However, the efficacy of these methods (a combination of
resampling strategies with ensemble methods) has not been
systematically investigated for flow-forecasting applications.
While previous studies have provided comparisons of en-
semble methods, none have explicitly studied their effects
on high-flow prediction accuracy, which has only received
little attention within the context of the imbalance problem
in general. Additionally, previous research uses resampling
as a preprocessing technique, whereas in this research, re-
sampling is embedded within the ensembles to promote di-
versity in learning. Thus, the main objective of this research
is to develop a systematised framework for combining sev-
eral different resampling and ensemble techniques with the
aim of improving high-flow forecasts using ANNs. Three
resampling techniques, random undersampling (RUS), ran-
dom oversampling (ROS), and the synthetic minority over-
sampling technique for regression (SMOTER), and four en-
semble algorithms, randomised weights and biases (RWB),
bagging, adaptive boosting for regression (AdaBoost), and
least-squares boosting (LSBoost), will be investigated to ad-
dress the issues related to high-flow forecasts, i.e. the imbal-
anced domain problem and heteroscedasticity. Each combi-
nation of these methods will be explicitly evaluated on their
ability to improve model performance on high stage (infre-
quent) data subsets along with the typical (frequent) data
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subsets. Such a framework and comparison, to address the
imbalanced domain, have not been presented in the existing
literature. Lastly, while only selected resampling and ensem-
ble techniques are presented, many of which are the first in-
stances of their use for high-flow forecasting, this proposed
framework may easily be expanded to resampling and en-
semble strategies beyond those included in this research.

The remainder of the paper is organised as follows: first,
in Sect. 2 we present the baseline ANN flow forecast mod-
els, which are used as the individual learners for the ensem-
bles, for two Canadian watersheds, followed by a perfor-
mance analysis of these models to highlight the imbalance
domain problem and illustrate the heteroscedasticity of base-
line model residuals. The two watersheds, with differing hy-
drological characteristics but both prone to riverine floods,
are the Bow River watershed (in Alberta) and the Don River
watershed (in Ontario). Section 3 provides a review and ap-
plications of each resampling method and ensemble tech-
nique followed by a description of the implementation of
each approach in this research and model evaluation method.
Lastly, Sect. 4 includes the results and discussion from the
two case studies.

2 Early investigations

The following section provides descriptions for the two wa-
tersheds under study. The parametrisation of the single ANN
models to predict the stage in each watershed (referred to as
the individual learners) is described. The outputs of the in-
dividual learners are used to exemplify the inability of these
ANNs to accurately predict high stage (from both an am-
plitude and temporal error perspective) and to illustrate the
imbalance problem.

2.1 Study area

The Bow and Don rivers are featured as case studies in this
research to evaluate methods for improving the accuracy of
high stage data-driven forecasts. The Bow River, illustrated
in Fig. 1a, begins in the Canadian Rockies mountain range
and flows eastward through the city of Calgary, where it is
joined by the Elbow River. The Bow River’s flow regime is
dominated by glacial and snowmelt processes which produce
annual seasonality. The Bow River watershed has an area of
approximately 7700 km2 upstream of the target stage moni-
toring station in Calgary and consists of predominantly natu-
ral and agricultural land cover. The city of Calgary has expe-
rienced several major floods (recently in 2005 and 2013), and
improvements to flow-forecasting models have been identi-
fied as a key strategy for mitigating flood damage Khan et al.
(2018).

The Don River, illustrated in Fig. 1b, begins in the Oak
Ridges Moraine and winds through the Greater Toronto
Area until it meets Lake Ontario in downtown Toronto. The

Figure 1. Bow (a) and Don (b) River basins upstream of Cal-
gary and Toronto, respectively. Surface watercourses and water-
bodies are shown in blue. The target stage monitoring stations
are red, while upstream hydrometeorological monitoring stations
(stage, precipitation, and temperature) are yellow. Aerial imagery
obtained from © Esri (Esri, 2020). Surface water and watershed
boundaries obtained from © Scholars GeoPortal (DMTI Spatial
Inc., 2014a, b, c, 2019) and the © TRCA (Toronto and Region Con-
servation Authority, 2020b).

360 km2 Don River watershed is heavily urbanised, which
results in the high stage seen in the River being attributable
to the direct runoff following intense rainfall events. Its ur-
banised landscape has also contributed to periodic histori-
cal flooding (Toronto and Region Conservation Authority,
2020a). Persistent severe flooding (recently in 2005 and
2013) has motivated calls for further mitigation strategies
such as improved flow forecast models and early warning
systems (Nirupama et al., 2014).

Data from November to April and November to December
were removed from the Bow and Don River datasets, prior
to any analysis; these periods are associated with ice condi-
tions. The histograms in Fig. 2 illustrate the imbalanced do-
mains of the target stage for both rivers. A high stage thresh-
old (2HS) is defined, which is used to distinguish between
typical and high stage. Stage values greater than the thresh-
old are referred to as high stage (qHS) and stage values below
the threshold as typical stage (qTS). Target stage statistics for
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Table 1. Target variable statistics for the Bow and Don River water-
sheds.

River Subset Mean Min. Max. Skew. Var.
(m) (m) (m) (–) (m2)

Bow q 1.28 0.92 3.07 1.18 0.067
qTS 1.18 0.92 1.47 0.21 0.022
qHS 1.69 1.47 3.07 1.85 0.039

Don q 77.62 77.51 79.21 3.78 0.018
qTS 77.58 77.51 77.67 0.59 0.0017
qHS 77.82 77.68 79.21 2.99 0.034

Figure 2. Histograms of the observed stage for the (a) Bow River
6 h stage and (b) Don River hourly stage. The dashed red line in-
dicates the fixed threshold used to distinguish between typical and
high stage values.

the Bow and Don rivers are provided for the complete stage
distribution as well as the qTS and qHS subsets in Table 1.

The use of a fixed threshold for distinguishing between
common (frequent) and rare (infrequent) samples is used
both in flow forecasting (Crochemore et al., 2015; Razali
et al., 2020; Fleming et al., 2015) and in more general
machine-learning studies that are focused on the imbalance
problem (Moniz et al., 2017a). In this research, the high stage
threshold is simply and arbitrarily taken as the 80th per-
centile value of the observed stage. The threshold value is
ideally derived from the physical characteristics of the river
(i.e. the stage at which water exceeds the bank or is associ-
ated with a specified return period); unfortunately this site-
specific information is not readily available for the subject
watersheds. An important consideration to make while se-

lecting a 2HS value is that it produces a sufficient number of
high stage samples; having too few samples risks overfitting
and poor generalisation. The distinction between typical and
high stage is used in some of the resampling techniques in
Sect. 3.1 and for assessing model performance in Sect. 3.4.

2.2 Individual learner description

The individual learner (sometimes called the base model
or base learner) for both systems uses upstream hydro-
meteorological inputs (stage, precipitation, and temperature)
to predict the downstream stage (the target variable). The
multi-layer perception (MLP) ANN is used as the individual
learner for this study, and the selected model hyperparame-
ters are summarised in Table 2. The MLP ANN was chosen
as the individual learner because it is the most commonly
used machine-learning architecture for predicting water re-
source variables in river systems (Maier et al., 2010). The in-
dividual learner can be used for discrete value prediction or
as a member of an ensemble in which a collection of models
is trained and combined to generate predictions. Each ANN
has a hidden layer of 10 neurons; a grid search of different
hidden layer sizes indicated that larger numbers of hidden
neurons have little impact on the ANN performance. Thus, to
prevent needlessly increasing model complexity, a small hid-
den layer is favoured. The number of training epochs is deter-
mined using early stopping (also called stop training), which
is performed by dividing the calibration data into training and
validation subsets; training data are used to tune the ANN
weights and biases, whereas the validation performance is
used to determine when to stop training (Anctil and Lau-
zon, 2004). For this study, the optimum number of epochs
is assumed if the error on the validation set increases for
five consecutive epochs. Early stopping is a common tech-
nique for achieving generalisation and preventing overfitting
(Anctil and Lauzon, 2004). Of the available data for each
watershed, 60 % are used for training, 20 % for validation,
and 20 % for testing (the independent dataset). K-fold cross-
validation (KFCV) is used to evaluate different continuous
partitions of training and testing data and is explained in
greater detail in Sect. 3.4.2. The Levenberg—Marquardt al-
gorithm was used to train the individual learners because of
its speed of convergence and reliability (Lauzon et al., 2006;
Maier and Dandy, 2000; Tongal and Booij, 2018). The full
set of input and target variables used for both catchments is
summarised in Table 3. For both rivers, the input variables
are used to forecast the target variable four time steps in ad-
vance; i.e. for the Bow River, the model forecasts 24 h in the
future, whereas for the Don River, the model forecasts 4 h in
the future. Some of the input variables used in the Bow River
model, including the minimum, mean, and maximum statis-
tics, are calculated by coarsening hourly data to a 6 h time
step. Several lagged copies of each input variable are used,
which is common practice for ANN-based hydrological fore-
casting models (Snieder et al., 2020; Abbot and Marohasy,
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Table 2. Individual learner ANN model description used for both
watersheds.

