Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-2089-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2089-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of frozen soil processes on soil thermal characteristics at seasonal to decadal scales over the Tibetan Plateau and North China
Qian Li
CORRESPONDING AUTHOR
Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
Yongkang Xue
Department of Geography, University of California Los Angeles (UCLA), Los Angeles, CA 90095-1524, USA
Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, CA 90095-1524, USA
Ye Liu
Department of Geography, University of California Los Angeles (UCLA), Los Angeles, CA 90095-1524, USA
Related authors
No articles found.
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
EGUsphere, https://doi.org/10.5194/egusphere-2022-1111, https://doi.org/10.5194/egusphere-2022-1111, 2022
Preprint archived
Short summary
Short summary
A process-based plant Carbon (C)-Nitrogen (N) interface coupling framework has been developed, which mainly focuses on the plant resistance and N limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem-biogeochemical model and testing results show a general improvement in simulating plant properties with this framework.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Huilin Huang, Yongkang Xue, Fang Li, and Ye Liu
Geosci. Model Dev., 13, 6029–6050, https://doi.org/10.5194/gmd-13-6029-2020, https://doi.org/10.5194/gmd-13-6029-2020, 2020
Short summary
Short summary
We developed a fire-coupled dynamic vegetation model that captures the spatial distribution, temporal variability, and especially the seasonal variability of fire regimes. The fire model is applied to assess the long-term fire impact on ecosystems and surface energy. We find that fire is an important determinant of the structure and function of the tropical savanna. By changing the vegetation composition and ecosystem characteristics, fire significantly alters surface energy balance.
Cited articles
Bai, L., Yao, Y. B., Lei, X. X., and Zhang, L.: Annual and seasonal variation
characteristics of Surface temperature in the Tibetan Plateau in recent 40
years, Journal of Geomatics, 43, 15–18, 2018.
Bao, H., Koike, T., Yang, K., Wang, L., Shrestha, M., and Lawford, P.:
Development of an enthalpy-based frozen soil model and its validation in a
cold region in China, J. Geophys. Res.-Atmos., 121, 5259–5280,
https://doi.org/10.1002/2015jd024451, 2016.
Bi, H., Ma, J., Zheng, W., and Zeng, J.: Comparison of soil moisture in
GLDAS model simulations and in situ observations over the Tibetan Plateau,
J. Geophys. Res.-Atmos., 121, 2658–2678, 2016.
Chen, Y., Yang, K., Zhou, D., Qin, J., and Guo, X.: Improving the Noah Land
Surface Model in Arid Regions with an Appropriate Parameterization of the
Thermal Roughness Length, J. Hydrometeorol., 11, 995–1006,
https://doi.org/10.1175/2010jhm1185.1, 2010.
China Meteorological Administration: Dataset of monthly surface climatological data (1951–present) from 613 stations in China, available at: https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html (last access: 3 January 2020), 2008.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601–604, https://doi.org/10.1029/WR014i004p00601, 1978.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections, Com-mitments and Irreversibility, in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA,
1029–1136, 2013.
Cuo, L., Zhang, Y., Bohn, T. J., Zhao, L., Li, J., Liu, Q., and Zhou, B.:
Frozen soil degradation and its effects on surface hydrology in the northern
Tibetan Plateau, J. Geophys. Res.-Atmos., 120, 8276–8298,
https://doi.org/10.1002/2015jd023193, 2015.
Deardorff, J. W.: Parameterization of the Planetary Boundary layer for Use
in General Circulation Models, Mon. Weather Rev., 100, 93–106, 1972.
Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S. X., and
Namkhai, A.: Temporal and spatial scales of observed soil moisture
variations in the extratropics, J. Geophys. Res.-Atmos., 105, 11865–11877,
https://doi.org/10.1029/2000jd900051, 2000.
Fan, Y. and van den Dool, H.: A global monthly land surface air temperature
analysis for 1948–present, J. Geophys. Res.-Atmos., 113, D01103,
https://doi.org/10.1029/2007jd008470, 2008 (data available at: https://psl.noaa.gov/data/gridded/data.ghcncams.html, last access: 31 January 2021).
Fang, X., Luo, S., and Lyu, S.: Observed soil temperature trends associated
with climate change in the Tibetan Plateau, 1960–2014, Theor. Appl.
Climatol., 135, 169–181, https://doi.org/10.1007/s00704-017-2337-9, 2019.
