Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios
Antoine Allam
CORRESPONDING AUTHOR
CREEN, Saint-Joseph University, Beirut, 1107 2050, Lebanon
LISAH, Univ. Montpellier, INRAE, IRD, SupAgro, Montpellier, France
Roger Moussa
LISAH, Univ. Montpellier, INRAE, IRD, SupAgro, Montpellier, France
Wajdi Najem
CREEN, Saint-Joseph University, Beirut, 1107 2050, Lebanon
Claude Bocquillon
CREEN, Saint-Joseph University, Beirut, 1107 2050, Lebanon
Related authors
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Proc. IAHS, 385, 103–109, https://doi.org/10.5194/piahs-385-103-2024, https://doi.org/10.5194/piahs-385-103-2024, 2024
Short summary
Short summary
Mediterranean water resources are more than ever exposed to the increasing demand of demographic and climatic evolution. To better understand these challenges, this article aimed to collect a hydrological database, establish a new climatic classification for hydrology purposes, identify the physiographic variability and homogeneity in the case of mountainous karstic catchments under snow influence, and analyzed the hydrological balance of 55 catchments according to different functional models.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-381, https://doi.org/10.5194/hess-2019-381, 2019
Manuscript not accepted for further review
Short summary
Short summary
This Mediterranean climatic classification is useful in following up water resources management and ecohydrological applications. Climatic classes ranged from the most seasonal and dry in the South to the least seasonal and most humid in the North, showing up the climatic continuity and change trends visibility. The climate change impact simulated under RCP scenarios showed an increase of the average seasonality and aridity, with north classes slowly evolving towards moderate southern classes.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Proc. IAHS, 385, 103–109, https://doi.org/10.5194/piahs-385-103-2024, https://doi.org/10.5194/piahs-385-103-2024, 2024
Short summary
Short summary
Mediterranean water resources are more than ever exposed to the increasing demand of demographic and climatic evolution. To better understand these challenges, this article aimed to collect a hydrological database, establish a new climatic classification for hydrology purposes, identify the physiographic variability and homogeneity in the case of mountainous karstic catchments under snow influence, and analyzed the hydrological balance of 55 catchments according to different functional models.
Martin Le Mesnil, Roger Moussa, Jean-Baptiste Charlier, and Yvan Caballero
Hydrol. Earth Syst. Sci., 25, 1259–1282, https://doi.org/10.5194/hess-25-1259-2021, https://doi.org/10.5194/hess-25-1259-2021, 2021
Short summary
Short summary
We present an innovative approach consisting of the statistical analysis and comparison of 15 hydrological descriptors, characterizing catchment response to rainfall events. The distribution of these descriptors is analysed according to the occurrence of karst areas inside 108 catchments. It shows that karst impacts on storm events mainly result in river losses and that interbasin groundwater flows can represent a significant part of the catchment water budget ah the event timescale.
Mounir Mahdade, Nicolas Le Moine, Roger Moussa, Oldrich Navratil, and Pierre Ribstein
Hydrol. Earth Syst. Sci., 24, 3513–3537, https://doi.org/10.5194/hess-24-3513-2020, https://doi.org/10.5194/hess-24-3513-2020, 2020
Short summary
Short summary
We present an automatic procedure based on wavelet ridge extraction to identify some characteristics of alternating morphological units (e.g., pools to riffles). We used four hydro-morphological variables (velocity, hydraulic radius, bed shear stress, local channel direction angle). We find that the wavelengths are consistent with the values of the literature, and the use of a multivariate approach yields more robust results and ensures a consistent covariance of flow variables.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-381, https://doi.org/10.5194/hess-2019-381, 2019
Manuscript not accepted for further review
Short summary
Short summary
This Mediterranean climatic classification is useful in following up water resources management and ecohydrological applications. Climatic classes ranged from the most seasonal and dry in the South to the least seasonal and most humid in the North, showing up the climatic continuity and change trends visibility. The climate change impact simulated under RCP scenarios showed an increase of the average seasonality and aridity, with north classes slowly evolving towards moderate southern classes.
Camille Jourdan, Valérie Borrell-Estupina, David Sebag, Jean-Jacques Braun, Jean-Pierre Bedimo Bedimo, François Colin, Armand Crabit, Alain Fezeu, Cécile Llovel, Jules Rémy Ndam Ngoupayou, Benjamin Ngounou Ngatcha, Sandra Van-Exter, Eric Servat, and Roger Moussa
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-116, https://doi.org/10.5194/hess-2019-116, 2019
Publication in HESS not foreseen
Short summary
Short summary
In the theme Panta Rhei, this paper aims to develop a combined approach of data acquisition and a new semi-distributed non-stationary model taking into account land-use changes to reconstruct and predict annual runoff on an urban catchment in a data-sparse context. We use historical data and deploy a complementary short-term spatially-dense dedicated instrumentation. Applications were conducted on the tropical Mefou catchment (Yaoundé, Cameroon) to assess contributions of sub-catchments.
Roger Moussa and Jean-Paul Lhomme
Hydrol. Earth Syst. Sci., 20, 4867–4879, https://doi.org/10.5194/hess-20-4867-2016, https://doi.org/10.5194/hess-20-4867-2016, 2016
Short summary
Short summary
A new physically based formulation is proposed to extend the Budyko framework under non-steady-state conditions, taking into account the change in water storage. The new formulation, which introduces an additional parameter, represents a generic framework applicable to any Budyko function at various time steps. It is compared to other formulations from the literature and the analytical solution of Greve et al. (2016) appears to be a particular case.