Model class Artificial neural network
Architecture Multi-layer perceptron
IVS Partial correlation
Hidden neurons 10
Activation function Tanh (hidden layer), linear (output layer)
Training algorithm Levenberg–Marquardt backpropagation
Stopping criteria Validation dataset

2014; Fernando et al., 2009; Banjac et al., 2015). For ex-
ample, to forecast xt by four time steps, xt−4, xt−5, xt−6,
etc., may be used as input variables, as these variables are
recorded automatically, in real time.

The partial correlation (PC) input variable selection (IVS)
algorithm is used to determine the most suitable inputs for
each model from the larger candidate set (He et al., 2011;
Sharma, 2000). Previous research for the Don and Bow rivers
found that PC is generally capable of removing non-useful
inputs in both systems, achieving reduced computational
demand and improved model performance (Snieder et al.,
2020). The simplicity and computational efficiency of the PC
algorithm method make it an appealing IVS algorithm for
this application. The 25 most useful inputs amongst all the
candidates listed in Table 3, determined by the PC algorithm,
are used in the models for each watershed. A complete list of
selected inputs is shown in Appendix A.

The Bow and Don River individual learners produce coef-
ficients of Nash–Sutcliffe efficiency (CEs) greater than 0.95
and 0.75, respectively. These scores are widely considered
by hydrologists to indicate good performance (Crochemore
et al., 2015). However, closer investigation of the model per-
formance reveals that high stage samples consistently exhibit
considerable error. This is plainly visible when comparing
the observed hydrographs with the individual learner predic-
tions, as shown in Figs. 3 and 4, for the Bow and Don rivers,
respectively. Plotting the individual learner residuals against
the observed stage, as in Fig. 5a and b, illustrates how the
variance of the residuals about the expected mean of 0 in-
creases with the increasing stage magnitude; Fleming et al.
(2015) also describe the heteroscedastic nature of flow pre-
diction models. This region of high stage also exhibits am-
plitude errors in excess of 1 m, casting doubt on the suit-
ability of these models for flood-forecasting applications. In
Fig. 5b and c the normalised inverse frequency of each sam-
ple point is plotted against the stage gradient, illustrating how
the most frequent stage values typically have a low gradient
with respect to the forecast lead time, given by (qt+L−qt )/L.
Note that the inverse frequency is determined using 100 his-
togram bins. Thus, when such a relationship exists, it is un-
surprising that model output predictions are similar to the
most recent autoregressive input variable. Previous work that
analysed trained ANN models for both subject watersheds Ta
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Figure 3. Observed and individual learner stage predictions for the
Bow River system for all 10 years of an available stage (a) and
a 3-month subset which contains a particularly high stage (b) to
better distinguish between the two hydrographs. The dashed red line
indicates the fixed threshold used to distinguish between typical and
high stage values.

Figure 4. Observed and individual learner stage predictions for the
Don River system for all 10 months of an available stage (a) and
a 14 d subset which contains a particularly high stage (b) to better
distinguish the two hydrographs. The dashed red line indicates the
fixed threshold used to distinguish between typical and high stage
values.

demonstrates how the most recent autoregressive input vari-
able is the most important variable for accurate stage predic-
tions (Snieder et al., 2020).

Without accounting for the imbalanced nature of stage
data, data-driven models are prone to inadequate perfor-
mance similar to that of the individual learners described

Figure 5. Baseline model residuals versus observed stage for the
Bow (a) and Don (b) River systems. Inverse frequency versus gra-
dient across four time steps for the Bow (c) and Don (d) River target
variables. Colouring indicates normalised scatter point density.

above. Consequently, such models may not be suitable for
flood-related applications such as early flood warning sys-
tems. The following section describes and reviews resam-
pling and ensemble methods, which are proposed as solu-
tions to the imbalance problem, which manifests as poor per-
formance on high stage samples, relative to typical stage.

3 Review and description of methods for handling
imbalanced target datasets

Many strategies have been proposed for handling imbalanced
domains, which can be broadly categorised into three ap-
proaches: specialised preprocessing, learning methods, and
combined methods (Haixiang et al., 2017; Moniz et al.,
2018). According to a comprehensive review of imbalanced
learning strategies, resampling and ensemble methods are
among the most popular techniques employed (Haixiang
et al., 2017). Specifically, a review of 527 papers on imbal-
anced classification found that a resampling technique was
used 156 times (Haixiang et al., 2017). From the same re-
view, 218 of the 527 papers used an ensemble technique
such as bagging or boosting. Many of the studies reviewed
used combinations of available techniques and often pro-
pose novel hybrid approaches that incorporate elements from
several algorithms. Since it is impractical to compare every
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unique algorithm that has been developed for handling im-
balanced data, the scope of this research adheres to relatively
basic techniques and combinations of resampling and ensem-
ble methods. The following sections describe the resampling
and ensemble methods used in this research. The review at-
tempts to adhere to hydrological studies that feature each of
the methods; however, when this is not always possible, ex-
amples from other fields are presented.

First, it is important to distinguish between the data im-
balance addressed in this study and cost-sensitive imbalance.
Imbalance in datasets can be characterised as a combination
of two factors: imbalanced distributions of samples across
the target domain and imbalanced user interest across the do-
main. Target domain imbalance is related solely to the native
distribution of samples, while cost sensitivity occurs when
costs vary across the target domain. While both types of im-
balance are relevant to the flow-forecasting application of
this research, cost-sensitive methods are complex and typi-
cally involve developing a relationship between mispredic-
tion and tangible costs, for example, property damage (Toth,
2016). Cost-sensitive learning is outside the scope of this re-
search, which is focused on reducing high stage errors due to
the imbalanced nature of the target stage data.

3.1 Resampling techniques

Resampling is widely used in machine learning to create sub-
sets of the total available data with which to train models.
Resampling is typically used as a data-preprocessing tech-
nique (Brown et al., 2005; Moniz et al., 2017a). However,
in our research, resampling is embedded in the ensemble al-
gorithms so as to promote diversity amongst the individual
learners. This following section discusses examples of re-
sampling, whether used for preprocessing or used within the
learning algorithm. Pseudocode for each resampling method
is provided in Appendix B.

3.1.1 Random undersampling

RUS is performed by subsampling a number of frequent
cases equal to the number of infrequent cases, such that there
are an even number in each category that achieve a more bal-
anced distribution compared to the original set. As a result,
all of the rare cases are used for training, while only a fraction
of the normal cases are used. RUS is intuitive for classifica-
tion problems; for two-class classification, the majority class
is undersampled such that the number of samples drawn from
each class is equal to the number of samples in the minority
class (Yap et al., 2014). However, RUS is less straightfor-
ward for regression, as it requires continuous data first to be
categorised so as to allow for an even number of samples to
be drawn from each category. Categories must be selected
appropriately such that they are continuous across the target
domain and each category contains a sufficient number of
samples to allow for diversity in the resampled dataset (Galar

et al., 2013). Undersampling is scarcely used in hydrologi-
cal forecasting applications, despite seeing widespread use
in classification studies. Mahamud et al. (2016) demonstrate
an application of fuzzy-based RUS for categorical flood risk
support vector machine (SVM)-based classification, which
is motivated by the imbalanced nature of flood data. RUS
is found to outperform both ROS and the synthetic minor-
ity oversampling technique (SMOTE) on average across five
locations.

In this research, N available stage samples are categorised
into NTS typical stage and NHS high stage based on the
threshold 2HS. The undersampling scheme draws NHS with
replacement from each of the subsets, such that there are an
equal number of each category. RUS can be performed with
or without replacement; the former provides greater diver-
sity when resampling is repeated several times, and thus this
approach is selected for the present research.

