Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3399-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-3399-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution and dynamics of the vertical temperature profile in an oligotrophic lake
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
Karmen Babić
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology,
Eggenstein-Leopoldshafen, Karlsruhe, 76344, Germany
Mirko Orlić
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
Related authors
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022, https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Short summary
We develop a simple 1-D model for the prediction of the vertical temperature profiles in small, warm lakes. The model uses routinely measured meteorological variables as well as UVB radiation and yearly mean temperature data. It can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022, https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Short summary
We develop a simple 1-D model for the prediction of the vertical temperature profiles in small, warm lakes. The model uses routinely measured meteorological variables as well as UVB radiation and yearly mean temperature data. It can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Maurin Zouzoua, Fabienne Lohou, Paul Assamoi, Marie Lothon, Véronique Yoboue, Cheikh Dione, Norbert Kalthoff, Bianca Adler, Karmen Babić, Xabier Pedruzo-Bagazgoitia, and Solène Derrien
Atmos. Chem. Phys., 21, 2027–2051, https://doi.org/10.5194/acp-21-2027-2021, https://doi.org/10.5194/acp-21-2027-2021, 2021
Short summary
Short summary
Based on a field experiment conducted in June and July 2016, we analyzed the daytime breakup of continental low-level stratiform clouds over southern West Africa in order to provide complementary guidance for model evaluation during the monsoon season. Those clouds exhibit weaker temperature and moisture jumps at the top compared to marine stratiform clouds. Their lifetime and the transition towards shallow convective clouds during daytime hours depend on their coupling with the surface.
Barbara Altstädter, Konrad Deetz, Bernhard Vogel, Karmen Babić, Cheikh Dione, Federica Pacifico, Corinne Jambert, Friederike Ebus, Konrad Bärfuss, Falk Pätzold, Astrid Lampert, Bianca Adler, Norbert Kalthoff, and Fabienne Lohou
Atmos. Chem. Phys., 20, 7911–7928, https://doi.org/10.5194/acp-20-7911-2020, https://doi.org/10.5194/acp-20-7911-2020, 2020
Short summary
Short summary
We present the high vertical variability of the black carbon (BC) mass concentration measured with the unmanned aerial system ALADINA during the field experiment of DACCIWA. The COSMO-ART model output was applied for the campaign period and is compared with the observational BC data during a case study on 14–15 July 2016. Enhanced BC concentrations were related to transport processes to the measurement site by maritime inflow and not to local emissions as initially expected.
Xabier Pedruzo-Bagazgoitia, Stephan R. de Roode, Bianca Adler, Karmen Babić, Cheikh Dione, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 20, 2735–2754, https://doi.org/10.5194/acp-20-2735-2020, https://doi.org/10.5194/acp-20-2735-2020, 2020
Short summary
Short summary
Using a high-resolution model we simulate the transition from night to day clouds on southern West Africa using observations from the DACCIWA project. We find that the radiative effects of clouds help mantain a thick cloud layer in the night, while the mixing of cloud air with air above during the day, aided by moisture and heat fluxes at the surface, thins this layer and promotes its transition to other clouds. The effect of changing wind with height accelerates the transition.
Fabienne Lohou, Norbert Kalthoff, Bianca Adler, Karmen Babić, Cheikh Dione, Marie Lothon, Xabier Pedruzo-Bagazgoitia, and Maurin Zouzoua
Atmos. Chem. Phys., 20, 2263–2275, https://doi.org/10.5194/acp-20-2263-2020, https://doi.org/10.5194/acp-20-2263-2020, 2020
Short summary
Short summary
A conceptual model of the low-level stratiform clouds (LLSCs), which develop almost every night in southern West Africa, is built with the dataset acquired during the DACCIWA (Dynamics Aerosol Chemistry Cloud Interactions in West Africa) ground-based field experiment. Several processes occur during the four phases composing this diurnal cycle: the cooling of the air until saturation (stable and jet phases), LLSC and low-level jet interactions (stratus phase), and LLSC breakup (convective phase).
Karmen Babić, Norbert Kalthoff, Bianca Adler, Julian F. Quinting, Fabienne Lohou, Cheikh Dione, and Marie Lothon
Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019, https://doi.org/10.5194/acp-19-13489-2019, 2019
Short summary
Short summary
This study investigates differences in atmospheric conditions between nights with and without low-level stratus clouds (LLCs) over southern West Africa. We use high-quality observations collected during 2016 summer monsoon season and the ERA5 reanalysis data set. Our results show that the formation of LLCs depends on the interplay between the onset time and strength of the nocturnal low-level jet, horizontal cold-air advection, and the overall moisture level in the whole region.
Cheikh Dione, Fabienne Lohou, Marie Lothon, Bianca Adler, Karmen Babić, Norbert Kalthoff, Xabier Pedruzo-Bagazgoitia, Yannick Bezombes, and Omar Gabella
Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019, https://doi.org/10.5194/acp-19-8979-2019, 2019
Short summary
Short summary
Low atmospheric dynamics and low-level cloud (LLC) macrophysical properties are analyzed using in situ and remote sensing data collected from 20 June to 30 July at Savè, Benin, during the DACCIWA field campaign in 2016. We find that the low-level jet (LLJ), LLCs, monsoon flow, and maritime inflow reveal a day-to-day variability. LLCs form at the same level as the jet core height. The cloud base height is stationary at night and remains below the jet. The cloud top height is found above the jet.
Sophie L. Haslett, Jonathan W. Taylor, Konrad Deetz, Bernhard Vogel, Karmen Babić, Norbert Kalthoff, Andreas Wieser, Cheikh Dione, Fabienne Lohou, Joel Brito, Régis Dupuy, Alfons Schwarzenboeck, Paul Zieger, and Hugh Coe
Atmos. Chem. Phys., 19, 1505–1520, https://doi.org/10.5194/acp-19-1505-2019, https://doi.org/10.5194/acp-19-1505-2019, 2019
Short summary
Short summary
As the population in West Africa grows and air pollution increases, it is becoming ever more important to understand the effects of this pollution on the climate and on health. Aerosol particles can grow by absorbing water from the air around them. This paper shows that during the monsoon season, aerosol particles in the region are likely to grow significantly because of the high moisture in the air. This means that climate effects from increasing pollution will be enhanced.
Karmen Babić, Bianca Adler, Norbert Kalthoff, Hendrik Andersen, Cheikh Dione, Fabienne Lohou, Marie Lothon, and Xabier Pedruzo-Bagazgoitia
Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019, https://doi.org/10.5194/acp-19-1281-2019, 2019
Short summary
Short summary
The first detailed observational analysis of the complete diurnal cycle of low-level clouds (LLC) and associated atmospheric processes over southern West Africa is performed using the data gathered within the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud-Interactions in West Africa) ground-based campaign. We find cooling related to the horizontal advection, which occurs in connection with the inflow of cool maritime air mass and a prominent low-level jet, to have the dominant role in LLC formation.