Jean-Paul Lhomme and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 4857–4865, https://doi.org/10.5194/hess-20-4857-2016, https://doi.org/10.5194/hess-20-4857-2016, 2016
Short summary
Short summary
The Budyko functions are matched with the complementary evaporation relationship. We show that there is a functional dependence between the Budyko functions and the drying power of the air. Examining the case where potential evaporation is calculated by means of a Priestley–Taylor type equation with a varying coefficient, we show that this coefficient should have a specified value as a function of the Budyko shape parameter and the aridity index.
Bruno Cheviron and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 3799–3830, https://doi.org/10.5194/hess-20-3799-2016, https://doi.org/10.5194/hess-20-3799-2016, 2016
Short summary
Short summary
This review paper investigates the determinants of modelling choices for numerous applications of 1-D free-surface flow and morphodynamics in hydrology and hydraulics. Each case study has a signature composed of given contexts (spatiotemporal scales, flow typology, and phenomenology) and chosen concepts (refinement and subscales of the flow model). This review proposes a normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
C. Leauthaud, G. Belaud, S. Duvail, R. Moussa, O. Grünberger, and J. Albergel
Hydrol. Earth Syst. Sci., 17, 3059–3075, https://doi.org/10.5194/hess-17-3059-2013, https://doi.org/10.5194/hess-17-3059-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Inferring heavy tails of flood distributions through hydrograph recession analysis
Landscape structures regulate the contrasting response of recession along rainfall amounts
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Regional significance of historical trends and step changes in Australian streamflow
River flooding mechanisms and their changes in Europe revealed by explainable machine learning
Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau
A data-driven method for estimating the composition of end-members from stream water chemistry time series
Evaporation loss estimation of the river-lake continuum of arid inland river: Evidence from stable isotopes
Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate
Causal effects of dams and land cover changes on flood changes in mainland China
Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?
Simultaneously determining global sensitivities of model parameters and model structure
Technical note: Calculation scripts for ensemble hydrograph separation
A line-integral-based method to partition climate and catchment effects on runoff
Technical note: A two-sided affine power scaling relationship to represent the concentration–discharge relationship
On the flood peak distributions over China
New water fractions and transit time distributions at Plynlimon, Wales, estimated from stable water isotopes in precipitation and streamflow
Does the weighting of climate simulations result in a better quantification of hydrological impacts?
A 50-year analysis of hydrological trends and processes in a Mediterranean catchment
Technical Note: On the puzzling similarity of two water balance formulas – Turc–Mezentsev vs. Tixeront–Fu
Climate or land cover variations: what is driving observed changes in river peak flows? A data-based attribution study
Quantifying new water fractions and transit time distributions using ensemble hydrograph separation: theory and benchmark tests
Land cover effects on hydrologic services under a precipitation gradient
Technical note: Long-term persistence loss of urban streams as a metric for catchment classification
Responses of runoff to historical and future climate variability over China
Characterization and evaluation of controls on post-fire streamflow response across western US watersheds
Analysis and modelling of a 9.3 kyr palaeoflood record: correlations, clustering, and cycles
Climate change impacts on Yangtze River discharge at the Three Gorges Dam
Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?
Delineation of homogenous regions using hydrological variables predicted by projection pursuit regression
Multivariate hydrological data assimilation of soil moisture and groundwater head
On the propagation of diel signals in river networks using analytic solutions of flow equations
Dominant climatic factors driving annual runoff changes at the catchment scale across China
Data assimilation in integrated hydrological modelling in the presence of observation bias
Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010)
Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis
Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis
Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
Time series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of north-central Portugal
Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance
Attribution of high resolution streamflow trends in Western Austria – an approach based on climate and discharge station data
A constraint-based search algorithm for parameter identification of environmental models
Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA
Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
Streamflow input to Lake Athabasca, Canada
Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin
Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024, https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Short summary
We developed hybrid schemes to enhance national-scale streamflow predictions, combining long short-term memory (LSTM) with a physically based hydrological model (PBM). A comprehensive evaluation of hybrid setups across Denmark indicates that LSTM models forced by climate data and catchment attributes perform well in many regions but face challenges in groundwater-dependent basins. The hybrid schemes supported by PBMs perform better in reproducing long-term streamflow behavior and extreme events.
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023, https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Short summary
Accurately assessing heavy-tailed flood behavior with limited data records is challenging and can lead to inaccurate hazard estimates. Our research introduces a new index that uses hydrograph recession to identify heavy-tailed flood behavior, compare severity, and produce reliable results with short data records. This index overcomes the limitations of current metrics, which lack physical meaning and require long records. It thus provides valuable insight into the flood hazard of river basins.
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023, https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Short summary
Streamflow recession, shaped by landscape and rainfall, is not well understood. This study examines their combined impact using data from 19 mountainous rivers. Longer, gentler hillslopes promote flow and reduce nonlinearity, while larger catchments with more rainfall show increased landscape heterogeneity. In small catchments, the exponent decreases with rainfall, indicating less landscape and runoff variation. Further research is needed to validate these findings across diverse regions.
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023, https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Short summary
Measuring the similarity of distributions of water is a useful tool for model calibration and assessment. We provide a new way of measuring this similarity for streamflow time series. It is derived from the concept of the amount of
workrequired to rearrange one mass distribution into the other. We also use similar mathematical techniques for defining a type of
averagebetween water distributions.
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023, https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Short summary
Reservoir regulation affects various streamflow characteristics. Still, information on when water is stored in and released from reservoirs is hardly available. We develop a statistical model to reconstruct reservoir operation signals from observed streamflow time series. By applying this approach to 74 catchments in the Alps, we find that reservoir management varies by catchment elevation and that seasonal redistribution from summer to winter is strongest in high-elevation catchments.
