Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-697-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-697-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multimodel simulation of vertical gas transfer in a temperate lake
Sofya Guseva
CORRESPONDING AUTHOR
Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
previous at: Department of Geography, Lomonosov Moscow State University, Moscow, Russia
Tobias Bleninger
Graduate Program on Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Brazil
Klaus Jöhnk
CSIRO Land and Water, Black Mountain, Canberra ACT 2601, Australia
Bruna Arcie Polli
Graduate Program on Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Brazil
Zeli Tan
Pacific Northwest National Laboratory, Richland, Washington, USA.
Wim Thiery
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
Qianlai Zhuang
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
James Anthony Rusak
Dorset Environmental Science Centre, Ontario Ministry of Environment, Conservation and Parks, Dorset, Ontario, P0A 1E0, Canada
Huaxia Yao
Dorset Environmental Science Centre, Ontario Ministry of Environment, Conservation and Parks, Dorset, Ontario, P0A 1E0, Canada
Andreas Lorke
Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
Victor Stepanenko
Laboratory for Supercomputer Modeling of Climate System Processes, Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
Department of Meteorology and Climatology, Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Related authors
No articles found.
Aki Vähä, Timo Vesala, Sofya Guseva, Anders Lindroth, Andreas Lorke, Sally MacIntyre, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2024-1644, https://doi.org/10.5194/egusphere-2024-1644, 2024
Short summary
Short summary
Boreal rivers are significant sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere but the controls of these emissions are uncertain. We measured four months of CO2 and CH4 exchange between a regulated boreal river and the atmosphere with eddy covariance. We found statistical relationships between the gas exchange and several environmental variables, the most important of which were dissolved CO2 partial pressure in water, wind speed, and water temperature.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Revised manuscript has not been submitted
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Ye Yuan, Qianlai Zhuang, Bailu Zhao, and Narasinha Shurpali
EGUsphere, https://doi.org/10.5194/egusphere-2023-1047, https://doi.org/10.5194/egusphere-2023-1047, 2023
Preprint archived
Short summary
Short summary
We use a biogeochemistry model to calculate the regional N2O emissions considering the effects of N2O uptake, thawing permafrost, and N deposition. Our simulations show there is an increasing trend in regional net N2O emissions from 1969 to 2019. Annual N2O emissions exhibited big spatial variabilities. Nitrogen deposition leads to a significant increase in emission. Our results suggest that in the future, the pan-Arctic terrestrial ecosystem might act as an even larger N2O.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023, https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Short summary
In this study, we use a process-based model to simulate the northern peatland's C dynamics in response to future climate change during 1990–2300. Northern peatlands are projected to be a C source under all climate scenarios except for the mildest one before 2100 and C sources under all scenarios afterwards.
We find northern peatlands are a C sink until pan-Arctic annual temperature reaches −2.09 to −2.89 °C. This study emphasizes the vulnerability of northern peatlands to climate change.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Victor Lomov, Victor Stepanenko, Maria Grechushnikova, and Irina Repina
EGUsphere, https://doi.org/10.5194/egusphere-2022-329, https://doi.org/10.5194/egusphere-2022-329, 2022
Preprint withdrawn
Short summary
Short summary
We present the first mechanistic model LAKE2.3 for prediction of methane emissions from artificial reservoirs. Estimates of CH4 emissions from the Mozhaysk reservoir (Moscow region) provided by the model are demonstrated. Methane annual emissions through diffusion, ebullition and downstream degassing according to in situ measurements and model simulations are presented. The experiments with the model allowed to determine the most sensitive model parameters for calibration of methane fluxes.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke
Geosci. Model Dev., 15, 2197–2220, https://doi.org/10.5194/gmd-15-2197-2022, https://doi.org/10.5194/gmd-15-2197-2022, 2022
Short summary
Short summary
Reservoir hydrodynamics is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of models with 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only be reproduced by the 3D model. Results support the selection of models and their assessment.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Junrong Zha and Qianla Zhuang
Biogeosciences, 17, 4591–4610, https://doi.org/10.5194/bg-17-4591-2020, https://doi.org/10.5194/bg-17-4591-2020, 2020
Short summary
Short summary
This study incorporated microbial dormancy into a detailed microbe-based biogeochemistry model to examine the fate of Arctic carbon budgets under changing climate conditions. Compared with the model without microbial dormancy, the new model estimated a much higher carbon accumulation in the region during the last and current century. This study highlights the importance of the representation of microbial dormancy in earth system models to adequately quantify the carbon dynamics in the Arctic.