Bianca Adler, Karmen Babić, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, Cheikh Dione, Xabier Pedruzo-Bagazgoitia, and Hendrik Andersen
Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019, https://doi.org/10.5194/acp-19-663-2019, 2019
Short summary
Short summary
This study deals with nocturnal stratiform low-level clouds that frequently form in the atmospheric boundary layer over southern West Africa. We use observational data from 11 nights to characterize the clouds and intranight variability of boundary layer conditions as well as to assess the physical processes relevant for cloud formation. We find that cooling is crucial to reach saturation and a large part of the cooling is related to horizontal advection of cool air from the Gulf of Guinea.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
Norbert Kalthoff, Fabienne Lohou, Barbara Brooks, Gbenga Jegede, Bianca Adler, Karmen Babić, Cheikh Dione, Adewale Ajao, Leonard K. Amekudzi, Jeffrey N. A. Aryee, Muritala Ayoola, Geoffrey Bessardon, Sylvester K. Danuor, Jan Handwerker, Martin Kohler, Marie Lothon, Xabier Pedruzo-Bagazgoitia, Victoria Smith, Lukman Sunmonu, Andreas Wieser, Andreas H. Fink, and Peter Knippertz
Atmos. Chem. Phys., 18, 2913–2928, https://doi.org/10.5194/acp-18-2913-2018, https://doi.org/10.5194/acp-18-2913-2018, 2018
Short summary
Short summary
Extended low-level stratus clouds (LLC) form frequently in southern West Africa during the night-time and persist long into the next day. They affect the radiation budget, atmospheric boundary-layer (BL) evolution and regional climate. The relevant processes governing their formation and dissolution are not fully understood. Thus, a field campaign was conducted in summer 2016, which provided a comprehensive data set for process studies, specifically of interactions between LLC and BL conditions.
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
G. Poljak, M. T. Prtenjak, M. Kvakić, N. Strelec Mahović, and K. Babić
Ann. Geophys., 32, 401–420, https://doi.org/10.5194/angeo-32-401-2014, https://doi.org/10.5194/angeo-32-401-2014, 2014
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Drastic decline of flood pulse in the Cambodian floodplains (Mekong River and Tonle Sap system)
Seasonality of density currents induced by differential cooling
Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques
Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain)
Contrasting hydrological and thermal intensities determine seasonal lake-level variations – a case study at Paiku Co on the southern Tibetan Plateau
Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes
A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water
Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments
Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle
Reliable reference for the methane concentrations in Lake Kivu at the beginning of industrial exploitation
Small dams alter thermal regimes of downstream water
Oxycline oscillations induced by internal waves in deep Lake Iseo
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations
New profiling and mooring records help to assess variability of Lake Issyk-Kul and reveal unknown features of its thermohaline structure
Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai–Tibet Plateau: using 222Rn and stable isotopes
Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: an interdisciplinary study
Active heat pulse sensing of 3-D-flow fields in streambeds
Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations
Effectiveness of distributed temperature measurements for early detection of piping in river embankments
Citizen observations contributing to flood modelling: opportunities and challenges
Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates
Technical note: Stage and water width measurement of a mountain stream using a simple time-lapse camera
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
Information content of stream level class data for hydrological model calibration
Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands
Technical Note: Monitoring of unsteady open channel flows using the continuous slope-area method
Application of CryoSat-2 altimetry data for river analysis and modelling
Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)
Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia
Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China
DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry
The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research
A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river
Characterization of sediment layer composition in a shallow lake: from open water zones to reed belt areas
Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study
Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva
Historic maps as a data source for socio-hydrology: a case study of the Lake Balaton wetland system, Hungary
Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain
Flood discharge measurement of a mountain river – Nanshih River in Taiwan
Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland
Measurement of spatial and temporal fine sediment dynamics in a small river
Technical Note: How image processing facilitates the rising bubble technique for discharge measurement
Discharge estimation in a backwater affected meandering river
Ephemeral stream sensor design using state loggers
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023, https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Short summary
The Arctic is warming quickly and influencing lake water balances. We used water isotope concentrations taken from samples of 25 lakes in the Canadian Arctic and estimated the average ratio of evaporation to inflow (E / I) for each lake. The ratio of watershed area (the area that flows into the lake) to lake area (WA / LA) strongly predicted E / I, as lakes with relatively smaller watersheds received less inflow. The WA / LA could be used to predict the vulnerability of Arctic lakes to future change.
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023, https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Short summary
Vegetation is commonly found in rivers and channels. Using field investigations, we evaluated the influence of different vegetation coverages on the flow and mixing in the small naturally vegetated channel. The obtained results are expected to be helpful for practitioners, enlarge our still limited knowledge, and show the further required scientific directions for a better understanding of the influence of vegetation on the flow and mixing of dissolved substances in real natural conditions.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022, https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Short summary
We estimated how much of the water flowing into lakes during snowmelt replaced the pre-snowmelt lake water. Our data show that, as lake depth increases, the amount of water mixed into lakes decreased, because vertical mixing is reduced as lake depth increases. Our data also show that the water mixing into lakes is not solely snow-sourced but is a mixture of snowmelt and soil water. These results are relevant for lake biogeochemistry given the unique properties of snowmelt runoff.
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022, https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Short summary
River networks are highly dynamical. Characterizing expansion and retraction of flowing streams is a significant scientific challenge. Electrical resistance sensors were used to monitor stream network patterns in an alpine catchment. Our data show the presence of spatial heterogeneity in network dynamics and that the active length is more sensitive than discharge to small rain events. The study unravels potentials and limitations of the sensors for the characterization of temporary streams.
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
Samuel De Xun Chua, Xi Xi Lu, Chantha Oeurng, Ty Sok, and Carl Grundy-Warr
Hydrol. Earth Syst. Sci., 26, 609–625, https://doi.org/10.5194/hess-26-609-2022, https://doi.org/10.5194/hess-26-609-2022, 2022
Short summary
Short summary
We found that the annual flood at the Cambodian floodplains decreased from 1960 to 2019. Consequently, the Tonle Sap Lake, the largest lake in Southeast Asia, is shrinking. The results are worrying because the local fisheries and planting calendar might be disrupted. This drastic decline of flooding extent is caused mostly by local factors, namely water withdrawal for irrigation and channel incision from sand mining activities.