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023, https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary
Short summary
We used statistical tests to detect annual and seasonal streamflow trends and step changes across Australia. The Murray–Darling Basin and other rivers in the southern and north-eastern areas showed decreasing trends. Only rivers in the Timor Sea region in northern Australia showed significant increasing trends. Our results assist with infrastructure planning and management of water resources. This study was undertaken by the Bureau of Meteorology with its responsibility under the Water Act 2007.
Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 26, 6339–6359, https://doi.org/10.5194/hess-26-6339-2022, https://doi.org/10.5194/hess-26-6339-2022, 2022
Short summary
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Jiarong Wang, Xi Chen, Man Gao, Qi Hu, and Jintao Liu
Hydrol. Earth Syst. Sci., 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022, https://doi.org/10.5194/hess-26-3901-2022, 2022
Short summary
Short summary
The accelerated climate warming in the Tibetan Plateau after 1997 has strong consequences for hydrology, geography, and social wellbeing. In hydrology, the change in streamflow as a result of changes in dynamic water storage originating from glacier melt and permafrost thawing in a warming climate directly affects the available water resources for societies of some of the most populated nations in the world.
Esther Xu Fei and Ciaran Joseph Harman
Hydrol. Earth Syst. Sci., 26, 1977–1991, https://doi.org/10.5194/hess-26-1977-2022, https://doi.org/10.5194/hess-26-1977-2022, 2022
Short summary
Short summary
Water in streams is a mixture of water from many sources. It is sometimes possible to identify the chemical fingerprint of each source and track the time-varying contribution of that source to the total flow rate. But what if you do not know the chemical fingerprint of each source? Can you simultaneously identify the sources (called end-members), and separate the water into contributions from each, using only samples of water from the stream? Here we suggest a method for doing just that.
Guofeng Zhu, Zhigang Sun, Yuanxiao Xu, Yuwei Liu, Zhuanxia Zhang, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-75, https://doi.org/10.5194/hess-2022-75, 2022
Revised manuscript not accepted
Short summary
Short summary
We analyzed the stable isotopic composition of surface water and estimated its evaporative loss in the Shiyang River Basin. The characteristics of stable isotopes in surface water show a gradual enrichment from mountainous areas to deserts, and the evaporation loss of surface water also shows a gradually increasing trend from upstream to downstream. The study of evaporative losses in the river-lake continuum contributes to the sustainable use of water resources.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Weifei Yang, Changlai Xiao, Zhihao Zhang, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 25, 1747–1760, https://doi.org/10.5194/hess-25-1747-2021, https://doi.org/10.5194/hess-25-1747-2021, 2021
Short summary
Short summary
This study analyzed the effectiveness of the conductivity mass balance (CMB) method for correcting the Eckhardt method. The results showed that the approach of calibrating the Eckhardt method against the CMB method provides a
falsecalibration of total baseflow by offsetting the inherent biases in the baseflow sequences generated by the two methods. The reason for this phenomenon is the baseflow series generated by the two methods containing different transient water sources.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Mingguo Zheng
Hydrol. Earth Syst. Sci., 24, 2365–2378, https://doi.org/10.5194/hess-24-2365-2020, https://doi.org/10.5194/hess-24-2365-2020, 2020
Short summary
Short summary
This paper developed a mathematically precise method to partition climate and catchment effects on streamflow. The method reveals that both the change magnitude and pathway (timing of change), not the magnitude alone, dictate the partition unless for a linear system. The method has wide relevance. For example, it suggests that the global warming effect of carbon emission is path dependent, and an optimal pathway would facilitate a higher global budget of carbon emission.
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci., 24, 1823–1830, https://doi.org/10.5194/hess-24-1823-2020, https://doi.org/10.5194/hess-24-1823-2020, 2020
Short summary
Short summary
This paper deals with the mathematical representation of concentration–discharge relationships. We propose a two-sided affine power scaling relationship (2S-APS) as an alternative to the classic one-sided power scaling relationship (commonly known as
power law). We also discuss the identification of the parameters of the proposed relationship, using an appropriate numerical criterion, based on high-frequency chemical time series of the Orgeval-ORACLE observatory.
Long Yang, Lachun Wang, Xiang Li, and Jie Gao
Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019, https://doi.org/10.5194/hess-23-5133-2019, 2019
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019, https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
Short summary
We describe, present, and make publicly available two extensive data sets of stable water isotopes in streamwater and precipitation at Plynlimon, Wales, consisting of measurements at 7-hourly intervals for 17 months and at weekly intervals for 4.25 years. We use these data to calculate new water fractions and transit time distributions for different discharge rates and seasons, thus quantifying the contribution of recent precipitation to streamflow under different conditions.
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019, https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Nathalie Folton, Eric Martin, Patrick Arnaud, Pierre L'Hermite, and Mathieu Tolsa
Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, https://doi.org/10.5194/hess-23-2699-2019, 2019
Short summary
Short summary
The long-term study of precipitation, flows, flood or drought mechanisms, in the Réal Collobrier research Watershed, located in South-East France, in the Mediterranean forest, improves knowledge of the water cycle and is unique tool for understanding of how catchments function. This study shows a small decrease in rainfall and a marked tendency towards a decrease in the water resources of the catchment in response to climate trends, with a consistent increase in drought severity and duration.
Vazken Andréassian and Tewfik Sari
Hydrol. Earth Syst. Sci., 23, 2339–2350, https://doi.org/10.5194/hess-23-2339-2019, https://doi.org/10.5194/hess-23-2339-2019, 2019
Short summary
Short summary
In this Technical Note, we present two water balance formulas: the Turc–Mezentsev and Tixeront–Fu formulas. These formulas have a puzzling numerical similarity, which we discuss in detail and try to interpret mathematically and hydrologically.