Maksim Iakunin, Victor Stepanenko, Rui Salgado, Miguel Potes, Alexandra Penha, Maria Helena Novais, and Gonçalo Rodrigues
Geosci. Model Dev., 13, 3475–3488, https://doi.org/10.5194/gmd-13-3475-2020, https://doi.org/10.5194/gmd-13-3475-2020, 2020
Short summary
Short summary
The Alqueva reservoir, located in the southeast of Portugal, is the largest artificial reservoir in western Europe. It was established in 2002 to provide water and electrical resources to meet regional needs. Complex research of this reservoir is an essential scientific task in the scope of meteorology, hydrology, biology, and ecology. Two numerical models (namely, LAKE 2.0 and FLake) were used to assess the thermodynamic and biogeochemical regimes of the reservoir over 2 years of observations.
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020, https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4:
t95 % = 12 s; CO2:
t95 % = 10 s) while retaining a high equilibration ratio and accuracy.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Tong Yu and Qianlai Zhuang
Biogeosciences, 17, 3643–3657, https://doi.org/10.5194/bg-17-3643-2020, https://doi.org/10.5194/bg-17-3643-2020, 2020
Short summary
Short summary
Biological nitrogen fixation (BNF) plays an important role in the global nitrogen cycle. However, the fixation rate has usually been measured or estimated at a particular observational site. This study develops a BNF model considering the symbiotic relationship between legume plants and bacteria. The model is extensively calibrated with site-level observational data and then extrapolated to the global terrestrial ecosystems to quantify the fixation rate in the 1990s.
Wenli Zhang, Shangbin Xiao, Heng Xie, Jia Liu, Dan Lei, and Andreas Lorke
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-178, https://doi.org/10.5194/bg-2020-178, 2020
Manuscript not accepted for further review
Short summary
Short summary
We analyzed CH4 emissions from a shallow and small eutrophic pond and found that 88.6 % of CH4 emissions was directly released by bubbling. The higher the temperature, the higher the eutrophication level and the greater the amount of methane released. Our study highlights that increasing eutrophication by anthropogenic impacts and climate warming will increase CH4 emissions from ponds, thus representing a positive feedback mechanism to global warming.
Tong Yu and Qianlai Zhuang
Biogeosciences, 16, 207–222, https://doi.org/10.5194/bg-16-207-2019, https://doi.org/10.5194/bg-16-207-2019, 2019
Junrong Zha and Qianlai Zhuang
Biogeosciences, 15, 5621–5634, https://doi.org/10.5194/bg-15-5621-2018, https://doi.org/10.5194/bg-15-5621-2018, 2018
Short summary
Short summary
This study used a detailed microbial-based soil decomposition biogeochemistry model to examine the fate of much arctic soil carbon under changing climate conditions. We found that the detailed microbial decomposition biogeochemistry model estimated a much lower carbon accumulation in the region during this century. The amount of soil carbon considered in the 21st-century simulations determines the regional carbon sink and source strengths, regardless of the complexity of models used.
Hanbo Yun, Qingbai Wu, Qianlai Zhuang, Anping Chen, Tong Yu, Zhou Lyu, Yuzhong Yang, Huijun Jin, Guojun Liu, Yang Qu, and Licheng Liu
The Cryosphere, 12, 2803–2819, https://doi.org/10.5194/tc-12-2803-2018, https://doi.org/10.5194/tc-12-2803-2018, 2018
Short summary
Short summary
Here we reported the QTP permafrost region was a CH4 sink of −0.86 ± 0.23 g CH4-C m−2 yr−1 over 2012–2016, soil temperature and soil water content were dominant factors controlling CH4 fluxes, and their correlations changed with soil depth due to cryoturbation dynamics. This region was a net CH4 sink in autumn, but a net source in spring, despite both seasons experiencing similar top soil thawing and freezing dynamics.
Yang Qu, Shamil Maksyutov, and Qianlai Zhuang
Biogeosciences, 15, 3967–3973, https://doi.org/10.5194/bg-15-3967-2018, https://doi.org/10.5194/bg-15-3967-2018, 2018
Short summary
Short summary
We developed an algorithm for a fast spin-up by finding the exact solution of a linearized system representing the cyclo-stationary state of a model and implemented it in a biogeochemistry model, the Terrestrial Ecosystem Model. For the test sites with five different plant functional types, the new method saves over 90 % of the original spin-up time in site-level simulations. The developed spin-up method will be used for future quantification of carbon dynamics at fine spatiotemporal scales.