Tomy Doda, Cintia L. Ramón, Hugo N. Ulloa, Alfred Wüest, and Damien Bouffard
Hydrol. Earth Syst. Sci., 26, 331–353, https://doi.org/10.5194/hess-26-331-2022, https://doi.org/10.5194/hess-26-331-2022, 2022
Short summary
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
Ian Cartwright
Hydrol. Earth Syst. Sci., 26, 183–195, https://doi.org/10.5194/hess-26-183-2022, https://doi.org/10.5194/hess-26-183-2022, 2022
Short summary
Short summary
Using specific conductivity (SC) to estimate groundwater inflow to rivers is complicated by bank return waters, interflow, and flows off floodplains contributing to baseflow in all but the driest years. Using the maximum SC of the river in dry years to estimate the SC of groundwater produces the best baseflow vs. streamflow trends. The variable composition of baseflow hinders calibration of hydrograph-based techniques to estimate groundwater inflows.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Frederic Thalasso, Katey Walter Anthony, Olya Irzak, Ethan Chaleff, Laughlin Barker, Peter Anthony, Philip Hanke, and Rodrigo Gonzalez-Valencia
Hydrol. Earth Syst. Sci., 24, 6047–6058, https://doi.org/10.5194/hess-24-6047-2020, https://doi.org/10.5194/hess-24-6047-2020, 2020
Short summary
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020, https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4:
t95 % = 12 s; CO2:
t95 % = 10 s) while retaining a high equilibration ratio and accuracy.
Nguyen Thanh Duc, Samuel Silverstein, Martin Wik, Patrick Crill, David Bastviken, and Ruth K. Varner
Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, https://doi.org/10.5194/hess-24-3417-2020, 2020
Short summary
Short summary
Under rapid ongoing climate change, accurate quantification of natural greenhouse gas emissions in aquatic environments such as lakes and ponds is needed to understand regulation and feedbacks. Building on the rapid development in wireless communication, sensors, and computation technology, we present a low-cost, open-source, automated and remotely accessed and controlled device for carbon dioxide and methane fluxes from open-water environments along with tests showing their potential.
Erwin Rottler, Till Francke, Gerd Bürger, and Axel Bronstert
Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020, https://doi.org/10.5194/hess-24-1721-2020, 2020
Short summary
Short summary
In the attempt to identify and disentangle long-term impacts of changes in snow cover and precipitation along with reservoir constructions, we employ a set of analytical tools on hydro-climatic time series. We identify storage reservoirs as an important factor redistributing runoff from summer to winter. Furthermore, our results hint at more (intense) rainfall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation.
Bertram Boehrer, Wolf von Tümpling, Ange Mugisha, Christophe Rogemont, and Augusta Umutoni
Hydrol. Earth Syst. Sci., 23, 4707–4716, https://doi.org/10.5194/hess-23-4707-2019, https://doi.org/10.5194/hess-23-4707-2019, 2019
Short summary
Short summary
Dissolved methane in Lake Kivu (East Africa) represents a precious energy deposit, but the high gas loads have also been perceived as a threat by the local population. Our measurements confirm the huge amount of methane and carbon dioxide present, but do not support the current theory of a significant recharge. Direct measurements of gas pressure indicate no imminent danger due to limnic eruptions. A continuous survey is mandatory to support responsible action during industrial exploitation.
André Chandesris, Kris Van Looy, Jacob S. Diamond, and Yves Souchon
Hydrol. Earth Syst. Sci., 23, 4509–4525, https://doi.org/10.5194/hess-23-4509-2019, https://doi.org/10.5194/hess-23-4509-2019, 2019
Short summary
Short summary
We found that small dams in rivers alter the thermal regimes of downstream waters in two distinct ways: either only the downstream daily minimum temperatures increase, or both the downstream daily minimum and maximum temperatures increase. We further show that only two physical dam characteristics can explain this difference in temperature response: (1) residence time, and (2) surface area. These results may help managers prioritize efforts to restore the fragmented thermalscapes of rivers.
Giulia Valerio, Marco Pilotti, Maximilian Peter Lau, and Michael Hupfer
Hydrol. Earth Syst. Sci., 23, 1763–1777, https://doi.org/10.5194/hess-23-1763-2019, https://doi.org/10.5194/hess-23-1763-2019, 2019
Short summary
Short summary
This paper provides experimental evidence of the occurrence of large and periodic movements induced by the wind at 95 m in depth in Lake Iseo, where a permanent chemocline is located. These movements determine vertical oscillations of the oxycline up to 20 m. Accordingly, in 3 % of the sediment area alternating redox conditions occur, which might force unsteady sediment–water fluxes. This finding has major implications for the internal matter cycle in Lake Iseo.
Georgiy Kirillin, Ilya Aslamov, Matti Leppäranta, and Elisa Lindgren
Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018, https://doi.org/10.5194/hess-22-6493-2018, 2018
Short summary
Short summary
We have discovered transient appearances of strong turbulent mixing beneath the ice of an Arctic lake. Such mixing events increase heating of the ice base up to an order of magnitude and can significantly accelerate ice melting. The source of mixing was identified as oscillations of the entire lake water body triggered by strong winds over the lake surface. This previously unknown mechanism of ice melt may help understand the link between the climate conditions and the seasonal ice formation.
Peter O. Zavialov, Alexander S. Izhitskiy, Georgiy B. Kirillin, Valentina M. Khan, Boris V. Konovalov, Peter N. Makkaveev, Vadim V. Pelevin, Nikolay A. Rimskiy-Korsakov, Salmor A. Alymkulov, and Kubanychbek M. Zhumaliev
Hydrol. Earth Syst. Sci., 22, 6279–6295, https://doi.org/10.5194/hess-22-6279-2018, https://doi.org/10.5194/hess-22-6279-2018, 2018
Short summary
Short summary
This paper reports the results of field surveys conducted in Lake Issyk-Kul in 2015–2017 and compares the present-day data with the available historical records. Our data do not confirm the reports of progressive warming of the deep Issyk-Kul waters as suggested in some previous publications. However, they do indicate a positive trend of salinity in the lake’s interior over the last 3 decades. An important newly found feature is a persistent salinity maximum at depths of 70–120 m.
Xin Luo, Xingxing Kuang, Jiu Jimmy Jiao, Sihai Liang, Rong Mao, Xiaolang Zhang, and Hailong Li
Hydrol. Earth Syst. Sci., 22, 5579–5598, https://doi.org/10.5194/hess-22-5579-2018, https://doi.org/10.5194/hess-22-5579-2018, 2018
David Eschbach, Laurent Schmitt, Gwenaël Imfeld, Jan-Hendrik May, Sylvain Payraudeau, Frank Preusser, Mareike Trauerstein, and Grzegorz Skupinski
Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, https://doi.org/10.5194/hess-22-2717-2018, 2018
Short summary
Short summary
In this study we show the relevance of an interdisciplinary study for improving restoration within the framework of a European LIFE+ project on the French side of the Upper Rhine (Rohrschollen Island). Our results underscore the advantage of combining functional restoration with detailed knowledge of past trajectories in complex hydrosystems. We anticipate our approach will expand the toolbox of decision-makers and help orientate functional restoration actions in the future.