Jan De Niel and Patrick Willems
Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, https://doi.org/10.5194/hess-23-871-2019, 2019
James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 303–349, https://doi.org/10.5194/hess-23-303-2019, https://doi.org/10.5194/hess-23-303-2019, 2019
Short summary
Short summary
How long does it take for raindrops to become streamflow? Here I propose a new approach to this old problem. I show how we can use time series of isotope data to measure the average fraction of same-day rainfall appearing in streamflow, even if this fraction varies greatly from rainstorm to rainstorm. I show that we can quantify how this fraction changes from small rainstorms to big ones, and from high flows to low flows, and how it changes with the lag time between rainfall and streamflow.
Ane Zabaleta, Eneko Garmendia, Petr Mariel, Ibon Tamayo, and Iñaki Antigüedad
Hydrol. Earth Syst. Sci., 22, 5227–5241, https://doi.org/10.5194/hess-22-5227-2018, https://doi.org/10.5194/hess-22-5227-2018, 2018
Short summary
Short summary
This study establishes relationships between land cover and river discharge. Using discharge data from 20 catchments of the Bay of Biscay findings showed the influence of land cover on discharge changes with the amount of precipitation, with lower annual water resources associated with the greater presence of forests. Results obtained illustrate the relevance of land planning to the management of water resources and the opportunity to consider it in future climate-change adaptation strategies.
Dusan Jovanovic, Tijana Jovanovic, Alfonso Mejía, Jon Hathaway, and Edoardo Daly
Hydrol. Earth Syst. Sci., 22, 3551–3559, https://doi.org/10.5194/hess-22-3551-2018, https://doi.org/10.5194/hess-22-3551-2018, 2018
Short summary
Short summary
A relationship between the Hurst (H) exponent (a long-term correlation coefficient) within a flow time series and various catchment characteristics for a number of catchments in the USA and Australia was investigated. A negative relationship with imperviousness was identified, which allowed for an efficient catchment classification, thus making the H exponent a useful metric to quantitatively assess the impact of catchment imperviousness on streamflow regime.
Chuanhao Wu, Bill X. Hu, Guoru Huang, Peng Wang, and Kai Xu
Hydrol. Earth Syst. Sci., 22, 1971–1991, https://doi.org/10.5194/hess-22-1971-2018, https://doi.org/10.5194/hess-22-1971-2018, 2018
Short summary
Short summary
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal–spatial patterns of water resources. In this paper, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future climate variability over China at both grid and catchment scales. The results help to better understand the hydrological effects of climate change and adapt to a changing environment.
Samuel Saxe, Terri S. Hogue, and Lauren Hay
Hydrol. Earth Syst. Sci., 22, 1221–1237, https://doi.org/10.5194/hess-22-1221-2018, https://doi.org/10.5194/hess-22-1221-2018, 2018
Short summary
Short summary
We investigate the impact of wildfire on watershed flow regimes, examining responses across the western United States. On a national scale, our results confirm the work of prior studies: that low, high, and peak flows typically increase following a wildfire. Regionally, results are more variable and sometimes contradictory. Our results may be significant in justifying the calibration of watershed models and in contributing to the overall observational analysis of post-fire streamflow response.
Annette Witt, Bruce D. Malamud, Clara Mangili, and Achim Brauer
Hydrol. Earth Syst. Sci., 21, 5547–5581, https://doi.org/10.5194/hess-21-5547-2017, https://doi.org/10.5194/hess-21-5547-2017, 2017
Short summary
Short summary
Here we present a unique 9.5 m palaeo-lacustrine record of 771 palaeofloods which occurred over a period of 10 000 years in the Piànico–Sèllere basin (southern Alps) during an interglacial period in the Pleistocene (sometime between 400 000 and 800 000 years ago). We analyse the palaeoflood series correlation, clustering, and cyclicity properties, finding a long-range cyclicity with a period of about 2030 years superimposed onto a fractional noise.
Steve J. Birkinshaw, Selma B. Guerreiro, Alex Nicholson, Qiuhua Liang, Paul Quinn, Lili Zhang, Bin He, Junxian Yin, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 21, 1911–1927, https://doi.org/10.5194/hess-21-1911-2017, https://doi.org/10.5194/hess-21-1911-2017, 2017
Short summary
Short summary
The Yangtze River basin in China is home to more than 400 million people and susceptible to major floods. We used projections of future precipitation and temperature from 35 of the most recent global climate models and applied this to a hydrological model of the Yangtze. Changes in the annual discharge varied between a 29.8 % decrease and a 16.0 % increase. The main reason for the difference between the models was the predicted expansion of the summer monsoon north and and west into the basin.
Maurizio Mazzoleni, Martin Verlaan, Leonardo Alfonso, Martina Monego, Daniele Norbiato, Miche Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 839–861, https://doi.org/10.5194/hess-21-839-2017, https://doi.org/10.5194/hess-21-839-2017, 2017
Short summary
Short summary
This study assesses the potential use of crowdsourced data in hydrological modeling, which are characterized by irregular availability and variable accuracy. We show that even data with these characteristics can improve flood prediction if properly integrated into hydrological models. This study provides technological support to citizen observatories of water, in which citizens can play an active role in capturing information, leading to improved model forecasts and better flood management.