Licheng Liu, Qianlai Zhuang, Qing Zhu, Shaoqing Liu, Hella van Asperen, and Mari Pihlatie
Atmos. Chem. Phys., 18, 7913–7931, https://doi.org/10.5194/acp-18-7913-2018, https://doi.org/10.5194/acp-18-7913-2018, 2018
Short summary
Short summary
carbon monoxide (CO) plays an important role in atmosphere. We developed a model to quantify soil CO exchanges with the atmosphere. The simulation is conducted for various ecosystems on a global scale during the 20th and 21st centuries. We found that areas near the Equator, the eastern US, Europe and eastern Asia are the largest sinks due to optimum soil moisture and high temperature. This study will benefit the modeling of the global climate and atmospheric chemistry.
Katrin Magin, Celia Somlai-Haase, Ralf B. Schäfer, and Andreas Lorke
Biogeosciences, 14, 5003–5014, https://doi.org/10.5194/bg-14-5003-2017, https://doi.org/10.5194/bg-14-5003-2017, 2017
Short summary
Short summary
We analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from catchments in a temperate stream network. The carbon exported by streams and rivers corresponds to 2.7 % of the terrestrial NPP. CO2 evasion and downstream transport contribute about equally to this flux. A review of existing studies suggests that the catchment-specific carbon export varies in a relatively narrow range across different study regions and spatial scales.
Thibaud Thonat, Marielle Saunois, Philippe Bousquet, Isabelle Pison, Zeli Tan, Qianlai Zhuang, Patrick M. Crill, Brett F. Thornton, David Bastviken, Ed J. Dlugokencky, Nikita Zimov, Tuomas Laurila, Juha Hatakka, Ove Hermansen, and Doug E. J. Worthy
Atmos. Chem. Phys., 17, 8371–8394, https://doi.org/10.5194/acp-17-8371-2017, https://doi.org/10.5194/acp-17-8371-2017, 2017
Short summary
Short summary
Atmospheric methane simulations in the Arctic have been made for 2012 and compared to continuous observations at six measurement sites. All methane sources significantly affect the measurements at all stations, at least at the synoptic scale, except for biomass burning. An appropriate modelling framework combined with continuous observations of atmospheric methane enables us to gain knowledge on regional methane sources, including those which are usually poorly represented, such as freshwater.
Sirui Wang, Qianlai Zhuang, and Zicheng Yu
Biogeosciences, 13, 6305–6319, https://doi.org/10.5194/bg-13-6305-2016, https://doi.org/10.5194/bg-13-6305-2016, 2016
Short summary
Short summary
We used a model to quantify the carbon stock and its changes in terrestrial ecosystems of Alaska during the last 15 000 years. We found that the changes in vegetation distribution due to climate were the key factors in the spatial variations of carbon in different time periods. The warming during 11–9 k years ago characterized by the increased summer temperature and seasonality of radiation, along with the high precipitation, might play an important role in causing the high carbon accumulation.
Zeli Tan, Qianlai Zhuang, Daven K. Henze, Christian Frankenberg, Ed Dlugokencky, Colm Sweeney, Alexander J. Turner, Motoki Sasakawa, and Toshinobu Machida
Atmos. Chem. Phys., 16, 12649–12666, https://doi.org/10.5194/acp-16-12649-2016, https://doi.org/10.5194/acp-16-12649-2016, 2016
Short summary
Short summary
Methane emissions from the pan-Arctic could be important in understanding the global carbon cycle but are still poorly constrained to date. This study demonstrated that satellite retrievals can be used to reduce the uncertainty of the estimates of these emissions. We also provided additional evidence for the existence of large methane emissions from pan-Arctic lakes in the Siberian yedoma permafrost region. We found that biogeochemical models should be improved for better estimates.
X. Lu and Q. Zhuang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-10411-2015, https://doi.org/10.5194/gmdd-8-10411-2015, 2015
Revised manuscript has not been submitted
A. Lorke, P. Bodmer, C. Noss, Z. Alshboul, M. Koschorreck, C. Somlai-Haase, D. Bastviken, S. Flury, D. F. McGinnis, A. Maeck, D. Müller, and K. Premke
Biogeosciences, 12, 7013–7024, https://doi.org/10.5194/bg-12-7013-2015, https://doi.org/10.5194/bg-12-7013-2015, 2015
Short summary
Short summary
Flux chambers represent a potentially powerful methodological approach for measuring greenhouse gas emissions from running waters. Here we compare the use of anchored and freely drifting chambers on various streams and provide novel guidance on how to apply flux chambers in these systems. The study clearly shows that drifting chambers have a very small impact on the water turbulence under the chamber, while anchored chambers enhance turbulence under the chambers and thus elevate fluxes.