3.1.2 Random oversampling

ROS simply consists of oversampling rare samples, thus
modifying the training sample distribution through duplica-
tion (Yap et al., 2014). ROS is procedurally similar to RUS,
also aiming to achieve a common number of frequent and in-
frequent samples. Instead of subsampling the typical stage,
high stage values are resampled with replacement so that
the number of samples matches that of the typical stage
set. The duplication of high stage samples in the training
dataset increases their relative contribution to the model’s
objective function during calibration. Compared to under-
sampling, oversampling is advantaged such that more sam-
ples in the majority class are utilised. The drawbacks of this
approach are that there is an increased computational cost.
There are few examples of ROS applications in the water re-
source literature; studies tend to favour SMOTE, which is
discussed in the following section. Saffarpour et al. (2015)
use oversampling to address the class imbalance of binary
flood data; surprisingly, oversampling was found to decrease
classification accuracy compared to the raw training dataset.
Recently, Zhaowei et al. (2020) applied oversampling for ve-
hicle traffic flow as a response to the imbalance of the train-
ing data.

For ROS, as with RUS, N available stage samples are cat-
egorised into NTS typical stage and NHS high stage samples
based on the threshold2HS. The oversampling scheme draws
NTS with replacement from each of the subsets, such that
there is an equal number of each category. ROS is distin-
guished from RUS in that it produces a larger sample set that
inevitably contains duplicated high stage values.

3.1.3 Synthetic minority oversampling technique for
regression

SMOTER is a variation of the SMOTE classification resam-
pling technique introduced by Chawla et al. (2002) that by-

https://doi.org/10.5194/hess-25-2543-2021 Hydrol. Earth Syst. Sci., 25, 2543–2566, 2021



2550 E. Snieder et al.: Resampling and ensemble techniques

passes excessive duplication of samples by generating syn-
thetic samples, which, unlike duplication, creates diversity
within the ensembles. SMOTE is widely considered an im-
provement over simple ROS as the increased diversity helps
prevent overfitting (Mahamud et al., 2016). For a given sam-
ple, SMOTE generates synthetic samples by randomly se-
lecting one of k nearest points, determined using k-nearest
neighbours (KNN), and sampling a value at a linear dis-
tance between the two neighbouring points. The original
SMOTE algorithm was developed for classification tasks;
Torgo et al. (2013) developed the SMOTER variation, which
is an adaptation of SMOTE for regression. SMOTER uses a
fixed threshold to distinguish between “rare” and “normal”
points. In addition to oversampling synthetic data, SMOTER
also randomly undersamples normal values to achieve the
desired ratio between rare and normal samples. The use of
SMOTE in the development of models that predict river stage
has only been attempted recently. Atieh et al. (2017) use
two methods for generalisation: dropout and SMOTER; these
were applied to ANN models that predicted the flow dura-
tion curves for ungauged basins. They found that SMOTER
reduced the number of outlier predictions, whereas both ap-
proaches resulted in the improved performance of the ANN
models. Wu et al. (2020) used SMOTE resampling in combi-
nation with AdaBoosted sparse Bayesian models. The com-
bination of these methods resulted in improved model accu-
racy compared to previous studies using the same dataset.
Razali et al. (2020) used SMOTE with various Bayesian net-
work and machine-learning techniques, including decision
trees, KNN, and SVM. Each technique is applied to an im-
balanced classified flood dataset (flood flow and non-flood
flow categories); the SMOTE decision tree model achieved
the highest classification accuracy. SMOTE decision trees
have also been applied for estimating the pollutant removal
efficiency of bioretention cells. Wang et al. (2019a) found
that decision trees developed with SMOTE had the high-
est accuracy for predicting pollutant removal rates; the au-
thors attribute the success of SMOTE to its ability to pre-
vent the majority class from dominating the fitting process.
Sufi Karimi et al. (2019) employ SMOTER resampling for
stormwater flow prediction models. Their motivation for re-
sampling is flow dataset imbalance and data sparsity. Sev-
eral configurations are considered with varying degrees of
oversampled synthetic and undersampled data. The findings
of the study indicate that increasing the oversampling rate
tends to improve model performance compared to the non-
resampled model, while increasing the undersampling rate
produces a marginal improvement. Collectively, these appli-
cations of SMOTE affirm its suitability for mitigating the im-
balance problem in the flood-forecasting models featured in
this research.

SMOTER is adapted in this research following the method
described by Torgo et al. (2013). One change in this adapta-
tion is that rare cases are determined using the θHS value, in-
stead of a relevancy function. Similarly, only high values are

considered “rare”, instead of considering both low and high
values to be rare, as in the original algorithm. Oversampling
and undersampling are performed at rates of 400 % and 0 %,
respectively, so as to obtain an equivalent number of normal
and rare cases.

3.2 Ensemble-based techniques

Ensembles are collections of models (called individual learn-
ers), each with variations to the individual learner model type
or to the training procedure (Alobaidi et al., 2019). It is well
established that ensemble-based methods improve model sta-
bility and generalisability (Alobaidi et al., 2019; Brown et al.,
2005). Recent advances in ensemble learning have empha-
sised the importance of diversity in learning (Alobaidi et al.,
2019). Diversity can be generated both implicitly and ex-
plicitly through a variety of methods, some of which in-
clude varying the initial set of model parameters, varying the
model topology, varying the training algorithm, and varying
the training data (Sharkey, 1996; Brown et al., 2005). The
largest source of diversity in the ensembles under study is
attributable to varying the training data, which occurs both
in the various resampling methods described above and, in
some cases, the ensemble algorithms. Only homogeneous en-
sembles are used in this work; thus, no diversity is obtained
by varying the model topology or training algorithm (Zhang
et al., 2018; Alobaidi et al., 2019). Ensemble predictions
are combined to form a single discrete prediction. Ensem-
bles that are combined to produce discrete predictions have
been proven to outperform single models by reducing model
bias and variance, thus improving overall model generalis-
ability (Brown et al., 2005; Sharkey, 1996; Shu and Burn,
2004; Alobaidi et al., 2019). This has contributed to their
widespread application in hydrological modelling (Abrahart
et al., 2012). In some cases, ensembles are not combined, and
the collections of predictions are used to estimate the uncer-
tainty associated with the diversity between ensemble mem-
bers (Tiwari and Chatterjee, 2010; Abrahart et al., 2012).
While this approach has obvious advantages, it is not pos-
sible for all types of ensembles, such as the boosting meth-
ods, which are also used in this research. Thus, this research
combines ensembles to aid comparison across the different
resampling and ensemble methods used.

There are many distinct methods for creating ensemble
methods. The purpose of this paper is not to review all en-
semble algorithms, but rather to compare three ensemble
methods that commonly appear in the literature: bagging,
adaptive boosting, and gradient boosting. A fourth method,
randomised weights and biases, which does not qualify as
an ensemble technique due to the absence of repeated resam-
pling, is also included in the ensemble comparison because of
its widespread use. While several studies have provided com-
parisons of ensemble methods, none of these studies has ex-
plicitly studied their effects on high stage prediction or their
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combination with resampling strategies, which is common in
applications outside of flow forecasting.

Methods that aim to improve generalisability have shown
promise in achieving improved prediction on high stage,
which may be scarcely represented in training data. How-
ever, to the knowledge of the authors, no research has ex-
plicitly evaluated the efficacy of ensemble-based methods
for improving high stage accuracy. Applications of ensem-
ble methods for improving performance of imbalanced target
variables have been thoroughly studied in the classification
literature. Several classification studies have demonstrated
how ensemble techniques can improve prediction accuracy
for imbalanced classes (Galar et al., 2012; López et al., 2013;
Díez-Pastor et al., 2015b, a; Błaszczyński and Stefanowski,
2015). Such methods are increasingly being adapted for re-
gression problems, which is typically achieved by projecting
continuous data into a classification dataset (Moniz et al.,
2017b, a; Solomatine and Shrestha, 2004). Pseudocode for
each of the ensemble algorithms used in this research is pro-
vided in Appendix B.