Martin Durocher, Fateh Chebana, and Taha B. M. J. Ouarda
Hydrol. Earth Syst. Sci., 20, 4717–4729, https://doi.org/10.5194/hess-20-4717-2016, https://doi.org/10.5194/hess-20-4717-2016, 2016
Short summary
Short summary
For regional flood frequency, it is challenging to identify regions with similar hydrological properties. Therefore, previous works have mainly proposed to use regions with similar physiographical properties. This research proposes instead to nonlinearly predict the desired hydrological properties before using them for delineation. The presented method is applied to a case study in Québec, Canada, and leads to hydrologically relevant regions, while enhancing predictions made inside them.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Morgan Fonley, Ricardo Mantilla, Scott J. Small, and Rodica Curtu
Hydrol. Earth Syst. Sci., 20, 2899–2912, https://doi.org/10.5194/hess-20-2899-2016, https://doi.org/10.5194/hess-20-2899-2016, 2016
Short summary
Short summary
We design and implement a theoretical experiment to show that, under low-flow conditions, observed streamflow discrepancies between early and late summer can be attributed to different flow velocities in the river network. By developing an analytic solution to represent flow along a given river network, we emphasize the dependence of streamflow amplitude and time delay on the geomorphology of the network. We also simulate using a realistic river network to highlight the effects of scale.
Zhongwei Huang, Hanbo Yang, and Dawen Yang
Hydrol. Earth Syst. Sci., 20, 2573–2587, https://doi.org/10.5194/hess-20-2573-2016, https://doi.org/10.5194/hess-20-2573-2016, 2016
Short summary
Short summary
The hydrologic processes have been influenced by different climatic factors. However, the dominant climatic factor driving annual runoff change is still unknown in many catchments in China. By using the climate elasticity method proposed by Yang and Yang (2011), the elasticity of runoff to climatic factors was estimated, and the dominant climatic factors driving annual runoff change were detected at catchment scale over China.
Jørn Rasmussen, Henrik Madsen, Karsten Høgh Jensen, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, https://doi.org/10.5194/hess-20-2103-2016, 2016
Short summary
Short summary
In the paper, observations are assimilated into a hydrological model in order to improve the model performance. Two methods for detecting and correcting systematic errors (bias) in groundwater head observations are used leading to improved results compared to standard assimilation methods which ignores any bias. This is demonstrated using both synthetic (user generated) observations and real-world observations.
Mohammed Achite and Sylvain Ouillon
Hydrol. Earth Syst. Sci., 20, 1355–1372, https://doi.org/10.5194/hess-20-1355-2016, https://doi.org/10.5194/hess-20-1355-2016, 2016
Short summary
Short summary
Changes of T, P, Q and sediment fluxes in a semi-arid basin little affected by human activities are analyzed from 40 years of measurements. T increased, P decreased, an earlier onset of first summer rains occurred. The flow regime shifted from perennial to intermittent. Sediment flux almost doubled every decade. The sediment regime shifted from two equivalent seasons of sediment delivery to a single major season regime. The C–Q rating curve ability declined due to enhanced hysteresis effects.
C. E. M. Lloyd, J. E. Freer, P. J. Johnes, and A. L. Collins
Hydrol. Earth Syst. Sci., 20, 625–632, https://doi.org/10.5194/hess-20-625-2016, https://doi.org/10.5194/hess-20-625-2016, 2016
Short summary
Short summary
This paper examines the current methodologies for quantifying storm behaviour through hysteresis analysis, and explores a new method. Each method is systematically tested and the impact on the results is examined. Recommendations are made regarding the most effective method of calculating a hysteresis index. This new method allows storm hysteresis behaviour to be directly compared between storms, parameters, and catchments, meaning it has wide application potential in water quality research.
W. Hu and B. C. Si
Hydrol. Earth Syst. Sci., 20, 571–587, https://doi.org/10.5194/hess-20-571-2016, https://doi.org/10.5194/hess-20-571-2016, 2016
Short summary
Short summary
Spatiotemporal SWC was decomposed into into three terms (spatial forcing, temporal forcing, and interactions between spatial and temporal forcing) for near surface and root zone; Empirical orthogonal function indicated that underlying patterns exist in the interaction term at small watershed scales; Estimation of spatially distributed SWC benefits from decomposition of the interaction term; The suggested decomposition of SWC with time stability analysis has potential in SWC downscaling.
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016, https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary
Short summary
Parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. A method for parameter optimization with particle swam optimization (PSO) algorithm has been proposed for physically based distributed hydrological model in catchment flood forecasting and validated in southern China. It has found that the appropriate particle number and maximum evolution number of PSO algorithm are 20 and 30 respectively.
D. Hawtree, J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A.-K. Boulet, F. Tavares-Wahren, and K.-H. Feger
Hydrol. Earth Syst. Sci., 19, 3033–3045, https://doi.org/10.5194/hess-19-3033-2015, https://doi.org/10.5194/hess-19-3033-2015, 2015
J. Rasmussen, H. Madsen, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, https://doi.org/10.5194/hess-19-2999-2015, 2015
C. Kormann, T. Francke, M. Renner, and A. Bronstert
Hydrol. Earth Syst. Sci., 19, 1225–1245, https://doi.org/10.5194/hess-19-1225-2015, https://doi.org/10.5194/hess-19-1225-2015, 2015
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
S. G. Leibowitz, R. L. Comeleo, P. J. Wigington Jr., C. P. Weaver, P. E. Morefield, E. A. Sproles, and J. L. Ebersole
Hydrol. Earth Syst. Sci., 18, 3367–3392, https://doi.org/10.5194/hess-18-3367-2014, https://doi.org/10.5194/hess-18-3367-2014, 2014
J. Niu, J. Chen, and B. Sivakumar
Hydrol. Earth Syst. Sci., 18, 1475–1492, https://doi.org/10.5194/hess-18-1475-2014, https://doi.org/10.5194/hess-18-1475-2014, 2014
S. Galelli and A. Castelletti
Hydrol. Earth Syst. Sci., 17, 2669–2684, https://doi.org/10.5194/hess-17-2669-2013, https://doi.org/10.5194/hess-17-2669-2013, 2013
K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry
Hydrol. Earth Syst. Sci., 17, 1681–1691, https://doi.org/10.5194/hess-17-1681-2013, https://doi.org/10.5194/hess-17-1681-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
B. Gräler, M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 1281–1296, https://doi.org/10.5194/hess-17-1281-2013, https://doi.org/10.5194/hess-17-1281-2013, 2013
Cited articles
Alpert, P., Osetinsky, I., Ziv, B., and Shafir, H.: Semi-objective classification for daily synoptic systems: Application to the eastern
Mediterranean climate change, Int. J. Climatol., 24, 1001–1011, https://doi.org/10.1002/joc.1036, 2004.