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Short summary
We evaluated 21 forward models and 5 inversions over western Siberia in terms of CH4 emissions and simulated wetland areas and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite inundation products. In addition to assembling a definitive collection of methane emissions estimates for the region, we were able to identify the types of wetland maps and model features necessary for accurate simulations of high-latitude wetlands.
Q. Zhu, Q. Zhuang, D. Henze, K. Bowman, M. Chen, Y. Liu, Y. He, H. Matsueda, T. Machida, Y. Sawa, and W. Oechel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-22587-2014, https://doi.org/10.5194/acpd-14-22587-2014, 2014
Revised manuscript not accepted
Y. He, Q. Zhuang, J. W. Harden, A. D. McGuire, Z. Fan, Y. Liu, and K. P. Wickland
Biogeosciences, 11, 4477–4491, https://doi.org/10.5194/bg-11-4477-2014, https://doi.org/10.5194/bg-11-4477-2014, 2014
A. Maeck, H. Hofmann, and A. Lorke
Biogeosciences, 11, 2925–2938, https://doi.org/10.5194/bg-11-2925-2014, https://doi.org/10.5194/bg-11-2925-2014, 2014
R. Doble, R. Crosbie, L. Peeters, K. Joehnk, and C. Ticehurst
Hydrol. Earth Syst. Sci., 18, 1273–1288, https://doi.org/10.5194/hess-18-1273-2014, https://doi.org/10.5194/hess-18-1273-2014, 2014
X. Zhu, Q. Zhuang, X. Lu, and L. Song
Biogeosciences, 11, 1693–1704, https://doi.org/10.5194/bg-11-1693-2014, https://doi.org/10.5194/bg-11-1693-2014, 2014
Q. Zhu and Q. Zhuang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-6835-2013, https://doi.org/10.5194/gmdd-6-6835-2013, 2013
Revised manuscript not accepted
Q. Zhu and Q. Zhuang
Biogeosciences, 10, 7943–7955, https://doi.org/10.5194/bg-10-7943-2013, https://doi.org/10.5194/bg-10-7943-2013, 2013
V. M. Stepanenko, A. Martynov, K. D. Jöhnk, Z. M. Subin, M. Perroud, X. Fang, F. Beyrich, D. Mironov, and S. Goyette
Geosci. Model Dev., 6, 1337–1352, https://doi.org/10.5194/gmd-6-1337-2013, https://doi.org/10.5194/gmd-6-1337-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Assessing rainfall radar errors with an inverse stochastic modelling framework
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
An increase in the spatial extent of European floods over the last 70 years
140-year daily ensemble streamflow reconstructions over 661 catchments in France
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Improving runoff simulation in the Western United States with Noah-MP and variable infiltration capacity
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Downscaling the probability of heavy rainfall over the Nordic countries
Modelling convective cell lifecycles with a copula-based approach
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Global total precipitable water variations and trends over the period 1958–2021
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Identification of compound drought and heatwave events on a daily scale and across four seasons
Observation-driven model for calculating water harvesting potential from advective fog in (semi-)arid coastal regions
Potential for historically unprecedented Australian droughts from natural variability and climate change
Review of Gridded Climate Products and Their Use in Hydrological Analyses Reveals Overlaps, Gaps, and Need for More Objective Approach to Model Forcings
Flood risk assessment for Indian sub-continental river basins
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Divergent future drought projections in UK river flows and groundwater levels
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Accounting for hydroclimatic properties in flood frequency analysis procedures
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Linking the complementary evaporation relationship with the Budyko framework for ungauged areas in Australia
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024, https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Short summary
Having accurate up-to-date maps of soil moisture is important for many purposes. However, current modelled and remotely sensed maps are rather coarse and not very accurate. Here, we demonstrate a simple but accurate approach that is closely linked to direct measurements of soil moisture at a network sites across the UK, to the water balance (precipitation minus drainage and evaporation) measured at a large number of catchments (1212) and to remotely sensed satellite estimates.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024, https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