3.2.1 Randomised weights and biases

While not technically a form of ensemble learning, repeat-
edly randomising the weights and biases of ANNs is one
of the simplest and most common methods for achieving
diversity among a collection of models; thus, it acts as a
good comparison point for the proceeding ensemble meth-
ods (Brown et al., 2005). In this method, members are only
distinguished by the randomisation of the initial parameter
values (i.e. the initial weights and biases for ANNs in this
research) used for training. For this method, an ensemble of
ANNs is trained, each member having a different randomised
set of initial weights and biases. Thus, when trained, each en-
semble member may converge to different final weight and
bias values. Ensemble members are combined through aver-
aging. This technique is often used, largely to alleviate vari-
ability in training outcomes and uncertainty associated with
the initial weight and bias parameterisation (Shu and Burn,
2004; de Vos and Rientjes, 2005; Fleming et al., 2015; Barze-
gar et al., 2019). Despite its simplicity, this method has been
demonstrated to produce considerable improvements in per-
formance when compared to a single ANN model, even out-
performing more complex ensemble methods (Shu and Burn,
2004). The weights and biases of each ANN are initialised
using the default initialisation function in MATLAB, and an
ensemble size of 20 is used.

3.2.2 Bagging

Bagging is a widely used ensemble method first introduced
in Breiman (1996). Bagging employs the bootstrap resam-
pling method, which consists of sampling with replacement,
to generate subsets of data on which to train ensemble mem-
bers. The ensemble members are combined through simple

averaging to form discrete predictions. Bagging is a proven
ensemble method in flood prediction studies and has been
widely applied and refined for both spatial and temporal pre-
diction since its introduction by Breiman (1996). Chapi et al.
(2017) use bagging with logistic model trees (LMTs) as the
individual learners to predict spatial flood susceptibility. The
bagging ensemble is found to outperform standalone LMTs
in addition to logistic regression and Bayesian logistic re-
gression. For a similar flood susceptibility prediction appli-
cation, Chen et al. (2019) use Bagging with Reduced Error
Pruning Trees (REPTree) as the base learners. The bagged
models are compared to random subspace ensembles; both
ensemble methods perform better than the standalone REP-
Tree models, with the random subspace model slightly out-
performing the bagged ensemble. Anctil and Lauzon (2004)
compared five generalisation techniques in the development
of ANNs for flow forecasting. They combined bagging,
boosting, and stacking with stop training and Bayesian regu-
larisation, making a total of nine model configurations. They
found that stacking, bagging, and boosting all resulted in
improved model performance, ultimately recommending the
use of the last two in conjunction with either stop training or
Bayesian regularisation. Ouarda and Shu (2009) compared
stacking and bagging ANN models against parametric re-
gression for estimating low-flow quantiles for the summer
and winter seasons and found higher performance in ANN
models (single and ensemble) compared to traditional re-
gression models (Ouarda and Shu, 2009). Cannon and Whit-
field (2002) applied bagging to MLP-ANN models for pre-
dicting flow and found that bagging helped create the best-
performing ensemble ANN. Shu and Burn (2004) evaluated
six approaches for creating ANN ensembles for regional
flood frequency flood analysis, including bagging combined
with either simple averaging or stacking; bagging resulted in
higher performance compared to the basic ensemble method.
In a later study, Shu and Ouarda (2007) used bagging and
simple averaging to create ANN ensembles for estimating re-
gional flood quantiles at ungauged sites. Implementing bag-
ging is uncomplicated: a description of the algorithm is de-
scribed in its original appearance (Breiman, 1996). This re-
search uses a bagging ensemble of 20 members.

3.2.3 Adaptive boosting for regression

The AdaBoost algorithm was originally developed by Freund
and Schapire (1996) for classification problems. The algo-
rithm has undergone widespread adaptation and its popular-
ity has led to the development of many variations which typi-
cally introduce improvements in performance and efficiency
and are expanded for regression problems. This study uses
the AdaBoost.RT variation (Solomatine and Shrestha, 2004;
Shrestha and Solomatine, 2006). Broadly put, the AdaBoost
algorithm begins by training an initial model. The follow-
ing model in the ensemble is trained using a resampled or
reweighted training set, based on the residual error of the
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previous model. This process is typically repeated until the
desired ensemble size is achieved or a stopping criterion is
met. Predictions are obtained by a weighted combination of
the ensemble members, where model weights are a function
of their overall error.

Similarly to bagging, there are many examples of Ad-
aBoost applications for hydrological prediction. Solomatine
and Shrestha (2004) compared various forms of AdaBoost
against bagging in models predicting river flows and found
AdaBoost.RT to outperform bagging. In a later study, the
same authors compared the performance of AdaBoosted M5
tree models against ANN models for various applications,
including predicting river flows in a catchment; they found
higher performance in models that used the AdaBoost.RT al-
gorithm compared to single ANNs (Shrestha and Soloma-
tine, 2006). Liu et al. (2014) used AdaBoost.RT for cali-
brating process-based rainfall-runoff models and found im-
proved performance over the single model predictions. Wu
et al. (2020) compared boosted ensembles against bagged en-
sembles for predicting hourly streamflow and found that the
combination of AdaBoost (using resampling) and Bayesian
model averaging gave the highest performance.

The variant of AdaBoost in this research follows the al-
gorithm AdaBoost.RT proposed by Solomatine and Shrestha
(2004) and Shrestha and Solomatine (2006). This algorithm
has three hyperparameters. The relative error threshold pa-
rameter is selected as the 80th percentile of the residuals
of the individual learner, and 20 ensemble members are
trained. AdaBoost can be performed using either resampling
or reweighting (Shrestha and Solomatine, 2006); resampling
is used in this research as it has been found to typically out-
perform reweighting (Seiffert et al., 2008). Recently, sev-
eral studies have independently proposed a modification to
the original AdaBoost.RT algorithm by adaptively calculat-
ing the relative error threshold value for each new ensemble
member (Wang et al., 2019b; Li et al., 2020). This modifica-
tion to the algorithm was generally found to be detrimental to
the performance of the models in the present research; thus,
the static error threshold described in the original algorithm
description was used (Solomatine and Shrestha, 2004).

3.2.4 Least-squares boosting

LSBoost is a variant of gradient boosting, which is an algo-
rithm that involves training an initial model, followed by a
sequence of models that are each trained to predict the resid-
uals of the previous model in the sequence. This is in contrast
to the AdaBoost method, which uses the model residuals to
inform a weighted sampling scheme for subsequent models.
The prediction at a given training iteration is calculated by
the weighted summation of the already trained model(s) from
the previous iterations. For LSBoost weighting is determined
by a least-squares loss function; other variants of gradient
boosting use a different loss function (Friedman, 2000).

Gradient-boosting algorithms have previously been used
to improve efficiency and accuracy for hydrological forecast-
ing applications. Ni et al. (2020) use the gradient-boosting
variant XGBoost, which uses decision trees (DTs) as the
individual learners in combination with a Gaussian mix-
ture model (GMM) for streamflow forecasting. The GMM
is used to cluster streamflow data, and an XGBoost ensem-
ble is fitted to each cluster. Clustering streamflow data into
distinct subsets for training is sometimes used as an al-
ternative to resampling; their purpose is similar to that of
resampling, which is to change the training sample distri-
bution (Wang et al., 2006). The combination of XGBoost
and GMM is found to outperform standalone SVM mod-
els. Erdal and Karakurt (2013) developed gradient-boosted
regression trees and ANNs for predicting daily streamflow
and found gradient-boosted ANNs to have higher perfor-
mance than the regression tree counterparts. Worland et al.
(2018) use gradient-boosted regression trees to predict an-
nual minimum 7 d streamflow at 224 unregulated sites; per-
formance is found to be competitive with several other
types of data-driven models. Zhang et al. (2019) use the
Online XGBoost gradient-boosting algorithm for regression
tree models to simulate streamflow and found that it out-
performed many other data-driven and lumped hydrological
models. Papacharalampous et al. (2019) use gradient boost-
ing with regression trees and linear models, which are com-
pared against several other model types for physically based
hydrological model quantile regression post-processing. Nei-
ther of the gradient-boosting models outperforms the other
regression models, and a uniformly weighted ensemble of
all other model types typically outperforms any individual
model type. These examples of gradient boosting affirm its
capability for improving performance compared to the single
model comparison as well as other machine-learning models.
However, none of these studies uses gradient boosting with
ANNs as the individual learner. Moreover, these studies do
not examine the effects of gradient boosting on model be-
haviour within the context of the imbalance problem. There-
fore, we use LSBoost to study its efficacy for improving high
stage performance.