Baccour, H., Slimani, M., and Cudennec, C.: Spatial structures of reference
evapotranspiration and climatic variables in Tunisia, Hydrolog. Sci. J., 57, 818–829, https://doi.org/10.1080/02626667.2012.672986, 2012.
Barredo, J. I., Mauri, A., Caudullo, G., and Dosio, A.: Assessing shifts of
Mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in Europe, in: Meteorology and Climatology of the Mediterranean and Black Seas, Springer, 235–251, 2019.
Barry, R. G. and Chorley, R. J.: Atmosphere, weather and climate, Routledge, 2009.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scient. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bergeron, T.: Über die dreidimensional verknüpfende Wetteranalyse:
Cammermeyer in Komm., Oslo Cammermeyers Boghandel, 1928.
Bholowalia, P. and Kumar, A.: EBK-means: A clustering technique based on
elbow method and k-means in WSN, Int. J. Comput. Appl., 105, 17–24, https://doi.org/10.5120/18405-9674, 2014.
Bois, P.: Contrôle de séries chronologiques corrélées par étude du cumul des résidus de la corrélation, in: Deuxièmes journées hydrologiques de l'ORSTOM à Montpellier, Paris, ORSTOM, 89–99, Colloques et Séminaires, Journées Hydrologiques de l'ORSTOM à Montpellier, 2, Montpellier (FRA), 16–17 September 1986, ISBN 2-7099-0865-4, 1987.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.: Classification
and Regression Trees, Taylor & Francis, 1984.
Carvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., and Rocha, A.:
Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation, Phys. Chem. Earth Pt. A/B/C, 94, 22–28, https://doi.org/10.1016/j.pce.2016.05.001, 2016.
Champeaux, J. and Tamburini, A.: Climatological zoning of France from
precipitation measurements (1971–1990) of the French climatological network,
Meteorologie (France), 14, 44-54, https://doi.org/10.4267/2042/51183, 1996.
Chéruy, F. and Aires, F.: Cluster Analysis of Cloud Properties over the
Southern European Mediterranean Area in Observations and a Model, Mon. Weather Rev., 137, 3161–3176, https://doi.org/10.1175/2009MWR2882.1, 2009.
Clerget, M.: Les types de temps en Méditerranée, Paper presented at
the Annales de géographie, Armand Colin, 1937.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.-P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C., and Paz, S.: Climate change and interconnected risks to sustainable development in the Mediterranean, Nat. Clim. Change, 8, 972–980, https://doi.org/10.1038/s41558-018-0299-2, 2018.
Cudennec, C., Leduc, C., and Koutsoyiannis, D.: Dryland hydrology in
Mediterranean regions – a review, Hydrolog. Sci. J./Journal des Sciences Hydrologiques, 52, 1077–1087, https://doi.org/10.1623/hysj.52.6.1077, 2007.
De Jager, A. L. and Vogt, J. V.: Development and demonstration of a structured hydrological feature coding system for Europe, Hydrolog. Sci. J., 55, 661–675, https://doi.org/10.1080/02626667.2010.490786, 2010.
Dell'Aquila, A., Mariotti, A., Bastin, S., Calmanti, S., Cavicchia, L., Deque, M., Djurdjevic, V., Dominguez, M., Gaertner, M., and Gualdi, S.:
Evaluation of simulated decadal variations over the Euro-Mediterranean region from ENSEMBLES to Med-CORDEX, Clim. Dynam., 51, 857–876,
https://doi.org/10.1007/s00382-016-3143-2, 2018.
Desbois, M., Seze, G., and Szejwach, G.: Automatic Classification of Clouds
on METEOSAT Imagery: Application to High-Level Clouds, J. Appl. Meteorol., 21, 401–412,
https://doi.org/10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2, 1982.
Douguédroit, A. and Lionello, P.: Temperature and precipitation in the
Mediterranean region: Present trends and future scenarios, in: Connections,
Mobilities, Urban Prospects and Environmental Threats: The Mediterranean in
Transition, Cambridge Scholars, Newcastle upon Tyne, UK, 2015.
Drobinski, P., Silva, N. D., Panthou, G., Bastin, S., Muller, C., Ahrens, B., Borga, M., Conte, D., Fosser, G., Giorgi, F., Güttler, I., Kotroni, V., Li, L., Morin, E., Önol, B., Quintana-Segui, P., Romera, R., and Torma, C. Z.: Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios, Clim. Dynam., 51, 1237–1257, https://doi.org/10.1007/s00382-016-3083-x, 2018.
Eveno, M., Planchon, O., Oszwald, J., Dubreuil, V., and Quénol, H.:
Variabilité et changement climatique en France de 1951 à 2010: analyse au moyen de la classification de Köppen et des “types de
climats annuels”, Climatologie, 13, 47–70, https://doi.org/10.4267/climatologie.1203, 2016.