Short summary
The accurate estimation of precipitation and its spatial variability within a watershed is crucial for reliable discharge simulations. The study is the first detailed analysis of the potential usage of the cellular automata technique to merge different rainfall data inputs to hydrological models. This work shows an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024, https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Short summary
The Gran Chaco is a large, dry forest in South America that has been heavily deforested, particularly in the dry Chaco subregion. This deforestation, mainly driven by the expansion of the agricultural frontier, has changed the land's characteristics, affecting the local and regional climate. The study reveals that deforestation has resulted in reduced precipitation, soil moisture, and runoff, and if intensive agriculture continues, it could make summers in this arid region even drier and hotter.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1463, https://doi.org/10.5194/egusphere-2024-1463, 2024
Short summary
Short summary
The paper presents a method for deriving the chance of heavy downpour, the maximum amount expected at various intervals, and explain how the rainfall changes. It suggests that increases are more due to increased amounts on wet days rather than more wet days, and the rainfall intensity is found to be sensitive to future greenhouse gas emissions while the number of wet days appears to be less affected.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
EGUsphere, https://doi.org/10.5194/egusphere-2024-1540, https://doi.org/10.5194/egusphere-2024-1540, 2024
Short summary
Short summary
This study presents a new algorithm to better model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and to reconstruct storm cell lifecycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential model for realistic rainfall patterns, enhancing its hydrological applicability.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024, https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Short summary
This study examines centuries of nonstationary trends in meteorological drought and pluvial climatology. A novel approach merges tree-ring proxy data (North American Seasonal Precipitation Atlas – NASPA) with instrumental precipitation datasets by temporally downscaling proxy data, correcting biases, and analyzing shared trends in normal and extreme precipitation anomalies. We identify regions experiencing recent unprecedented shifts towards drier or wetter conditions and shifts in seasonality.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo de Rio
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-110, https://doi.org/10.5194/hess-2024-110, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water resources are fundamental for social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligates us to find new water resources. Fog harvesting emerges as a complementary one in regions where it is abundant but untapped. This research proposes a model to estimate fog harvesting potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where fog harvesting could be a viable water source.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-58, https://doi.org/10.5194/hess-2024-58, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We assess 60 gridded climate datasets [ground- (G), satellite- (S), reanalysis-based (R)]. Higher-density station data and less-hilly terrain improved climate data. In mountainous and humid regions, dataset types performed similarly; but R outperformed G when underlying data had low station density. G outperformed S or R datasets, though better streamflow modeling did not always follow. Hydrologic analyses need datasets that better represent climate variable dependencies and complex topography.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024, https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024, https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Daeha Kim, Minha Choi, and Jong Ahn Chun
Hydrol. Earth Syst. Sci., 26, 5955–5969, https://doi.org/10.5194/hess-26-5955-2022, https://doi.org/10.5194/hess-26-5955-2022, 2022
Short summary
Short summary