Eddie W. Banks, Margaret A. Shanafield, Saskia Noorduijn, James McCallum, Jörg Lewandowski, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, https://doi.org/10.5194/hess-22-1917-2018, 2018
Short summary
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
Nicholas Voichick, David J. Topping, and Ronald E. Griffiths
Hydrol. Earth Syst. Sci., 22, 1767–1773, https://doi.org/10.5194/hess-22-1767-2018, https://doi.org/10.5194/hess-22-1767-2018, 2018
Short summary
Short summary
This paper describes instances in the Grand Canyon study area and a laboratory experiment in which very high suspended-sediment concentrations result in incorrectly low turbidity recorded with a commonly used field instrument. If associated with the monitoring of a construction or dredging project, false low turbidity could result in regulators being unaware of environmental damage caused by the actually much higher turbidity.
Silvia Bersan, André R. Koelewijn, and Paolo Simonini
Hydrol. Earth Syst. Sci., 22, 1491–1508, https://doi.org/10.5194/hess-22-1491-2018, https://doi.org/10.5194/hess-22-1491-2018, 2018
Short summary
Short summary
Backward erosion piping is the cause of a significant percentage of failures and incidents involving dams and river embankments. In the past 20 years fibre-optic Distributed Temperature Sensing (DTS) has proved to be effective for the detection of leakages and internal erosion in dams. This work investigates the effectiveness of DTS for monitoring backward erosion piping in river embankments. Data from a large-scale piping test performed on an instrumented dike are presented and discussed.
Thaine H. Assumpção, Ioana Popescu, Andreja Jonoski, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, https://doi.org/10.5194/hess-22-1473-2018, 2018
Short summary
Short summary
Citizens can contribute to science by providing data, analysing them and as such contributing to decision-making processes. For example, citizens have collected water levels from gauges, which are important when simulating/forecasting floods, where data are usually scarce. This study reviewed such contributions and concluded that integration of citizen data may not be easy due to their spatio-temporal characteristics but that citizen data still proved valuable and can be used in flood modelling.
Jutta Metzger, Manuela Nied, Ulrich Corsmeier, Jörg Kleffmann, and Christoph Kottmeier
Hydrol. Earth Syst. Sci., 22, 1135–1155, https://doi.org/10.5194/hess-22-1135-2018, https://doi.org/10.5194/hess-22-1135-2018, 2018
Short summary
Short summary
This paper is motivated by the need for more precise evaporation rates from the Dead Sea (DS) and methods to estimate and forecast evaporation. A new approach to measure lake evaporation with a station located at the shoreline, also transferable to other lakes, is introduced. The first directly measured DS evaporation rates are presented as well as applicable methods for evaporation calculation. These results enable us to further close the DS water budget and to facilitate the water management.
Pauline Leduc, Peter Ashmore, and Darren Sjogren
Hydrol. Earth Syst. Sci., 22, 1–11, https://doi.org/10.5194/hess-22-1-2018, https://doi.org/10.5194/hess-22-1-2018, 2018
Short summary
Short summary
We show the utility of ground-based time-lapse cameras for automated monitoring of stream stage and flow characteristics. High-frequency flow stage, water surface width and other information on the state of flow can be acquired for extended time periods with simple local calibration using a low-cost time-lapse camera and a few simple field measurements for calibration and for automated image selection and sorting. The approach is a useful substitute or complement to the conventional stage data.
Christina Tecklenburg and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 5043–5063, https://doi.org/10.5194/hess-21-5043-2017, https://doi.org/10.5194/hess-21-5043-2017, 2017
Short summary
Short summary
We characterized groundwater–lake exchange patterns and identified their controls based on extensive field measurements. Our measurement design bridges the gap between the detailed local characterisation and low resolution regional investigations. Results indicated strong spatial variability in groundwater inflow rates: large scale inflow patterns correlated with topography and the groundwater flow field and small scale patterns correlated with grainsize distributions of the lake sediment.
H. J. Ilja van Meerveld, Marc J. P. Vis, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, https://doi.org/10.5194/hess-21-4895-2017, 2017
Short summary
Short summary
We tested the usefulness of stream level class data for hydrological model calibration. Only two stream level classes, e.g. above or below a rock in the stream, were already informative, particularly when the boundary was chosen at a high stream level. There was hardly any improvement in model performance when using more than five stream level classes. These results suggest that model based streamflow time series can be obtained from citizen science based water level class data.
Hidayat Hidayat, Adriaan J. Teuling, Bart Vermeulen, Muh Taufik, Karl Kastner, Tjitske J. Geertsema, Dinja C. C. Bol, Dirk H. Hoekman, Gadis Sri Haryani, Henny A. J. Van Lanen, Robert M. Delinom, Roel Dijksma, Gusti Z. Anshari, Nining S. Ningsih, Remko Uijlenhoet, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 21, 2579–2594, https://doi.org/10.5194/hess-21-2579-2017, https://doi.org/10.5194/hess-21-2579-2017, 2017
Short summary
Short summary
Hydrological prediction is crucial but in tropical lowland it is difficult, considering data scarcity and river system complexity. This study offers a view of the hydrology of two tropical lowlands in Indonesia. Both lowlands exhibit the important role of upstream wetlands in regulating the flow downstream. We expect that this work facilitates a better prediction of fire-prone conditions in these regions.
Kyutae Lee, Ali R. Firoozfar, and Marian Muste
Hydrol. Earth Syst. Sci., 21, 1863–1874, https://doi.org/10.5194/hess-21-1863-2017, https://doi.org/10.5194/hess-21-1863-2017, 2017
Short summary
Short summary
Accurate estimation of stream/river flows is important in many aspects, including public safety during floods, effective uses of water resources for hydropower generation and irrigation, and environments. In this paper, we investigated a feasibility of the continuous slope area (CSA) method which measures dynamic changes in instantaneous water surface elevations, and the results showed promising capabilities of the suggested method for the accurate estimation of flows in natural streams/rivers.
Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 21, 751–764, https://doi.org/10.5194/hess-21-751-2017, https://doi.org/10.5194/hess-21-751-2017, 2017
Short summary
Short summary
We use water level observations from the CryoSat-2 satellite in combination with a river model of the Brahmaputra River, extracting satellite data over a dynamic river mask derived from Landsat imagery. The novelty of this work is the use of the CryoSat-2 water level observations, collected using a complex spatio-temporal sampling scheme, to calibrate a hydrodynamic river model. The resulting model accurately reproduces water levels, without precise knowledge of river bathymetry.
Matthew T. Perks, Andrew J. Russell, and Andrew R. G. Large
Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, https://doi.org/10.5194/hess-20-4005-2016, 2016
Short summary
Short summary
Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth’s surface in dangerous and previously inaccessible locations. Here we present a method whereby image acquisition and subsequent analysis have enabled the highly dynamic and oft-immeasurable hydraulic phenomenon present during high-energy flash floods to be quantified at previously unattainable spatial and temporal resolutions.