Flerchinger, G. N. and Saxton, K. E.: Simultaneous heat and water model o f
a freezing snow-residue-soil system: 1. Theory and development, Trans. ASAE,
32, 565–571, 1989.
Frauenfeld, O. W., Zhang, T. J., Barry, R. G., and Gilichinsky, D.:
Interdecadal changes in seasonal freeze and thaw depths in Russia, J.
Geophys. Res.-Atmos., 109, D05101, https://doi.org/10.1029/2003jd004245, 2004.
Guo, D. L. and Wang, H. J.: Simulation of permafrost and seasonally frozen
ground conditions on the Tibetan Plateau, 1981–2010, J. Geophys. Res.-Atmos., 118, 5216–5230, 2013.
Guo, D. and Wang, H.: Simulated change in the near-surface soil freeze/thaw
cycle on the Tibetan Plateau from 1981 to 2010, Chinese Sci. Bull., 59,
2439–2448, https://doi.org/10.1007/s11434-014-0347-x, 2014.
Guo, D. and Wang, H.: Simulated Historical (1901–2010) Changes in the
Permafrost Extent and Active Layer Thickness in the Northern Hemisphere, J.
Geophys. Res.-Atmos., 122, 12285–12295, 2017.
Hu, Q. and Feng, S.: A Role of the Soil Enthalpy in Land Memory, J. Climate, 3633–3643, https://doi.org/10.1175/1520-0442(2004)017<3633:AROTSE>2.0.CO;2, 2004.
Jin, R., Zhang, T., Li, X., Yang, X., and Ran, Y.: Mapping surface soil
freeze-thaw cycles in China based on SMMR and SSM/I brightness temperatures
from 1978 to 2008, Arct. Antarct. Alp. Res., 47, 213–229, https://doi.org/10.1657/aaar00c-13-304, 2015.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II Reanalysis (R-2), Bull. Am. Meteor. Soc., 83, 1631–1643, 2002.
Li, H., Wang, J., and Hao, X.: Influence of Blowing Snow on Snow Mass and
Energy Exchanges in the Qilian Mountainous, Journal of Glaciology and
Geocryology, 34, 1084–1090, 2012.
Li, Q., Sun, S., and Dai, Q.: The Numerical Scheme Development of a
Simplified Frozen Soil Model, Adv. Atmos. Sci., 26, 940–950, 2009.
Li, Q., Sun, S., and Xue, Y.: Analyses and development of a hierarchy of
frozen soil models for cold region study, J. Geophys. Res.-Atmos., 115, D03107,
https://doi.org/10.1029/2009jd012530, 2010.
Li, X., Wu, T., Zhu, X., Jiang, Y., and Ying, X.: Improving the Noah-MP
Model for Simulating Hydrothermal Regime of the Active Layer in the
Permafrost Regions of the Qinghai-Tibet Plateau, J. Geophys. Res.-Atmos.,
125, e2020JD032588, https://doi.org/10.1029/2020jd032588, 2020.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–318, 2016.
Liu, Y., Xue, Y., Li, Q., Lettenmaier, D., and Zhao, P.: Investigation of
the Variability of Near-Surface Temperature Anomaly and Its Causes Over the
Tibetan Plateau, J. Geophys. Res.-Atmos., 125, e2020JD032800,
https://doi.org/10.1029/2020jd032800, 2020.
Luo, L. F., Robock, A., Vinnikov, K. Y., Schlosser, C. A., Slater, A. G.,
Boone, A., Braden, H., Cox, P., de Rosnay, P., Dickinson, R. E., Dai, Y. J.,
Duan, Q. Y., Etchevers, P., Henderson-Sellers, A., Gedney, N., Gusev, Y. M.,
Habets, F., Kim, J. W., Kowalczyk, E., Mitchell, K., Nasonova, O. N.,
Noilhan, J., Pitman, A. J., Schaake, J., Shmakin, A. B., Smirnova, T. G.,
Wetzel, P., Xue, Y. K., Yang, Z. L., and Zeng, Q. C.: Effects of frozen soil
on soil temperature, spring infiltration, and runoff: Results from the PILPS
2(d) experiment at Valdai, Russia, J. Hydrometeorol., 4, 334–351, 2003.
Oelke, C. and Zhang, T.: A model study of circum-arctic soil temperatures,
Permafrost Periglac., 15, 103–121, https://doi.org/10.1002/ppp.485, 2004.