We proposed a practical method that predicts the evaporation rates on land surfaces (ET) where only atmospheric data are available. Using a traditional equation that describes partitioning of precipitation into ET and streamflow, we could approximately identify the key parameter of the predicting formulation based on land–atmosphere interactions. The simple method conditioned by local climates outperformed sophisticated models in reproducing water-balance estimates across Australia.
Cited articles
Ashton, G. D.: River and lake ice thickening, thinning and snow ice formation, Cold Reg. Sci. Technol., 68, 3–19, https://doi.org/10.1016/j.coldregions.2011.05.004, 2011. a, b, c
Balsamo, G., Dutra, E., Stepanenko, V. M., Viterbo, P., Miranda, P., and Mironov, D.: Deriving an effective lake depth from satellite lake surface temperature data: a feasibility study with MODIS data, Boreal Environ. Res., 15, 178–190, https://doi.org/10.21957/be525ccu, 2010. a
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon sink, Science, 331, 50, https://doi.org/10.1126/science.1196808, 2011. a
Camacho, A.: On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes, Limnetica, 25, 453–478, 2006. a
Cantin, A., Beisner, B. E., Gunn, J. M., Prairie, Y. T., Winter, J. G.: Effects of thermocline deepening on lake plankton communities, Can. J. Fish. Aquat., 68, 260–276, 2011. a
Choulga, M., Kourzeneva, E., Zakharova, E., and Doganovsky, A.: Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modeling, Tellus A, 66, 21295, https://doi.org/10.3402/tellusa.v66.21295, 2014. a
Cox, E. T.: Counts and Measurements of Ontario Lakes: Watershed Unit Summaries Based on Maps of Various Scales by Wathershed Unit, Ontario Ministry of Natural Resourses, Toronto, Ontario, Canada, 1978. a
Docquier, D., Thiery, W., Lhermitte, S., and Van Lipzig, N.: Multi-year wind dynamics around Lake Tanganyika, Clim. Dynam., 47, 3191–3202, https://doi.org/10.1007/s00382-016-3020-z, 2016. a
Duffy, C. J., Dugan, H. A., and Hanson, P. C.: The age of water and carbon in lake-catchments: A simple dynamical model, Limnol. Oceanogr. Lett., 3, 236–245, https://doi.org/10.1002/lol2.10070, 2018. a
Fang, X. and Stefan, H. G.: Long-term lake water temperature and ice cover simulations/measurements, Cold Reg. Sci. Technol., 24, 289–304, 1996. a
Fer, I., Lemmin, U., and Thorpe, S. A.: Cascading of water down the sloping sides of a deep lake in winter, Geophys. Res. Lett., 28, 2093–2096, https://doi.org/10.1029/2000GL012599, 2001. a
Fer, I., Lemmin, U., and Thorpe, S. A.: Winter cascading of cold water in Lake Geneva, J. Geophys. Res.-Oceans, 107, 3060, https://doi.org/10.1029/2001JC000828, 2002. a
Forbes, G. S. and Meritt, J. H.: Mesoscale vortices over the Great Lakes in wintertime, Mon. Weather Rev., 112, 377–381, 1984. a
Futter, M. N., Starr, M., Forsius, M., and Holmberg, M.: Modelling the effects of climate on long-term patterns of dissolved organic carbon concentrations in the surface waters of a boreal catchment, Hydrol. Earth Syst. Sci., 12, 437–447, https://doi.org/10.5194/hess-12-437-2008, 2008. a
Goudsmit, G. H., Burchard, H., Peeters, F., and Wüest, A.: Application of k−ε turbulence models to enclosed basins: The role of internal seiches, J. Geophys. Res.-Oceans, 107, 3230, https://doi.org/10.1029/2001JC000954, 2002. a
Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilá, K. M., Miettinen, H., and Vesala, T.: Effects of water clarity on lake stratification and lake‐atmosphere heat exchange, J. Geophys. Res.-Atmos., 120, 7412–7428, https://doi.org/10.1002/2014JD022938, 2015. a
Hondzo, M. and Stefan, H. G.: Lake water temperature simulation model, J. Hydraul. Eng., 119, 1251–1273, 1993. a
Hostetler, S. W., Bates, G. T., and Giorgi, F.: Interactive coupling of a lake thermal model with a regional climate model, J. Geophys. Res.-Atmos., 98, 5045–5057, 1993. a
Jammet, M., Crill, P., Dengel, S., and Friborg, T.: Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance, J. Geophys. Res.-Biogeo., 120, 2289–2305, https://doi.org/10.1002/2015JG003137, 2015. a
Jöhnk, K. D. and Umlauf, L.: Modeling the metalimnetic oxygen minimum in a medium sized alpine lake, Ecol. Model., 136, 67–80, https://doi.org/10.1016/S0304-3800(00)00381-1, 2001. a, b
Jöhnk, K. D., Huisman, J. E. F., Sharples, J., Sommeijer, B. E. N., Visser, P. M., and Stroom, J. M.: Summer heatwaves promote blooms of harmful cyanobacteria, Global Change Biol., 14, 495–512, https://doi.org/10.1111/j.1365-2486.2007.01510.x, 2008. a, b