Ian Cartwright and Harald Hofmann
Hydrol. Earth Syst. Sci., 20, 3581–3600, https://doi.org/10.5194/hess-20-3581-2016, https://doi.org/10.5194/hess-20-3581-2016, 2016
Short summary
Short summary
This paper uses the natural geochemical tracer Rn together with streamflow measurements to differentiate between actual groundwater inflows and water that exits the river, flows through the near-river sediments, and subsequently re-enters the river downstream (parafluvial flow). Distinguishing between these two components is important to understanding the water balance in gaining streams and in managing and protecting surface water resources.
Z. D. Wen, K. S. Song, Y. Zhao, J. Du, and J. H. Ma
Hydrol. Earth Syst. Sci., 20, 787–801, https://doi.org/10.5194/hess-20-787-2016, https://doi.org/10.5194/hess-20-787-2016, 2016
Short summary
Short summary
The study indicated that CDOM in rivers had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes in the Hulun Buir plateau, Northeast China. The autochthonous sources of CDOM in plateau waters were higher than in other freshwater rivers reported in the literature. Study of the optical–physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in plateau water environments.
C. Schwatke, D. Dettmering, W. Bosch, and F. Seitz
Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, https://doi.org/10.5194/hess-19-4345-2015, 2015
J. Halder, S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal
Hydrol. Earth Syst. Sci., 19, 3419–3431, https://doi.org/10.5194/hess-19-3419-2015, https://doi.org/10.5194/hess-19-3419-2015, 2015
Short summary
Short summary
We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers) and evaluate its longer-term data holdings. A regionalized, cluster-based precipitation isotope model was used to compare measured to predicted isotope compositions of riverine catchments. The study demonstrated that the seasonal isotopic composition and variation of river water can be predicted, which will improve the application of water stable isotopes in rivers.
L. Schulte, J. C. Peña, F. Carvalho, T. Schmidt, R. Julià, J. Llorca, and H. Veit
Hydrol. Earth Syst. Sci., 19, 3047–3072, https://doi.org/10.5194/hess-19-3047-2015, https://doi.org/10.5194/hess-19-3047-2015, 2015
Short summary
Short summary
A 2600-year long composite palaeoflood record is reconstructed from high-resolution delta plain sediments of the Hasli-Aare floodplain on the northern slope of the Swiss Alps. Natural proxies compiled from sedimentary, geochemical and geomorphological data were calibrated by textual and factual sources and instrumental data. Geomorphological, historical and instrumental data provide evidence for flood damage intensities and discharge estimations of severe and catastrophic historical floods.
C. J. Gleason, L. C. Smith, D. C. Finnegan, A. L. LeWinter, L. H Pitcher, and V. W. Chu
Hydrol. Earth Syst. Sci., 19, 2963–2969, https://doi.org/10.5194/hess-19-2963-2015, https://doi.org/10.5194/hess-19-2963-2015, 2015
Short summary
Short summary
Here, we give a semi-automated processing workflow to extract hydraulic parameters from over 10,000 time-lapse images of the remote Isortoq River in Greenland. This workflow allows efficient and accurate (mean accuracy 79.6%) classification of images following an automated similarity filtering process. We also give an effective width hydrograph (a proxy for discharge) for the Isortoq using this workflow, showing the potential of this workflow for enhancing understanding of remote rivers.
I. Kogelbauer and W. Loiskandl
Hydrol. Earth Syst. Sci., 19, 1427–1438, https://doi.org/10.5194/hess-19-1427-2015, https://doi.org/10.5194/hess-19-1427-2015, 2015
M. Schirmer, J. Luster, N. Linde, P. Perona, E. A. D. Mitchell, D. A. Barry, J. Hollender, O. A. Cirpka, P. Schneider, T. Vogt, D. Radny, and E. Durisch-Kaiser
Hydrol. Earth Syst. Sci., 18, 2449–2462, https://doi.org/10.5194/hess-18-2449-2014, https://doi.org/10.5194/hess-18-2449-2014, 2014
A. Parvathi, X. Zhong, A. S. Pradeep Ram, and S. Jacquet
Hydrol. Earth Syst. Sci., 18, 1073–1087, https://doi.org/10.5194/hess-18-1073-2014, https://doi.org/10.5194/hess-18-1073-2014, 2014
A. Zlinszky and G. Timár
Hydrol. Earth Syst. Sci., 17, 4589–4606, https://doi.org/10.5194/hess-17-4589-2013, https://doi.org/10.5194/hess-17-4589-2013, 2013
B. Fournier, C. Guenat, G. Bullinger-Weber, and E. A. D. Mitchell
Hydrol. Earth Syst. Sci., 17, 4031–4042, https://doi.org/10.5194/hess-17-4031-2013, https://doi.org/10.5194/hess-17-4031-2013, 2013
Y.-C. Chen
Hydrol. Earth Syst. Sci., 17, 1951–1962, https://doi.org/10.5194/hess-17-1951-2013, https://doi.org/10.5194/hess-17-1951-2013, 2013
A. T. Rezende Filho, S. Furian, R. L. Victoria, C. Mascré, V. Valles, and L. Barbiero
Hydrol. Earth Syst. Sci., 16, 2723–2737, https://doi.org/10.5194/hess-16-2723-2012, https://doi.org/10.5194/hess-16-2723-2012, 2012
Y. Schindler Wildhaber, C. Michel, P. Burkhardt-Holm, D. Bänninger, and C. Alewell
Hydrol. Earth Syst. Sci., 16, 1501–1515, https://doi.org/10.5194/hess-16-1501-2012, https://doi.org/10.5194/hess-16-1501-2012, 2012
K. P. Hilgersom and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 16, 345–356, https://doi.org/10.5194/hess-16-345-2012, https://doi.org/10.5194/hess-16-345-2012, 2012
H. Hidayat, B. Vermeulen, M. G. Sassi, P. J. J. F. Torfs, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 15, 2717–2728, https://doi.org/10.5194/hess-15-2717-2011, https://doi.org/10.5194/hess-15-2717-2011, 2011
R. Bhamjee and J. B. Lindsay
Hydrol. Earth Syst. Sci., 15, 1009–1021, https://doi.org/10.5194/hess-15-1009-2011, https://doi.org/10.5194/hess-15-1009-2011, 2011
Cited articles
Antenucci, J. P. and Imberger, J.: The seasonal evolution of wind/internal wave
resonance in Lake Kinneret, Limnol. Oceanogr., 48, 2055–2061, 2003.
Babinka, S.: Multi-tracer study of karst waters and lake sediments in Croatia and
Bosnia-Herzegovina: Plitvice Lakes National Park and Bihać Area, PhD Dissertation, Rheinischen
Friedrich-Wilhelms-Universität Bonn, Germany, 167 pp., 2007.
Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., and Potes, M.: On the
contribution of lakes in predicting near-surface temperature in a global weather forecasting
model, Tellus A, 64, 15829, https://doi.org/10.3402/tellusa.v64i0.15829, 2012.
Belušić, D., Hrastinski, M., Večenaj, Ž., and Grisogono, B.: Wind
regimes associated with a mountain gap at the northeastern Adriatic coast,
J. Appl. Meteor. Climatol., 52, 2089–2105, https://doi.org/10.1175/JAMC-D-12-0306.1, 2013.
Boegman, L., Ivey, G. N., and Imberger, J.: The energetics of large-scale internal wave degeneration in lakes, J. Fluid Mech., 531, 159–180, https://doi.org/10.1017/S0022112005003915, 2005a.
Boegman, L., Ivey, G. N., and Imberger, J.: The degeneration of internal waves in lakes
with sloping topography, Limnol. Oceanogr., 50, 1620–1637, 2005b.
Boegman, L. and Ivey, G. N.: The dynamics of internal wave resonance in periodically
forced narrow basins, J. Geophys. Res., 117, C11002, https://doi.org/10.1029/2012JC008134, 2012.
Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys., 46, 1–27,
https://doi.org/10.1029/2006RG000210, 2008.
Bryan, A. M., Steiner, A. L., and Posselt, D. J.: Regional modeling of
surface-atmosphere interactions and their impact on Great Lakes hydroclimate,
J. Geophys. Res.-Atmos, 120, 1044–1064, https://doi.org/10.1002/2014JD022316, 2015.
Chafetz, H. S., Srdoč, D., and Horvatinčić, N.: Early diagenesis of
Plitvice Lakes waterfall and barrier travertine deposits, Géogr. Phys. Quatrn., 48, 247–255,
1994.
Cossu, R. and Wells, M. G.: The interaction of large amplitude internal seiches with
a shallow sloping lakebed: observations of benthic turbulence in Lake Simcoe, Ontario, Canada,
PLoS One, 8, e57444, https://doi.org/10.1371/journal.pone.0057444, 2013.
Dorostkar, A. and Boegman, L.: Internal hydraulic jumps in a long narrow lake,
Limnol. Oceanogr., 58, 153–172, https://doi.org/10.4319/lo.2013.58.1.0153, 2013.
Emeis, K.-C., Richnow, H.-H., and Kempe, S.: Travertine formation in Plitvice National
Park, Yugoslavia: chemical versus biological control, Sedimentology, 34, 595–609,
https://doi.org/10.1111/j.1365-3091.1987.tb00789.x, 1987.
Filonov, A. E.: On the dynamical response of Lake Chapala, Mexico to lake breeze
forcing, Hydrobiologia, 467, 141–157, 2002.
Filonov, A., Tereschenko, I., and Alcocer, J.: Dynamic response to mountain breeze
circulation in Alchichica, a crater lake in Mexico, Geophys. Res. Lett., 33, L07404,
https://doi.org/10.1029/2006GL025901, 2006.
Filonov, A., Tereshchenko, I., Alcocer, J., and Monzón, C.: Dynamics of internal
waves generated by mountain breeze in Alchichica Crater Lake, Mexico, Geofis. Int., 54, 21–30,
2015.
Forcat, F., Roget, E., Figueroa, M., and Sánchez, X.: Earth rotation effects on the
internal wave field in a stratified small lake: Numerical simulations, Limnetica, 30, 27–42,
https://doi.org/10.23818/limn.30.04, 2011.
Frančišković-Bilinski, S., Barišić, D., Vertačnik, A.,
Bilinski, H., and Prohić, E.: Characterization of tufa from the Dinric karst of Croatia:
mineralogy, geochemistry and discussion of climate conditions, Facies, 50, 183–193,
https://doi.org/10.1007/s10347-004-0015-8, 2004.
Frassl, M. A., Boehrer, B., Holtermann, P. L., Hu, W., Klingbeil, K., Peng, Z., Zhu,
J., and Rinke, K.: Opportunities and limits of using meteorological reanalysis data for simulating
seasonal to sub-daily water temperature dynamics in a large shallow lake, Water, 10, 594,
https://doi.org/10.3390/w10050594, 2018.
Gaedke, U. and Schimmelle, M.: Internal seiches in Lake Constance: influence on
plankton abundance at a fixed sampling site, J. Plankton Res., 13, 743–754, 1991.
Gavazzi, A.: Prilozi za limnologiju Plitvica, Prirodoslovna istraživanja Hrvatske i
Slavonije, JAZU, 14, 3–37, 1919.
Gligora Udovič, M., Cvetkoska, A., Žutinić, P., Bosak, S., Stanković,
I., Špoljarić, I., Mršić, G., Borojević, K. K., Ćukurin, A., and
Plenković-Moraj, A.: Defining centric diatoms of most relevant phytoplankton functional groups
in deep karst lakes, Hydrobiologia, 788, 169–191, https://doi.org/10.1007/s10750-016-2996-z, 2017.
Green, J. D., Norrie, P. H., and Chapman, M. A.: An internal seiches in lake Rotoiti,
Tane, 14, 3–11, 1968.
Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, Miettinen,
H., Sandström, H., Eugster, W., Leppäranta, M., Järvinen, H., Vesala, T., and Nordbo,
A.: Effects of water clarity on lake stratification and lake-atmosphere heat exchange,
J. Geophys. Res.-Atmos., 120, 7412–7428, https://doi.org/10.1002/2014JD022938, 2015.
Henderson, S. M.: Turbulent production in an internal wave bottom boundary layer
maintained by a vertically propagating seiche, J. Geophys. Res.-Oceans, 121,
https://doi.org/10.1002/2015JC011071, 2016.
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P.,
Hanson, P. C., Read, J. S., de Sousa, E., Weber, M., and Winslow, L. A.: A General Lake Model (GLM
3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory
Network (GLEON), Geosci. Model Dev., 12, 473–523, https://doi.org/10.5194/gmd-12-473-2019, 2019.
Horppila, J. and Niemistö, J.: Horizontal and vertical variations in sedimentation
and resuspension rates in a stratifying lake – effects of internal seiches, Sedimentology, 55,
1135–1144, https://doi.org/10.1111/j.1365-3091.2007.00939.x, 2008.
Horvath, K., Lin, Y.-L., and Ivančan-Picek, B.: Classification of cyclone tracks
over the Apennines and the Adriatic Sea, Mon. Wea. Rev., 136, 2210–2227,
https://doi.org/10.1175/2007MWR2231.1, 2008.
Horn, D. A., Imberger, J., and Ivey, G. N.: The degeneration of large-scale interfacial
gravity waves in lakes, J. Fluid. Mech., 434, 181–207, 2001.