The implementation of LSBoost in this research is un-
changed from the original algorithm (Friedman, 2000). The
algorithm has two hyperparameters: the learning rate which
scales the contribution of each new model and the number
of boosts. A learning rate of 1 is used, and the number of an
ensemble size of 20 is used.

3.3 Hybrid methods

The resampling and training strategies reviewed above can
be combined to further improve model performance on im-
balanced data; numerous algorithms have been proposed in
the literature that embed resampling schemes in ensemble
learning methods. Galar et al. (2012) describe a taxonomy
and present a comprehensive comparison of such algorithms
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for classification problems. Many of these algorithms effec-
tively present minor improvements or refinements to popu-
lar approaches. Alternatively to implementing every single
unique algorithm for training ensembles, the present research
suggests employing a systematic approach to combine pre-
processing resampling and ensemble training algorithms in a
modular fashion; such combinations are referred to as “hy-
brid methods”. Hybrid methods hope to achieve the bene-
fits of both standalone methods: improved performance on a
high stage while maintaining good generalisability. Thus, in
this research, every permutation of resampling (RUS, ROS,
and SMOTER) and ensemble methods (RWB, bagging, Ad-
aBoost, and LSBoost) is evaluated, resulting in 12 unique
hybrid methods. For resampling combinations with RWB en-
sembles, the resampling is performed once; thus, diversity is
only obtained from the initialisation of the ANN. This com-
bination is equivalent to evaluating each resampling tech-
nique individually to provide a basis for comparison with
resampling repeated for each ensemble member, as used in
the other ensemble-based configurations. For combinations
of resampling with bagging, AdaBoost, and LSBoost, the re-
sampling procedure is performed for training each new en-
semble member. One non-intuitive hybrid case is the com-
bination of SMOTER with AdaBoost, because the synthet-
ically generated samples do not have predetermined error
weights. A previous study has recommended assigning the
initial weight value to synthetic samples (Díez-Pastor et al.,
2015a). However, this research proposes that synthetic sam-
ple weights are calculated in the same manner as the syn-
thetic samples (e.g. based on the randomly interpolated point
between a sample and a random neighbouring point). Thus,
if two samples with relatively high weights are used to gen-
erate a synthetic sample, the new sample will have a similar
weight.

The hyperparameters for each of the resampling and en-
semble methods employed in this study are listed in Ta-
ble 4. Every ensemble uses the ANN described in Sect. 2.2
as the individual learner. The hyperparameters of the individ-
ual learner are kept the same throughout all of the ensemble
methods to allow for a fair comparison (Shu and Burn, 2004)
(excluding of course the number of epochs, which is deter-
mined through validation stop training).

3.4 Model implementation and evaluation

All aspects of this work are implemented in MATLAB
2020a. The Neural Network Toolbox was used to train the
baseline ANN models. The resampling and ensemble algo-
rithms used in this research were programmed by the au-
thors and are available upon request; the pseudocode for each
method is available in Appendix B.

3.4.1 Performance assessment

The challenges of training models on imbalanced datasets
outlined in Sect. 1 and evaluating model performance are
one and the same: many traditional performance metrics (e.g.
MSE, CE) are biased towards the most frequent stage values,
and the metrics are insensitive to changes in high stage ac-
curacy. In fact, despite their widespread use, these metrics
are criticised in the literature. For example, ANN models for
sunspot prediction produced a lower RMSE (equivalent to
a CE when used on datasets with the same observed mean)
compared to conventional models but were found to have no
predictive value (Abrahart et al., 2007). Similarly, CE val-
ues may be misleadingly favourable if there is significant ob-
served seasonality (Ehret and Zehe, 2011). CE is also asso-
ciated with the underestimation of peak flows, volume bal-
ance errors, and undersized variability (Gupta et al., 2009;
Ehret and Zehe, 2011). Zhan et al. (2019) suggest that CE
is sensitive to peak flows due to the square term. This asser-
tion is correct while comparing two samples; however, when
datasets are imbalanced, the errors of a typical stage over-
whelm those of a high stage. Ehret and Zehe (2011) evaluate
the relationship between phase error and RMSE using trian-
gular hydrographs; their study shows how RMSE is highly
sensitive to minor phase errors; however, when a hydrograph
has a phase and amplitude error, RMSE is much more sensi-
tive to overpredictions compared to underpredictions.

The CE, commonly known as the Nash–Sutcliffe effi-
ciency, is given by the following formula:

CE= 1−
∑
(q(t)− q̂(t))2∑
(q(t)− q̄)2

, (1)

where q is the observed stage, q̂ is the predicted stage, and q̄
is the mean observed stage.

The persistence index (PI) is a measure similar to CE, but
instead of normalising the sum of squared error of a model
based on the observed variance, it is normalised based on
the sum of squared error between the target variable and it-
self, lagged by the lead time of the forecast model (referred
to as the naive model). Thus, the CE and PI range from an
optimum value of 1 to −∞, with values of 0 correspond-
ing to models that are indistinguishable from the observed
mean and naive models, respectively. Since both models use
antecedent input variables with lag times equal to the fore-
cast length, PI is a useful indicator of over-reliance on this
input variable, which has been associated with peak stage
timing error (de Vos and Rientjes, 2009). Furthermore, the
PI measure overcomes some of the weaknesses of CEs, such
as a misleadingly high value for seasonal watersheds. More-
over, PI is effective in identifying when models become over-
reliant on autoregressive inputs, as the model predictions will
resemble those of the naive model. PI is given by the follow-
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Table 4. Summary of ensemble methods and hyperparameters.

Type Complete name Short form Hyperparameters

Resampling Random undersampling RUS Rare case threshold (θHS) = 80th percentile stage

Random oversampling ROS Rare case threshold (θHS) = 80th percentile stage

Synthetic minority oversampling tech-
nique

SMOTER Rare case threshold (θHS) = 80th percentile stage

Oversampling percentage = 400 %
Undersampling percentage = 0 %
K-nearest neighbours = 10

Ensemble Randomised initial weights and biases RWB –

Bootstrap aggregating Bagging Combination weighting: uniform

Adaptive boosting (for regression using
error thresholding)

AdaBoost Error threshold = 80th percentile of base model error
Resampling/reweighting = resampling

Least-squares boosting LSBoost Learning rate = 1
Combination weight = least squares

ing formula:

PI= 1−
∑
(q(t)− q̂(t))2∑

(q(t)− q(t −L))2
, (2)

where L is the lead time of the forecast.
In order to quantify changes in model performance on high

stage, both the CE and PI measures are calculated for typical
stage (TS) and high stage (HS) (Crochemore et al., 2015).
The resampling methods are expected to improve the high
stage CE at the expense of CE for typical stage, while ensem-
ble methods are expected to produce an outright improve-
ment in model generalisation, reflected by reduced loss in
performance between the calibration and test data partitions.
Thus, the objective of this research is to find model con-
figurations with improved performance on high stage while
maintaining strong performance overall. TS and HS perfor-
mance metrics are calculated based only on the respective
observed stage. For example, the CE for high stage is calcu-
lated by

CEHS = 1−
∑
(qHS(t)− q̂HS(t))

2∑
(qHS(t)− q̄HS)2

, (3)

where qHS is given by

qHS = q | q ≥ θHS. (4)

The performances for CETS, PIHS, and PITS are calculated
in the same manner, substituting qTS(t) for qHS(t) in Eq. (4)
for HS calculations and using Eq. (2) in place of Eq. (1) for
PI calculations.

3.4.2 K-fold cross-validation

The entire available dataset is used for both training and
testing by the use of KFCV, a widely used cross-validation

method (Hastie et al., 2009; Bennett et al., 2013; Solomatine
and Ostfeld, 2008; Snieder et al., 2020). Ten folds are used
in total: eight folds for calibration and two for testing. Of the
eight calibration folds, six are used for training, while two
are used for early stopping. When performance is reported
as a single value, it refers to the mean model performance
of the respective partition across K-folds. It is important to
distinguish between the application of KFCV for evaluation
(as used in this research) as opposed to using KFCV for pro-
ducing ensembles, in which an ensemble of models is trained
based on a KFCV data-partitioning scheme (Duncan, 2014).