Kaden, H., Peeters, F., Lorke, A., Kipfer, R., Tomonaga, Y., and Karabiyikoglu, M.: Impact of lake level change on deep‐water renewal and oxic conditions in deep saline Lake Van, Turkey, Water Resour. Res., 46, W11508, https://doi.org/10.1029/2009WR008555, 2010. a
Karlsson, J., Giesler, R., Persson, J., and Lundin, E.: High emission of carbon dioxide and methane during ice thaw in high latitude lakes, Geophys. Res. Lett., 40, 1123–1127, https://doi.org/10.1002/grl.50152, 2013. a
Kirillin, G. B., Forrest, A. L., Graves, K. E., Fischer, A., Engelhardt, C., and Laval, B. E.: Axisymmetric circulation driven by marginal heating in ice‐covered lakes, Hydrol. Geophys. Res. Lett., 42, 2893–2900, https://doi.org/10.1002/2014GL062180, 2015. a
Kirillin, G. B., Wen, L., and Shatwell, T.: Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands, Hydrol. Earth Syst. Sci., 21, 1895–1909, https://doi.org/10.5194/hess-21-1895-2017, 2017. a
Kiuru, P., Ojala, A., Mammarella, I., Heiskanen, J., Kämäräinen, M., Vesala, T., and Huttula, T.: Effects of climate change on CO2 concentration and efflux in a humic boreal lake: A modeling study, J. Geophys. Res.-Biogeo., 123, 2212–2233, https://doi.org/10.1029/2018JG004585, 2018. a
Kourzeneva, E.: External data for lake parameterisation in Numerical Weather Prediction and climate modeling, Boreal Environ. Res., 15, 165–177, 2010. a
Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004. a
Leppäranta, M.: Freezing of lakes and the evolution of their ice cover: Springer, Heidelberg, New York, Dordrecht, London, p. 301, https://doi.org/10.1007/978-3-642-29081-7, 2015. a
Long, Z., Perrie, W., Gyakum, J., Caya, D., and Laprise, R.: Northern lake impacts on local seasonal climate, J. Hydrometeorol., 8, 881–896, https://doi.org/10.1175/JHM591.1, 2007. a
Mahrt L.: Surface heterogeneity and vertical structure of the boundary layer, Bound.-Lay. Meteorol., 96, 33–62, https://doi.org/10.1023/A:1002482332477, 2000. a
McCullough, I. M., Dugan, H. A., Farrell, K. J., Morales-Williams, A. M., Ouyang, Z., Roberts, D., Scordo, F., Bartlett, S. L., Burke, S. M., Doubek, J. P., Krivak-Tetley, F. E., Skaff, N. K., Summers, J. C., Weathers, K. C., and Hanson, P. C.: Dynamic modeling of organic carbon fates in lake ecosystems, Ecol. Model., 386, 71–82, https://doi.org/10.1016/j.ecolmodel.2018.08.009, 2018. a
Mironov, D., Terzhevik, A., Kirillin, G., and Simoncelli, S.: FLake model website, available at: http://www.flake.igb-berlin.de/, last access: 16 February 2020. a
Mitchell, P. and Prepas, E. E. (Eds.): Atlas of Alberta lakes, The University of Alberta Press, Edmonton, 1990. a
Molot, L. A. and Dillon, P. J.: Nitrogen/phosphorus ratios and the prediction of chlorophyll in phosphorus-limited lakes in central Ontario, Can. J. Fish. Aquat. Sci., 48, 140–145, 1991. a
Perroud, M., Goyette, S., Martynov, A., Beniston, M., and Anneville, O.: Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models, Limnol. Oceanogr.-Meth., 54, 1574–1594, https://doi.org/10.4319/lo.2009.54.5.1574, 2009. a
Phelps, A. R., Peterson, K. M., and Jeffries, M. O.: Methane efflux from high‐latitude lakes during spring ice melt, J. Geophys. Res.-Atmos., 103, 29029–29036, https://doi.org/10.1029/98JD00044, 1998. a
Polli, B. A. and Bleninger, T.: Modelagem do transporte de calor no reservatório Vossoroca, in: 21 Simpósio Brasileiro De Recursos
Hídricos, 22–27 November 2015, Federal District, Brasilia, Brazil, 1–8, 2015. a
Polli, B. A. and Bleninger, T.: Reservoir 1D heat transport model, J. Appl. Water Eng. Res., 1, 1–16, https://doi.org/10.1080/23249676.2018.1497560, 2018. a
Poole, H. H. and Atkins, W. R. G.: Photo-electric measurements of submarine illumination throughout the year, J. Mar. Biol. Assoc. UK, 16, 297–324, 1929. a
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013. a
Samolyubov, B. I.: Bottom stratified currents, Nauchny Mir, Moscow, 464 pp., 1999. a
Shatwell, T., Adrian, R., and Kirillin, G.: Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes, Sci. Rep.-UK, 6, 24361, https://doi.org/10.1038/srep24361, 2016. a
Stefan, H. G. and Fang, X.: Dissolved oxygen model for regional lake analysis, Ecol. Model., 71, 37–68, https://doi.org/10.1016/0304-3800(94)90075-2, 1994. a