Horvatinčić, N., Čalić, R., and Geyh, M. A.: Interglacial growth of
tufa in Croatia, Quatern. Res., 53, 185–195, 2000.
Hutter, K., Wang, Y., and Chubarenko, I. P.: Observation and analysis of internal
seiches in the southern basin of the Lake Lugano, in Physics of lakes, Lakes as
oscillators, Advances in Geophysical and Environmental Mechanics and Mathematics, Springer-Verlag,
Berlin, 2, 315–353, https://doi.org/10.1007/978-3-642-19112-1_18, 2011.
Huziy, O. and Sushama, L.: Lake-river and lake-atmosphere interactions in a changing
climate over Northeast Canada, Clim. Dynam., 48, 3227–3246, https://doi.org/10.1007/s00382-016-3260-y,
2017.
Jeromel, M., Malačič, V., and Rakovec, J.: Weibull distribution of bora and
sirocco winds in the northern Adriatic Sea, Geofizika, 26, 85–100, 2009.
Ji, Z.-G.: Hydrodynamics and water quality, Modeling rivers, lakes and estuaries, John
Wiley and Sons, New Jersey, 676 pp., 2008.
Kalff, J.: Limnology, Inland water ecosystems, Prentice Hall, New Jersey, 592 pp., 2002.
Kempe, S. and Emeis, K.: Carbonate chemistry and the formation of Plitvice Lakes, in:
Transport of Carbon and Minerals in Major World Rivers, Pt. 3, edited by: Degens, E. T., Kempe,
S., Herrera, R., Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Hamburg, SCOPE/UNEP Sonderband,
58, 351–383, 1985.
Kishcha, P., Pinker, R. T., Gertman, I., Starobinets, B., and Alpert, P.: Observations
of positive sea surface temperature trends in the steadily shrinking Dead Sea, Nat. Hazards Earth
Syst. Sci., 18, 3007–3018, https://doi.org/10.5194/nhess-18-3007-2018, 2018.
Klaić, Z. B. and Kvakić, M.: Modeling the impacts of the man-made lake on the
meteorological conditions of the surrounding areas, J. Appl. Meteorol., 53, 1121–1142,
https://doi.org/10.1175/JAMC-D-13-0163.1, 2014.
Klaić, Z. B., Rubinić, J., and Kapelj, S.: Review of research on Plitvice
Lakes, Croatia in the fields of meteorology, climatology, hydrology, hydrogeochemistry and
physical limnology, Geofizika, 35, 189–278, https://doi.org/10.15233/gfz.2018.35.9, 2018.
Krajcar, V.: Sezonska promjenjivost inercijalnih oscilacija u sjevernom Jadranu,
M.Sc. Thesis, Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, Zagreb,
110 pp., 1993.
Krajcar, V. and Orlić, M.: Seasonal variability of inertial oscillations in the
Northern Adriatic, Cont. Shelf Res., 15, 1221–1233, 1995.
Kristovich, D. A. R., Clark, R. D., Frame, J., Geerts, B., Knupp, K. R., Kosiba, K. A.,
Laird, N. F., Metz, N. D., Minder, J. R., Sikora, T. D., Steenburgh, W. J., Steiger, S. M.,
Wurman, J., and Young, G. S.: The Ontario winter lake-effect system field campaign: Scientific and
educational adventures to further our knowledge and prediction of lake-effect storms, B.
Am. Meteorol. Soc., 98, 315–332, https://doi.org/10.1175/BAMS-D-15-00034.1, 2017.
LaZerte, B. D.: The dominating higher order vertical modes of the internal seiche in
a small lake, Limnol. Oceanogr., 25, 846–854, 1980.
Lemmin, U.: The structure and dynamics of internal waves in Baldeggersee,
Limnol. Oceanogr., 32, 43–61, 1987.
Lemmin, U., Mortimer, C. H., and Bäuerle, E.: Internal seiche dynamics in Lake
Geneva, Limnol. Oceanogr., 50, 207–216, 2005.
Lewicki, J. L., Caudron, C., van Hinsberg, V., and Hilley, G.: High spatio-temporal
resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia,
Bull. Vulcanol., 78,q 53, https://doi.org/10.1007/s00445-016-1049-9, 2016.
Ljungemyr, P., Gustafsson, N., and Omstedt, A.: Parameterization of lake thermodynamics
in a high-resolution weather forecasting model, Tellus A, 48, 608–621, 1996.
Lundquist, J. D. and Cayan, D. R.: Seasonal and spatial patterns in diurnal cycles in
streamflow in the Western United States, J. Hydrometeorol., 3, 591–603, 2002.
Matoničkin Kepčija, R., Habdija, I., Primc-Habdija, B., and Miliša, M.:
Simuliid silk pads enhance tufa deposition, Arch. Hydrobiol., 166, 387–409, 2006.
Ma, Y. Y., Yang, Y., Qiu, C. J., and Wang, C.: Evaluation of the WRF-lake model over
two major freshwater lakes in China, J. Meteorol. Res., 33, 219–235,
https://doi.org/10.1007/s13351-019-8070-9, 2019.
Meaški, H.: Model of the karst water resources protection on the example of the
Plitvice Lakes national park, Doctoral thesis, University of Zagreb, Faculty of Mining, Geology
and Petroleum Engineering, Zagreb, 211 pp., 2011 (in Croatian).
Mortimer, C. H.: The resonant response of stratified lakes to wind,
Schweiz. Z. Hydrol., 15, 94–151, 1953.
Oppenheim, A. V., Schafer, R. W., and Buck, J. R.: Discrete-time signal processing,
2nd edition, Prentice Hall, New Jersey, 870 pp., 1999.
Orlić, M., Ferenčak, M., Gržetić, Z., Limić, N., Pasarić, Z.,
and Smirčić, A.: High-frequency oscillations observed in the Krka Estuary, Mar. Chem., 32,
137–151, 1991.
Orlić, M., Kuzmić, M., and Pasarić, Z.: Response of the Adriatic Sea to the
bora and sirocco forcing, Cont. Shelf Res., 14, 91–116, 1994.
Pasarić, M. and Slaviček, L.: Seiches in the Plitvice Lakes, Geofizika, 33,
35–52, https://doi.org/10.15233/gfz.2016.33.6, 2016.
Pasarić, M., Pasarić, Z., and Orlić, M.: Response of the Adriatic sea level
to the air pressure and wind forcing at low frequencies (0.01–0.1 cpd), J. Geophys. Res.-Oceans,
105, 11423–11439, https://doi.org/10.1029/2000JC900023, 2000.
Pasarić, Z., Belušić, D., and Chiggiato, J.: Orographic effects on
meteorological fields over the Adriatic from different models, J. Mar. Sys., 78, S90–S100, 2009.