Oelke, C. and Zhang, T.: Modeling the active-layer depth over the Tibetan
plateau, Arct. Antarct. Alp. Res., 39, 714–722, 2007.
Poutou, E., Krinner, G., Genthon, C., and de Noblet-Ducoudré, N.: Role
of soil freezing in future boreal climate change, Climate Dyn., 23, 621–639,
https://doi.org/10.1007/s00382-004-0459-0, 2004.
Qin, D. H., Zhou, B. T., and Xiao, C. D.: Progress in studies of cryospheric
changes and their impacts on climate of China, J. Meteorol. Res., 28,
732–746, 2014.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land 50 surface modeling, J. Clim., 19, 3088–3111, https://doi.org/10.1175/jcli3790.1, 2006 (data available at: http://hydrology.princeton.edu/data.php, last access: 31 January 2021).
Shen, H. Y., Ding, Y. G., and Zhang, J.: Inter-decadal variations of winter air temperature in north China and its Circulation background, Scientia Meteorologica Sinica, 30, 338–343, https://doi.org/10.3969/j.issn.1009-0827.2010.03.008, 2010.
Slater, A. G., Bohn, T. J., Mc Creight, J. L., Serreze, M. C., and
Lettenmaier, D. P.: A multimodel simulation of pan-Arctic hydrology, J.
Geophys. Res.-Biogeo., 112, G04S45, https://doi.org/10.1029/2006jg000303, 2007.
Su, Z., de Rosnay, P., Wen, J., Wang, L., and Zeng, Y.: Evaluation of
ECMWF's soil moisture analyses using observations on the Tibetan Plateau, J.
Geophys. Res.-Atmos., 118, 5304–5318, https://doi.org/10.1002/jgrd.50468, 2013.
Sun, S.: Physical, Biochemical Mechanism of Land Surface Process and Its
Parameterization, Meterol. Press, Beijing, China, 2005 (in Chinese).
Sun, S. and Xue, Y.: Implementing a new snow scheme in simplified simple biosphere model, Adv. Atmos. Sci., 18, 335–354, 2001.
Van Everdingen, R. (Ed.): Multi-language glossary of permafrost and related ground-ice terms (revised May 2005), National Snow and Ice Data Center,
Boulder, USA, 1998.
Wei, Z. G., Huang, R., and Dong, W. J.: Interannual and Interdecadal
Variations of Air Temperature and Precipitation over the Tibetan Plateau,
Chinese Journal of Atmospheric Sciences, 27, 157–170, 2003.
Wu, Q. and Zhang, T.: Changes in active layer thickness over the
Qinghai-Tibetan Plateau from 1995 to 2007, J. Geophys. Res.-Atmos., 115, D09107, https://doi.org/10.1029/2009jd012974, 2010.
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A Simplified
Biosphere Model for Global Climate Studies, J. Clim., 4, 345–364, 1991.
Xue, Y. K., Zeng, F. J., and Schlosser, C. A.: SSiB and its sensitivity to
soil properties - A case study using HAPEX-Mobilhy data, Global Planet.
Change, 13, 183–194, 1996.
Xue, Y. K., Sun, S. F., Kahan, D. S., and Jiao, Y. J.: Impact of
parameterizations in snow physics and interface processes on the simulation
of snow cover and runoff at several cold region sites, J. Geophys. Res.-Atmos., 108, 8859, https://doi.org/10.1029/2002jd003174, 2003.
Xue, Y., Diallo, I., Li, W., David Neelin, J., Chu, P. C., Vasic, R., Guo,
W. D., Li, Q., Robinson, D. A., Zhu, Y. J., Fu, C. B., and Oaida, C. M.: Spring Land Surface and Subsurface Temperature Anomalies and Subsequent Downstream
Late Spring-Summer Droughts/Floods in North America and East Asia, J.
Geophys. Res.-Atmos., 123, 5001–5019, https://doi.org/10.1029/2017jd028246, 2018.
Yang, K. and Zhang, J.: Spatiotemporal characteristics of soil temperature
memory in China from observation, Theor. Appl. Climatol., 126, 739–749,
2016.
Yang, K., Chen, Y.-Y., and Qin, J.: Some practical notes on the land surface modeling in the Tibetan Plateau, Hydrol. Earth Syst. Sci., 13, 687–701, https://doi.org/10.5194/hess-13-687-2009, 2009.