Stepanenko, V. M. and Debolskiy, A. V.: LAKE model website, available at: http://tesla.parallel.ru/Viktor/LAKE/wikis/LAKE-model, last access: 16 February 2020. a
Stepanenko, V. M., Machulskaya, E. E., Glagolev, M. V., and Lykossov, V. N.: Numerical modeling of methane emissions from lakes in the permafrost zone, Izv. Atmos. Ocean Phys., 47, 252–264, https://doi.org/10.1134/S0001433811020113, 2011. a, b, c
Stepanenko, V. M., Jöhnk, K. D., Machulskaya, E., Perroud, M., Subin, Z., Nordbo, A., Mammarella, I., and Mironov, D.: Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models, Tellus A, 66, 21389, https://doi.org/10.3402/tellusa.v66.21389, 2014. a, b
Stepanenko, V. M., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T.: LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, 2016. a, b, c, d
Stepanenko, V. M., Repina, I. A., Ganbat, G., and Davaa, G.: Numerical simulation of ice cover of saline lakes, Izv. Atmos. Ocean Phys., 55, 129–138, https://doi.org/10.1134/S0001433819010092, 2019. a
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model Earth Syst., 4, M02001, https://doi.org/10.1029/2011MS000072, 2012. a
Tan, Z. and Zhuang, Q.: Arctic lakes are continuous methane sources to the atmosphere under warming conditions, Environ. Res. Lett., 10, 054016, https://doi.org/10.1088/1748-9326/10/5/054016, 2015. a, b
Tan, Z., Zhuang, Q., and Walter Anthony, K.: Modeling methane emissions from arctic lakes: Model development and site level study, J. Adv. Model Earth Syst., 7, 459–483, https://doi.org/10.1002/2014MS000344, 2015. a, b
Tan, Z., Yao, H., and Zhuang, Q.: A small temperate lake in the 21st century: Dynamics of water temperature, ice phenology, dissolved oxygen and chlorophyll-a, Water Resour. Res., 54, 4681–4699, https://doi.org/10.1029/2017WR022334, 2018. a, b
Thiery, W., Stepanenko, V. M., Fang, X., Jöhnk, K. D., Li, Z., Martynov, A., Perroud, M., Subin, Z. M., Darchambeau, F., Mironov, D., and Van Lipzig, N. P.: LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models, Tellus A, 66, 21390, https://doi.org/10.3402/tellusa.v66.21390, 2014a. a, b, c
Thiery, W., Martynov, A., Darchambeau, F., Descy, J. P., Plisnier, P. D., Sushama, L., and van Lipzig, N. P.: Understanding the performance of the FLake model over two African Great Lakes, Geosci. Model Dev., 7, 317–337, https://doi.org/10.5194/gmd-7-317-2014, 2014b. a
Thiery, W., Davin, E. L., Panitz, H.-J., Demuzere, M., Lhermitte, S., and Lipzig, N.: The Impact of the African Great Lakes on the Regional Climate, J. Climat, 28, 4061–4085, https://doi.org/10.1175/JCLI-D-14-00565.1, 2015. a, b
Thiery, W., Davin, E. L., Seneviratne, S. I., Bedka, K., Lhermitte, S., and van Lipzig, N. P.: Hazardous thunderstorm intensification over Lake Victoria, Nat. Commun., 7, 12786, https://doi.org/10.1038/ncomms12786, 2016. a
Thiery, W., Gudmundsson, L., Bedka, K., Semazzi, F. H., Lhermitte, S., Willems, P., Van Lipzig, N. P., and Seneviratne, S. I.: Early warnings of hazardous thunderstorms over Lake Victoria, Environ. Res. Lett., 12, 074012, https://doi.org/10.1088/1748-9326/aa7521, 2017. a
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, B. S., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherma, B. S., Schindler, D. W., Sobeck, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314, https://doi.org/10.1029/2000JD900719, 2009. a
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.: Climate-sensitive northern lakes and ponds are critical components of methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578, 2016. a
Yao, H., Samal, N. R., Joehnk, K. D., Fang, X., Bruce, L. C., Pierson, D. C., Rusak, J. A., and James, A.: Comparing ice and temperature simulations by four dynamic lake models in Harp Lake: past performance and future predictions, Hydrol. Process., 28, 4587–4601, https://doi.org/10.1002/hyp.10180, 2014. a, b
Short summary
We compare lake models with different complexity focusing on the key factors (e.g., eddy diffusivity) which can have an influence on the distribution of the dissolved gases in water. For the first time, we compare the biogeochemical modules in the ALBM and LAKE models. The result showed a good agreement with observed data (O2), but not for CO2. It indicates the need to improve the representation of physical and biogeochemical processes in lake models.
We compare lake models with different complexity focusing on the key factors (e.g., eddy...