Feki, H., Slimani, M., and Cudennec, C.: Incorporating elevation in rainfall
interpolation in Tunisia using geostatistical methods, Hydrolog. Sci. J., 57, 1294–1314, https://doi.org/10.1080/02626667.2012.710334, 2012.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Forgy, E. W.: Cluster analysis of multivariate data: efficiency versus
interpretability of classifications, Biometrics, 21, 768–769, 1965.
García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M.,
Lasanta-Martínez, T., and Beguería, S.: Mediterranean water resources in a global change scenario, Earth-Sci. Rev., 105, 121–139, https://doi.org/10.1016/j.earscirev.2011.01.006, 2011.
Giorgi, F., Regional climate modeling: Status and perspectives, Paper presented at the Journal de Physique IV (Proceedings), EDP sciences, 2006.
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information needs at the regional level: the CORDEX framework, World Meteorol. Organiz. Bull., 58, 175–183, 2009.
Haines, A., Finlayson, B., and McMahon, T.: A global classification of river
regimes, Appl. Geogr., 8, 255–272, https://doi.org/10.1016/0143-6228(88)90035-5, 1988.
Harrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., and
Sutra, J. P.: Ecophysiological and bioclimatic foundations for a global plant functional classification, J. Veg. Sci., 21, 300–317, https://doi.org/10.1111/j.1654-1103.2009.01144.x, 2010.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Holdridge, L. R.: Determination of world plant formations from simple climatic data, Science, 105, 367–368, https://doi.org/10.1126/science.105.2727.367, 1947.
Hotelling, H.: Analysis of a complex of statistical variables into principal
components, J. Educ. Psychol., 24, 417–441, https://doi.org/10.1037/h0071325, 1933.
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret,
U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut,
R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S.,
Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A
decade of Predictions in Ungauged Basins (PUB) – a review, Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Hreiche, A.: Modélisation conceptuelle de la transformation pluie-débit dans le contexte méditerranéen, Université Montpellier II – Sciences et Techniques du Languedoc, Montpellier, 2003.
Hreiche, A., Najem, W., and Bocquillon, C.: Hydrological impact simulations
of climate change on Lebanese coastal rivers/Simulations des impacts
hydrologiques du changement climatique sur les fleuves côtiers Libanais,
Hydrolog. Sci. J./Journal des Sciences Hydrologiques, 52, 1119–1133, https://doi.org/10.1623/hysj.52.6.1119, 2007.
IPCC: Climate Change 2013: The Physical Science Basis: Working Group I
contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Jolliffe, I. T.: Principal Component Analysis, Springer, 2002.
Köppen, W.: Das geographische System der Klimate, Borntraeger, 1936.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Koutroulis, A. G.: Dryland changes under different levels of global warming,
Sci. Total Environ., 655, 482–511, https://doi.org/10.1016/j.scitotenv.2018.11.215, 2019.
Krzanowski, W. J.: Principles of multivariate analysis: a user's perspective, Clarendon Press, 1988.
Lehner, B. and Grill, G.: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, 2013.
Lionello, P. and Scarascia, L.: The relation between climate change in the
Mediterranean region and global warming, Reg. Environ. Change, 18, 1481–1493, https://doi.org/10.1007/s10113-018-1290-1, 2018.
MacQueen, J.: Some methods for classification and analysis of multivariate
observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Univ. of Calif. Press, 1967.
Mather, J. R. and Yoshioka, G. A.: The role of climate in the distribution of vegetation, Ann. Assoc. Am. Geogr., 58, 29–41, https://doi.org/10.1111/j.1467-8306.1968.tb01634.x, 1968.
Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X.,
Anthony, S., Ray, R., Vose, R. S., and Gleason, B. E.: Global historical
climatology network-daily (GHCN-Daily), Version 3, 10, V5D21VHZ, NOAA National Climatic Data Center, 2012.
Merheb, M., Moussa, R., Abdallah, C., Colin, F., Perrin, C., and Baghdadi, N.: Hydrological response characteristics of Mediterranean catchments at
different time scales: a meta-analysis, Hydrolog. Sci. J., 61, 2520–2539, https://doi.org/10.1080/02626667.2016.1140174, 2016.
Milano, M., Ruelland, D., Fernandez, S., Dezetter, A., Fabre, J., Servat, E., Fritsch, J.-M., Ardoin-Bardin, S., and Thivet, G.: Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes, Hydrolog. Sci. J., 58, 498–518,
https://doi.org/10.1080/02626667.2013.774458, 2013.
Moreno, J. A. O.: Modelización del ciclo fenológico reproductor del olivo (Olea europaea L.), Universidad de Córdoba, Córdoba, 2014.
Moron, V., Robertson, A. W., Ward, M. N., and Ndiaye, O.: Weather types and
rainfall over Senegal. Part I: Observational analysis, J. Climate, 21, 266–287, https://doi.org/10.1175/2007JCLI1601.1, 2008.
NCEI: Ground weather station data, Global Historical Climatology Network, National Centers for Environmental Information, available at: https://www.ncdc.noaa.gov/ghcn-daily-description, last access: 8 September 2020.
Oueslati, O., De Girolamo, A. M., Abouabdillah, A., Kjeldsen, T. R., and Lo Porto, A.: Classifying the flow regimes of Mediterranean streams using
multivariate analysis, Hydrol. Process., 29, 4666–4682, https://doi.org/10.1002/hyp.10530, 2015.