4 Results

This section provides a comparison of the performance of
each of the methods described throughout Sect. 3 applied to
the Bow and Don River watersheds, which are described in
Sect. 2.1. Changes to model performance are typically dis-
cussed relative to the individual learner (see Sect. 2.2) un-
less explicit comparisons are specified. First, the results of
a grid-search analysis of ensemble size are provided. Next,
a general overview and comparison of the results are pre-
sented, followed by detailed comparison of the resampling
and ensemble methods. Finally, the effects that varying the
HS threshold and ensemble size have on resampling and
high stage performance are evaluated for the bagging and
SMOTER-Bagging models.

Figure 6 illustrates the change in test performance as the
ensemble size increases from 2 to 100 for each river. This
grid search is performed only for the base ensemble methods
(RWB, bagging, AdaBoost, and LSBoost) without any re-
sampling. The Bow River results indicate that AdaBoost and
LSBoost tend to favour a small ensemble size (2–15 mem-
bers), whereas the generalisation of RWB and bagging im-
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Figure 6. Test MSE across ensemble size for RWB (red), bag-
ging (blue), AdaBoost (yellow), and LSBoost (green) for the
Don River (a) and Bow River (b).

proves with a larger size (> 20 members). The performance
of LSBoost rapidly deteriorates as the ensemble size grows,
likely as the effects of overfitting become more pronounced.
Similar results are obtained for the Don, except that RWB,
bagging, and AdaBoost all improve with larger ensemble
size, while LSBoost performs worse than all other ensem-
bles, even for small ensemble sizes. Similar to the Bow, a
larger ensemble size (> 20 members) produces favourable
MSE.

Figures 7 and 8 show the CE and PI box-whisker plots for
the Bow and Don rivers, respectively. These figures show the
performance of the test dataset, across the K-folds, for each
resampling, ensemble, and hybrid technique as well as the in-
dividual learner. The performance metrics are calculated for
the entire dataset, the HS values, and the TS values. Mod-
els with a larger range have more variable performance when
evaluated across different subsets of the available data.

The average performances for each resampling, ensemble,
and hybrid method for the Bow and Don River models are
shown in Tables 5 and 6, respectively, which list the CE and
PI for the entire dataset as well as the TS and HS datasets.
The ensemble results for each KFCV fold were combined us-
ing a simple arithmetic average. The results have been sep-
arated into different categories: each section starts with the
ensemble technique (either RWB, bagging, AdaBoost, or LS-
Boost), followed by the three hybrid variations (RUS-, ROS-,
or SMOTER-). The calibration (training and validation) per-
formance is indicated in parentheses and italics, followed by
the test performance. Comparing both the calibration and test
performance is useful since it provides a sense of overfit-
ting and hence generalisation. For example, an improvement
in calibration performance and decrease in test performance
suggest that the model has been overfitted. In contrast, im-
provements to both partitions indicate favourable model gen-
eralisation. The best performing model (based on testing per-
formance) has been highlighted in bold text for each perfor-
mance metric, CE and PI, for both watersheds.

Based on the CE values in Figs. 7–8 and Tables 5–6, the
majority of the Bow and Don River models achieve “accept-

Figure 7. Overall (blue), typical stage (red), and high stage (yellow)
CE (a) and PI (b) for the Bow River models.

able” prediction accuracy (as defined by Mosavi et al., 2018).
Values of CETS and CEHS are both lower than the CE, which
is to be expected as the stage variance of each subset is lower
than that of the set of all stage values. For the Bow River
models, the CE and CETS values are consistently higher than
the CEHS; this is attributable to the high seasonality of the
watershed producing a misleadingly high value for CE due to
the high variance of stage throughout the year, as discussed
in Sect. 3.4.1. The CEHS values also have higher variability
compared to the overall CE and CETS, as shown in Fig. 7a.
In contrast, for the Don River models, the difference in CE,
CETS, and CEHS is less pronounced, whereas the CE (for
the entire dataset) is typically higher, as expected, than both
the CETS and CEHS; the difference between CETS and CEHS
is low, as demonstrated in the mean and range of the box-
whisker plots in Fig. 8a. Unlike the Bow River, the Don River
does not exhibit notable seasonality, resulting in a smaller
difference between the HS and TS.

Values of PI are typically lower than for CE for both wa-
tersheds. The Bow River models obtain PI values centred
around 0 (see Fig. 7b), indicating that only some of the model
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Table 5. Mean CE and PI scores for all, typical, and high stage for the Bow River ensembles; the highest scores are shown in bold, and the
calibration scores are italicised and enclosed by parentheses.

Label CE CETS CEHS PI PITS PIHS

Base model (0.967) 0.954 (0.954) 0.944 (0.829) 0.617 (0.182)−0.166 (0.111)−0.0593 (0.227)−0.175

RWB (0.974) 0.962 (0.96) 0.951 (0.865) 0.718 (0.331) 0.0731 (0.229) 0.0856 (0.392) 0.128
RUS-RWB (0.972) 0.956 (0.954) 0.947 (0.863) 0.68 (0.286)−0.0505 (0.116)−0.013 (0.384) 0.015
ROS-RWB (0.973) 0.957 (0.955) 0.947 (0.87) 0.681 (0.312)−0.0266 (0.125) 0.00468 (0.418) 0.0454
SMOTER-RWB (0.974) 0.963 (0.957) 0.948 (0.871) 0.72 (0.329) 0.0524 (0.176) 0.0168 (0.417) 0.139

Bagging (0.973) 0.961 (0.96) 0.952 (0.86) 0.709 (0.32) 0.0503 (0.234) 0.0886 (0.372) 0.0887
RUS-Bagging (0.972) 0.961 (0.955) 0.945 (0.867) 0.715 (0.298) 0.00346 (0.119)−0.0403 (0.399) 0.116
ROS-Bagging (0.973) 0.959 (0.954) 0.943 (0.873) 0.696 (0.312)−0.0374 (0.111)−0.0851 (0.425) 0.0896
SMOTER-Bagging (0.974) 0.962 (0.957) 0.948 (0.873) 0.719 (0.333) 0.0511 (0.17) 0.018 (0.427) 0.144

AdaBoost (0.974) 0.963 (0.96) 0.95 (0.865) 0.719 (0.327) 0.0465 (0.22) 0.0488 (0.389) 0.112
RUS-AdaBoost (0.972) 0.959 (0.954) 0.942 (0.865) 0.693 (0.288)−0.0642 (0.107)−0.105 (0.39) 0.0509
ROS-AdaBoost (0.972) 0.956 (0.951) 0.942 (0.872) 0.673 (0.291)−0.114 (0.052)−0.109 (0.424)−0.0307
SMOTER-AdaBoost (0.974) 0.962 (0.957) 0.947 (0.872) 0.714 (0.331) 0.0259 (0.166)−0.00642 (0.425) 0.121

LSBoost (0.974) 0.948 (0.958) 0.907 (0.869) 0.666 (0.328)−0.504 (0.189)−0.786 (0.403)−0.104
RUS-LSBoost (0.97) 0.904 (0.952) 0.944 (0.854) 0.364 (0.246)−0.718 (0.0643)−0.0609 (0.35)−0.824
ROS-LSBoost (0.973) 0.929 (0.952) 0.944 (0.875) 0.517 (0.304)−0.425 (0.0638)−0.0757 (0.435)−0.431
SMOTER-LSBoost (0.973) 0.958 (0.954) 0.946 (0.868) 0.684 (0.3)−0.0522 (0.117)−0.0255 (0.401) 0.00239

Table 6. Mean CE and PI scores for all, typical, and high stage for the Don River ensembles; the highest scores are shown in bold, and the
calibration scores are italicised and enclosed by parentheses.