Yang, M. X., Nelson, F., Shiklomanov, N., Guo, D. L., and Wan, G.:
Permafrost degradation and its environmental effects on the Tibetan Plateau:
A review of recent research, Earth-Sci. Rev., 103, 31–44, 2010.
Yang, S., Wu, T., Li, R., Zhu, X., Wang, W., Yu, W., Qin, Y., and Hao, J.:
Spatial-temporal Changes of the Near-surface Soil Freeze-thaw Status over
the Qinghai-Tibetan Plateau, Plateau Meteorology, 37, 43–53, 2018.
Yi, S., Wang, X., Qin, Y., Xiang, B., and Ding, Y.: Responses of alpine
grassland on Qinghai–Tibetan plateau to climate warming and permafrost
degradation: a modeling perspective, Environ. Res. Lett., 9, 074014, https://doi.org/10.1088/1748-9326/9/7/074014, 2014.
Zeng, X., Wang, Z., and Wang, A.: Surface Skin Temperature and the Interplay
between Sensible and Ground Heat Fluxes over Arid Regions, J.
Hydrometeorol., 13, 1359–1370, https://doi.org/10.1175/jhm-d-11-0117.1, 2012.
Zhang, G., Nan, Z., Wu, X., Ji, H., and Zhao, S.: The Role of Winter Warming
in Permafrost Change Over the Qinghai-Tibet Plateau, Geophys. Res. Lett.,
46, 11261–11269, https://doi.org/10.1029/2019gl084292, 2019.
Zhang, T., Barry, R. G., Gilichinsky, D., Bykhovets, S. S., Sorokovikov, V.
A., and Ye, J. P.: An amplified signal of climatic change in soil
temperatures during the last century at Irkutsk, Russia, Climatic Change,
49, 41–76, https://doi.org/10.1023/a:1010790203146, 2001.
Zhang, W. G., Li, S. X., and Pang, Q. Q.: Variation Characteristics of Soil
Temperature over Qinghai-Xizang Plateau in the Past 45 Years, Acta
Geographica Sinica, 63, 1151–1159, 2008.
Zhang, X., Sun, S. F., and Xue, Y. K.: Development and testing of a frozen
soil parameterization for cold region studies, J. Hydrometeorol., 8,
690–701, 2007.
Zhang, Y., Wang, Q., Qian, Y., and Sun, Y.: Spatial/Temporal Variations of
Winter Air Temperature in North China in recent 50 Years, Journal of Nanjing
Institute of Meteorology, 25, 633–639, 2002.
Zhao, D. and Wu, S.: Projected Changes in Permafrost Active Layer Thickness
Over the Qinghai-Tibet Plateau Under Climate Change, Water Resour. Res., 55,
7860–7875, https://doi.org/10.1029/2019wr024969, 2019.
Zheng, D., van der Velde, R., Su, Z., Booij, M. J., Hoekstra, A. Y., and
Wen, J.: Assessment of roughness length schemes implemented within the Noah
land surface model for high-altitude regions, J. Hydrometeorol., 15,
921–937, https://doi.org/10.1175/jhm-d-14-0140.1, 2014.
Zheng, D., Van der Velde R., Su, Z., Wen, J., Wang, X., Booij, M. J.,
Hoekstra, A. Y., Lv, S., Zhang, Y., and Ek, M. B.: Impacts of Noah model
physics on catchment-scale runoff simulations, J. Geophys. Res.-Atmos., 121,
807–832, https://doi.org/10.1002/2015jd023695, 2016.
Zheng, D., Van der Velde, R., Su, Z., Wen, J., and Wang, X.: Assessment of
Noah land surface model with various runoff parameterizations over a Tibetan
river, J. Geophys. Res.-Atmos., 122, 1488–1504, https://doi.org/10.1002/2016jd025572,
2017.
Short summary
Most land surface models have difficulty in capturing the freeze–thaw cycle in the Tibetan Plateau and North China. This paper introduces a physically more realistic and efficient frozen soil module (FSM) into the SSiB3 model (SSiB3-FSM). A new and more stable semi-implicit scheme and a physics-based freezing–thawing scheme were applied, and results show that SSiB3-FSM can be used as an effective model for soil thermal characteristics at seasonal to decadal scales over frozen ground.
Most land surface models have difficulty in capturing the freeze–thaw cycle in the Tibetan...