Pearson, K.: Principal components analysis, London Edinburgh Dublin Philos. Mag. J. Sci., 6, 559–572, 1901.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the
Köppen–Geiger climate classification, Hydrol. Earth Syst. Sci., 11,
1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
PlanBleu: Les demandes en eau toujours satisfaites en Méditerranée
à l'horizon 2050? In Les Notes du Plan Bleu, in: Vol. #25, Plan Bleu PNUE/PAM, Sophia Antipolis, 2012.
Raymond, F., Ullmann, A., Camberlin, P., Drobinski, P., and Smith, C. C.:
Extreme dry spell detection and climatology over the Mediterranean Basin during the wet season, Geophys. Res. Lett., 43, 7196–7204,
https://doi.org/10.1002/2016GL069758, 2016.
Rivoire, P., Tramblay, Y., Neppel, L., Hertig, E., and Vicente-Serrano, S. M.: Impact of the dry-day definition on Mediterranean extreme dry-spell
analysis, Nat. Hazards Earth Syst. Sci., 19, 1629–1638,
https://doi.org/10.5194/nhess-19-1629-2019, 2019.
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Rodwell, M. J. and Hoskins, B. J.: Monsoons and the dynamics of deserts, Q. J. Roy. Meteorol. Soc., 122, 1385–1404, https://doi.org/10.1002/qj.49712253408, 1996.
Romera, R., Sánchez, E., Domínguez, M., Gaertner, M. Á., and
Gallardo, C.: Evaluation of present-climate precipitation in 25 km resolution regional climate model simulations over Northwest Africa, Clim.
Res., 66, 125–139, https://doi.org/10.3354/cr01330, 2015.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., and Lombardi, E.: MED-CORDEX
initiative for Mediterranean climate studies, B. Am. Meteorol. Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Sauquet, E., Richard, B., Devers, A., and Prudhomme, C.: Water restrictions under climate change: a Rhône–Mediterranean perspective combining bottom-up and top-down approaches, Hydrol. Earth Syst. Sci., 23, 3683–3710, https://doi.org/10.5194/hess-23-3683-2019, 2019.
Slimani, M., Cudennec, C., and Feki, H.: Structure of the rainfall gradient
in the Mediterranean–Sahara transition in Tunisia: geographical determinants and seasonality, Hydrol. Sci. J., 52, 1088–1102, https://doi.org/10.1623/hysj.52.6.1088, 2007.
Sönmez, Ý. and Kömüþcü, A. Ü.: Reclassification
of rainfall regions of Turkey by K-means methodology and their temporal
variability in relation to North Atlantic Oscillation (NAO), Theor. Appl. Climatol., 106, 499–510, https://doi.org/10.1007/s00704-011-0449-1, 2011.
Thornthwaite, C. W.: An approach toward a rational classification of climate, Geogr. Rev., 38, 55–94, https://doi.org/10.2307/210739, 1948.
Toth, E.: Catchment classification based on characterisation of streamflow
and precipitation time series, Hydrol. Earth Syst. Sci., 17, 1149–1159, https://doi.org/10.5194/hess-17-1149-2013, 2013.
Tramblay, Y. and Somot, S.: Future evolution of extreme precipitation in the
Mediterranean, Climatic Change, 151, 289–302, https://doi.org/10.1007/s10584-018-2300-5, 2018.
Tramblay, Y., Ruelland, D., Somot, S., Bouaicha, R., and Servat, E.: High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco, Hydrol. Earth Syst. Sci., 17, 3721–3739, https://doi.org/10.5194/hess-17-3721-2013, 2013.
Trigo, I. F., Davies, T. D., and Bigg, G. R.: Objective climatology of cyclones in the Mediterranean region, J. Climate, 12, 1685–1696,
https://doi.org/10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2, 1999.
Turc, L.: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date, Ann. Agron., 12, 13–49, 1961.
Unal, Y., Kindap, T., and Karaca, M.: Redefining the climate zones of Turkey
using cluster analysis, Int. J. Climatol., 23, 1045–1055, https://doi.org/10.1002/joc.910, 2003.
Verdier, J. and Viollet, P.-L.: Les tensions sur l'eau en Europe et dans le
bassin méditerranéen. Des crises de l'eau d'ici 2050, La Houille
Blanche, 6, 102–107, https://doi.org/10.1051/lhb/20150075, 2015.
Vicente-Serrano, S. M., González-Hidalgo, J. C., de Luis, M., and
Raventós, J.: Drought patterns in the Mediterranean area: the Valencia
region (eastern Spain), Clim. Res., 26, 5–15, https://doi.org/10.3354/cr026005, 2004.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification and Hydrologic Similarity, Geogr. Compass, 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007.
Wainwright, J. and Thornes, J. B.: Environmental issues in the Mediterraean,
1st edn., Routledge, London, 512 pp., https://doi.org/10.4324/9780203495490, 2004.
WorldClim: Worldclim-2 data, available at: https://www.worldclim.org/data/worldclim21.html, last access: 8 September 2020.
Zittis, G.: Observed rainfall trends and precipitation uncertainty in the
vicinity of the Mediterranean, Middle East and North Africa, Theor. Appl. Climatol., 134, 1207–1230, https://doi.org/10.1007/s00704-017-2333-0, 2018.
Short summary
With serious concerns about global change rising in the Mediterranean, we established a new climatic classification to follow hydrological and ecohydrological activities. The classification coincided with a geographical distribution ranging from the most seasonal and driest class in the south to the least seasonal and most humid in the north. RCM scenarios showed that northern classes evolve to southern ones with shorter humid seasons and earlier snowmelt which might affect hydrologic regimes.
With serious concerns about global change rising in the Mediterranean, we established a new...