Label CE CETS CEHS PI PITS PIHS

Base model (0.86) 0.781 (0.782) 0.664 (0.677) 0.511 (0.716) 0.592 (0.0197)−0.213 (0.74) 0.61

RWB (0.873) 0.806 (0.814) 0.755 (0.705) 0.572 (0.744) 0.641 (0.165) 0.0944 (0.763) 0.654
RUS-RWB (0.853) 0.792 (0.638) 0.588 (0.685) 0.555 (0.704) 0.615 (−0.585) −0.63 (0.746) 0.645
ROS-RWB (0.864) 0.799 (0.629) 0.488 (0.715) 0.584 (0.726) 0.624 (−0.632) −0.991 (0.771) 0.665
SMOTER-RWB (0.866) 0.795 (0.642) 0.552 (0.715) 0.57 (0.729) 0.618 (−0.573) −0.749 (0.771) 0.656

Bagging (0.869) 0.808 (0.811) 0.757 (0.696) 0.581 (0.736) 0.65 (0.154) 0.0875 (0.755) 0.663
RUS-Bagging (0.864) 0.805 (0.676) 0.609 (0.706) 0.585 (0.726) 0.638 (−0.433) −0.502 (0.764) 0.668
ROS-Bagging (0.858) 0.795 (0.553) 0.271 (0.716) 0.584 (0.712) 0.618 (−1.14) −1.41 (0.771) 0.665
SMOTER-Bagging (0.865) 0.798 (0.604) 0.526 (0.718) 0.581 (0.729) 0.623 (−0.705) −0.888 (0.774) 0.662

AdaBoost (0.87) 0.803 (0.807) 0.744 (0.698) 0.567 (0.737) 0.637 (0.136) 0.0393 (0.758) 0.651
RUS-AdaBoost (0.857) 0.787 (0.658) 0.53 (0.694) 0.553 (0.712) 0.613 (−0.51) −0.888 (0.754) 0.646
ROS-AdaBoost (0.864) 0.793 (0.604) 0.516 (0.718) 0.575 (0.726) 0.616 (−0.725) −1.07 (0.773) 0.658
SMOTER-AdaBoost (0.867) 0.801 (0.667) 0.578 (0.715) 0.584 (0.732) 0.629 (−0.46) −0.743 (0.771) 0.665

LSBoost (0.869) 0.746 (0.813) 0.741 (0.696) 0.446 (0.736) 0.555 (0.169) 0.0719 (0.755) 0.567
RUS-LSBoost (0.835) 0.715 (0.744) 0.685 (0.625) 0.419 (0.67) 0.513 (−0.128) −0.207 (0.697) 0.548
ROS-LSBoost (0.871) 0.759 (0.761) 0.716 (0.708) 0.472 (0.738) 0.561 (−0.0738) −0.0931 (0.766) 0.579
SMOTER-LSBoost (0.871) 0.787 (0.775) 0.695 (0.707) 0.537 (0.74) 0.599 (0.00723)−0.0914 (0.765) 0.62

configurations perform with greater accuracy than the naive
model, meaning that a timing error exists. The box-whisker
plots of each ensemble method do not show a clear trend
(with respect to the mean value or range) when comparing
the PI, PITS, and PIHS: the mean and range are similar for all
variants tested.

The Don River models have positive PI values of approxi-
mately 0.6, indicating a lower reliance on autoregressive in-
put variables when compared to the Bow River. In contrast to
the Bow River, there is a notable difference between the PI
metrics: the PITS has a lower mean value and higher variance
(see Fig. 8b) than the PI (for the entire dataset) and the PIHS.
These lower PITS are due to the low variability (steadiness)
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Figure 8. Overall (blue), typical stage (red), and high stage (yellow)
CE (a) and PI (b) for the Don River models.

Figure 9. Change in (absolute) performance of CE (a), CETS (b),
CEHS (c), PI (d), PITS (e), and PIHS (f) produced by combinations
of resampling (listed along the x axis) and ensemble (listed along
the y axis) methods for the Bow River models.

Figure 10. Change in (absolute) performance of CE (a), CETS (b),
CEHS (c), PI (d), PITS (e), and PIHS (f) produced by combinations
of resampling (listed along the x axis) and ensemble (listed along
the y axis) methods for the Don River models.

of the Don River TFs (see Fig. 4), and thus the sum of the
squared error between the naive model and observed stage is
also low, reducing the PI value. The low value of PITS is at-
tributed to the quality of the naive model, not the inaccuracy
of the ANN counterpart. Note that PIHS are typically slightly
higher than the overall PI: during high stage, there is greater
variability; thus, the naive model is less accurate, resulting in
a higher PI score.

4.1 Comparison of resampling and ensemble methods

This section provides a detailed comparison of performance
across the different resampling and ensemble methods. As
expected, all three resampling methods (RUS, ROS, and
SMOTER) typically increase HS performance, often at the
expense of TS performance. Based on results shown in Ta-
ble 5, the SMOTER variations provide the highest perfor-
mance for HS for the Bow River. SMOTER-RWB CEHS
is 0.72, an increase from 0.617 of the individual learner,
whereas the SMOTER-Bagging PIHS is 0.144, compared to
−0.175 for the individual learner. These indicators suggest
that the HS prediction accuracy has improved slightly us-
ing these SMOTER variations. The results shown in Table 6
for the Don River indicate that the best improvements for
HS prediction accuracy are provided by the RUS-Bagging
method: the CEHS is 0.585 (an increase from 0.511 of the
individual learner), and the PIHS is 0.668 (an increase from
0.61 of the individual learner). While both these metrics
show an improvement in HS prediction accuracy for the Don
River, the improvements are relatively small compared to the
performance improvement for the Bow River. ROS often ex-
hibits poorer performance than SMOTER and RUS. Previ-
ous research has noted the tendency for ROS-based models
to overfit, due to the high number of duplicate samples (Yap
et al., 2014). RUS, despite using considerably fewer training
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data for each individual learner, is not as prone to overfitting
as ROS. The RUS-Bagging models consistently outperform
the RUS-RWB models; this may be due to the repeated re-
sampling; thus, RUS-Bagging uses many more of the origi-
nal training samples, while RUS-RWB only uses 20 % of the
original data.

Figures 9 and 10 show absolute changes in CE and PI rel-
ative to the individual learner for the Bow and Don rivers,
respectively, for the entire dataset, the TS, and the HS. Per-
formance is colourised in a 2D matrix to facilitate com-
parisons in performance between each resampling method
across ensemble types and vice versa. From these figures,
it is apparent that SMOTER generally produces the largest
improvements in HS performance, for both CE and PI and
for both watersheds. The SMOTER methods are also gen-
erally the least detrimental to TS performance for both wa-
tersheds, as compared to ROS and RUS. Notably, SMOTER
is the only resampling method whose performance does not
decrease when used in combination with LSBoost. However,
the change in performance due to SMOTER is marginal com-
pared to the models without resampling. For the Bow River,
the largest improvements between the best models with no
resampling and the best models with resampling for CEHS
and PIHS are 0.001 and 0.016, respectively. For the Don
River, the same improvements are 0.004 and 0.005, respec-
tively. The remaining resampling methods (RUS and ROS)
also generally tend to improve HS performance across the
ensemble techniques; however, this improvement is not con-
sistent, as is the case with SMOTER, and the decrease in TS
performance is also higher. Thus, while SMOTER provides
consistent improvements over the non-resampling methods
for CE and PI (entire, TS, and HS), RUS and ROS only pro-
vide minor improvements to HS performance.

When looking at the resampling methods, the RWB en-
sembles exhibit competitive performance compared to the
other ensemble methods, despite their lower diversity. These
ensembles represent a considerable improvement over the in-
dividual learner and often achieve higher performance com-
pared to the other, more complex ensemble methods, as
shown in Tables 5 and 6. This suggests that using RWB is
useful for improving CE and PI performance (for entire TS
and HS) as compared to the single, individual learner. For
the Bow River, the RWB ensembles improve the PI for each
case (PI, PITS and PIHS) while only improving CEHS. For
the Don River models, a notable increase in performance is
seen for both CE and PI (entire and HS datasets); however,
when combined with the resampling techniques (RUS, ROS,
and SMOTER), the TS performance metrics exhibit poorer
performance.

The bagging ensembles also perform well, typically out-
performing the RWB counterparts and following the same
trends described above. This is likely due to their repeated
resampling, which achieves greater ensemble diversity com-
pared to the RWB models, for which resampling only oc-
curs once. This result is consistent with a previous compar-

ison of bagging and boosting (Shu and Burn, 2004). Like
RWB and bagging, AdaBoost improves model performance
compared to the individual learner but is typically slightly
poorer compared to RWB and bagging and has higher vari-
ability in terms of improvement to model performance across
all model types and both watersheds. The RWB, bagging,
and Adaboost models consistently improve TS and HS per-
formance compared to the individual learner regardless of
whether they are combined with a resampling strategy.

The LSBoost models have the poorest HS performance out
of all the ensemble methods studied. This is consistent across
all resampling methods and both watersheds. In contrast, the
change in performance for CETS and PITS is less detrimental
when using LSBoost, suggesting that this method is not well-
suited to improving HS performance. The LSBoost models
are slightly overfitted despite utilising the stop training for
calibrating the ANN ensemble members. This is indicated by
the degradation in performance between the calibration and
test datasets, a change which is larger than that seen in the
other ensemble models. This is most noticeable for the RUS-
LSBoost models for both the Bow and the Don rivers, which
are more prone to overfitting compared to other models, due
to the smaller number of training samples. The CE decreases
from 0.97 to 0.902 for the Bow River and from 0.835 to 0.715
for the Don River; none of the other models that use RUS
exhibits such a gap between train and test performance.

The overfitting produced by the boosting methods is con-
sistent with previous research, which finds that boosting is
sometimes prone to overfitting on real-world datasets (Vezh-
nevets and Barinova, 2007). One reason that the improve-
ments made by the boosting methods (AdaBoost and LS-
Boost) are not more substantial may be the use of ANNs
as individual learners. ANNs typically have more degrees of
freedom compared to the decision trees that are most com-
monly used as individual learners; thus, the additional com-
plexity offered by boosting does little to improve model pre-
dictions. Additionally, the boosting methods further increase
the effective degrees of freedom of the predictions. Neverthe-
less, these methods still tend to improve performance over
that of the individual learner. Ensembles of less complex
models such as regression trees are expected to produce rela-
tively larger improvements when relative to the single model
predictions.

As discussed in Sect. 2.1, a fixed threshold is used to dis-
tinguish between high and typical stage values, which was set
to 80 % for the results presented above. Figure 11 shows the
effects of the fixed threshold increasing from the 50th to 90th
percentiles of the stage distribution. These plots show the rel-
ative effects of SMOTER-Bagging compared to simple bag-
ging; these configurations were selected for this comparison
since they both exhibited relatively good, consistent perfor-
mance. A performance ratio greater than 1 indicates that the
SMOTER-Bagging model has greater error compared to the
bagging model; 1 indicates that they have the same perfor-
mance, and, at less than 1, improved performance. Error is
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Figure 11. MSE ratio between the bagging and SMOTER-Bagging
models for the Bow River calibration (a), Bow test (c), Don River
calibration (b), and Don test (d) partitions across high stage thresh-
old values ranging from the 50th to 90th percentile stage values.

Figure 12. Test MSE ratio between the bagging and SMOTER-
Bagging models for the Bow (a) and Don (b) rivers across ensemble
size.

presented for all stage values as well as the TS and HS sub-
sets. The calibration plots illustrate an asymmetric trade-off
between HS and TS error. For a given θHS value, the error ra-
tio of the TS subset increases more than the decline in HS er-
ror. More importantly, the improvements in HS performance
obtained in calibration are considerably less pronounced in
the test dataset, despite a loss in TS performance.

Figure 12 illustrates the effects of varying the ensemble
size, i.e. number of resampling repetitions, for the SMOTER-
Bagging model relative to the simple bagging model. The
plot shows the relative improvement in HS produced by the
SMOTER resampling as the ensemble size increases, reach-
ing a steady value at an ensemble size of approximately 70
for both the Don and Bow systems. This is larger than that re-

quired for the simple bagging model to reach steady perfor-
mance, shown in Fig. 6, indicating that SMOTER requires
more resampling than regular resampling with replacement
(default in bagging) in order to reach stable performance.
Consistent with observations made from Fig. 11, an asym-
metric trade-off between typical and high stage performance
is noted, illustrated by a disproportionate increase in error
on the typical stage relative to the improvement on the high
stage.

4.2 Limitations and future work

A limitation of this study is the lack of a systematic case-
by-case hyperparameter optimisation of the models. The in-
dividual learner parameters (e.g. topology, activation func-
tion) were constant across all ensemble members. Likewise,
the ensemble hyperparameters were not optimised but simply
tuned using an ad hoc approach. A systematic approach to
hyperparameter optimisation for each model will likely yield
improved model performance. However, hyperparameter op-
timisation on such a scale would be very computationally
expensive. Similarly, the selection of the HS threshold may
affect CEHS and PIHS performance, and the sensitivity of
the model performance of this threshold should be explored.
This research featured resampling and ensemble methods for
improving prediction accuracy across an imbalanced target
dataset, i.e. the high stage. In addition to imbalanced target
data, flood-forecasting applications commonly have imbal-
anced cost; for example, underprediction is typically more
costly than overprediction. The use of cost functions, such as
asymmetric weighting applied to underpredictions and over-
predictions, for flood forecasting has been shown to reduce
underprediction of flooding Toth, 2016. Many cost-sensitive
ensemble techniques (e.g. Galar et al., 2012) have yet to
be explored in the context of flood-forecasting models and
should be the focus of future work.

5 Conclusion

This research presented the first systematic comparison of the
effects of combined resampling and ensemble techniques for
improving the accuracy of flow-forecasting models, specifi-
cally for high stage (infrequent) observations. Methods were
applied to two Canadian watersheds, the Bow River in Al-
berta and the Don River in Ontario. This research attempts to
address the widespread problem of poor performance on high
stage when using data-driven approaches such as ANNs. Im-
proving performance on high stage is essential for model ap-
plications such as early flood warning systems. Three resam-
pling and four ensemble techniques are implemented as part
of ANN flow-forecasting models for both watersheds. These
methods are assessed independently and systematically com-
bined in hybrid approaches so as to assess their efficacy for
improving high stage performance. A major contribution of
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this paper is the comprehensive evaluation of these hybrid
methods, most of which are the first instances in the water
resource field. While methodologies for these combination
methods are available in the existing machine-learning liter-
ature, our proposed implementation of SMOTER-AdaBoost
is a novel improvement. Results demonstrate that resampling
methods, when embedded in ensemble algorithms, gener-
ally only produce a small improvement in high stage perfor-
mance, based on CE and PI; the SMOTER variation provided
the most consistent improvements. An asymmetric trade-off
between typical and high stage performance is observed in
which improved high stage performance produced dispro-
portionately worse typical flow performance. Such a trade-
off should be carefully considered while implementing these
methods. Further research on this topic may explore the com-
bination of cost-sensitive approaches with ensemble meth-
ods, which would allow for more aggressive penalisation of
poor accuracy on high stage.
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Appendix A: Input variable selection results

Table A1. List of the 25 most useful inputs identified using the PC
IVS algorithm for the Bow and Don River watersheds, selected
from the set of candidate inputs. Input variables are encoded in
the following format: “station ID”_“variable”_“statistic”_“lagged
timesteps”. Variable abbreviations “WL” and “Precip” refer to wa-
ter level (stage) and precipitation.

rank Bow Don

1 05BH004 WL Mean L4 HY022 WL Mean L4
2 05BB001 WL Max L4 HY008 Precip Sum L4
3 05BB001 WL Min L12 HY019 WL Mean L4
4 05BH004 WL Mean L5 HY008 Precip Sum L5
5 Calgary Temp Max L4 HY027 Precip Sum L4
6 05BB001 WL Max L6 HY017 WL Mean L4
7 05BH004 WL Mean L15 HY022 WL Mean L5
8 Calgary Precip Sum L5 HY008 Precip Sum L8
9 Calgary Temp Min L10 HY027 Precip Sum L6
10 Calgary Precip Sum L11 HY017 WL Mean L5
11 05BH004 WL Max L4 HY027 Precip Sum L5
12 05BH004 WL Min L4 HY008 Precip Sum L10
13 05BH004 WL Max L7 HY019 WL Mean L7
14 Calgary Precip Sum L7 HY080 WL Mean L4
15 05BB001 WL Min L15 HY008 Precip Sum L11
16 05BH004 WL Min L8 HY008 Precip Sum L6
17 Calgary Precip Sum L10 HY080 WL Mean L6
18 05BH004 WL Max L12 HY027 Precip Sum L7
19 Calgary Precip Sum L6 HY022 WL Mean L6
20 05BB001 WL Max L5 HY027 Precip Sum L8
21 Calgary Temp Min L15 HY022 WL Mean L7
22 05BH004 WL Min L6 HY080 WL Mean L5
23 05BH004 WL Mean L6 HY017 WL Mean L6
24 05BH004 WL Max L5 HY080 WL Mean L7
25 05BB001 WL Min L9 HY019 WL Mean L6

Appendix B: Pseudocode
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