Petrik, M.: Prinosi hidrologiji Plitvica, u Nacionakni park Plitvička jezera,
edited by: Šafar, J., Poljoprivredni nakladni zavod, Zagreb, 49–173, 1958.
Petrik, M.: Temperatura i kisik Plitvičkih jezera. Rasprave odjela za
matematičke, fizičke i tehničke nauke, JAZU, Svezak, 11, 81–119, 1961.
Pevalek, I.: Der Travertin und die Plitvicer Seen, Verh d. Internat. Vereinig,
F. Limnol., 7, 165–181, 1935.
Potes, M., Salgado, R., Costa, M. J., Morais, M., Bortoli, D., Kostadinov, I., and
Mammarella, I.: Lake-atmosphere interactions at Alqueva reservoir: a case study in the summer of
2014, Tellus A, 69, 1272787, https://doi.org/10.1080/16000870.2016.1272787, 2017.
Roberts, J. J., Fausch, K. D., Schmidt, T. S., and Walters, D. M.: Thermal regimes of
Rocky Mountain lakes warm with climate change, PLoS One, 12, e0179498,
https://doi.org/10.1371/journal.pone.0179498, 2017.
Roget, E., Khimchenko, E., Forcat, F., and Zavialov, P.: The internal seiche field in
the changing South Aral Sea (2006–2013), Hydrol. Earth Syst. Sci., 21, 1093–1105,
https://doi.org/10.5194/hess-21-1093-2017, 2017.
Simpson, J. H., Wiles, P. J., and Lincoln, B. J.: Internal seiche modes and bottom
boundary-layer dissipation in a temperate lake from acoustic measurements, Limnol. Oceanogr., 56,
1893–1906, https://doi.org/10.4319/lo.2011.56.5.1893, 2011.
Sironić, A., Barešić, J., Horvatinčić, N., Brozinčević, A.,
Vurnek, M., and Kapelj, S.: Changes in the geochemical parameters of karst lakes over the past
three decades – The case of Plitvice Lakes, Croatia, Appl. Geochem., 78, 12–22,
https://doi.org/10.1016/j.apgeochem.2016.11.013, 2017.
Solomon Jr., O. M.: PDS computations using Welch's method, Sandia Report, SAND91–1533,
UC–706, December 1991, Sandia National Laboratories, Albuquerque, 54 pp., 1991.
Stashchuk, N., Vlasenko, V., and Hutter, K.: Numerical modelling of disintegration of
basin-scale internal waves in a tank filled with stratified water, Nonlin. Process. Geophys., 12,
955–964, 2005.
Stepanenko, V., Jöhnk, K. D., Machulskaya, E., Perroud, M., Subin, Z., Nordbo, A.,
Mammarella, I., and Mironov, D.: Simulation of surface energy fluxes and stratification of a small
boreal lake by a set of one-dimensional models, Tellus A, 66, 21389,
https://doi.org/10.3402/tellusa.v66.21389, 2014.
Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T.:
LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes,
Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, 2016.
Stevens, C. L.: Internal waves in a small reservoir, J. Geophys. Res., 104,
15777–15788, 1999.
Sun, S., Yan, J., Xia, N., and Sun, C.: Development of a model for water and heat
exchange between the atmosphere and a water body, Adv. Atmos. Sci., 24, 927–938,
https://doi.org/10.1007/s00376-007-0927-7, 2007.
Šepić, J., Vilibić, I., Jorda, G., and Marcos, M.: Mediterranean Sea level
forced by atmospheric pressure and wind: Variability of the present climate and future projections
for several period bands, Glob. Planet. Change, 86/87, 20–30,
https://doi.org/10.1016/j.gloplacha.2012.01.008, 2012.
Špoljar, M., Habdija, I. and Primc-Habdija, B.: The influence of the lotic and
lentic stretches on the zooseston flux through the Plitvice Lakes (Croatia),
Ann. Limnol.-Int. J. Lim., 43, 29–40, 2007.
Tecklenburg, C. and Blume, T.: Identifying, characterizing and predicting spatial
patterns of lacustrine groundwater discharge, Hydrol. Earth Syst. Sci., 21, 5043–5063,
https://doi.org/10.5194/hess-21-5043-2017, 2017.
Thorpe, S. A., Keen, J. M., Jiang, R., and Lemmin, U.: High-frequency internal waves in
Lake Geneva, Phil. Trans. R. Soc. Lond. A, 354, 237–257, https://doi.org/10.1098/rsta.1996.0008, 1996.
Verburg, P., Antenucci, J. P., and Hecky, R. E.: Differential cooling drives
large-scale convective circulation in Lake Tanganyka, Limnol. Oceanogr., 56, 910–926,
https://doi.org/10.4319/lo.2011.56.3.0910, 2011.
Vidal, J., Rueda, F. J., and Casamitjana, X.: The seasonal evolution of high
vertical-mode internal waves in a deep reservoir, Limnol. Oceanogr., 52, 2656–2667, 2007.
Vidal, J. and Casamitjana, X.: Forced resonant oscillations as a response to periodic
winds in a stratified reservoir, J. Hydraul. Eng., 134, 416–425,
https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(416), 2008.
Watson, E. R.: Movements of the waters of Loch Ness, as indicated by temperature
observations, Geogr. J., 24, 430–437, 1904.
Welch, P. D.: The use of Fast Fourier Transform for the estimation of power spectra:
a method based on time averaging over short, modified periodograms, IEEE Trans. Audio
Electroacoust., AU-15, 70–73, https://doi.org/10.1109/TAU.1967.1161901, 1967.
Woolway, R. I. and Simpson, J. H.: Energy input and dissipation in a temperate lake
during the spring transition, Ocean Dyn., 67, 959–971, https://doi.org/10.1007/s10236-017-1072-1, 2017.
Xiao, W., Liu, S., Wang, W., Yang, D., Xu, J., Cao, C., Li, H., and Lee, X.: Transfer
coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large
freshwater lake, Bound.-Layer Meteorol., 148, 479–494, https://doi.org/10.1007/s10546-013-9827-9, 2013.
Xue, P., Pal, J. S., Ye, X, Lenters, J. D:, Huang, C., and Chu, P. Y.: Improving the
simulation of large lakes in regional climate modeling: two-way lake-atmosphere coupling with a 3D
hydrodynamic model of the Great Lakes, J. Climate, 30, 1605–1627, https://doi.org/10.1175/JCLI-D-16-0225.1,
2017.
Zavialov, P. O., Izhitskiy, A. S., Kirillin, G. B., Khan, V. M., Konovalov, B. V.,
Makkaveev, P. N., Pelevin, V. V., Rimskiy-Korsakov, N. A., Alymkulov, S. A., and Zhumaliev, K. M.:
New profiling and mooring records help to assess variability of Lake Issyk-Kul and reveal unknown
features of its thermohaline structure, Hydrol. Earth Syst. Sci., 22, 6279–6295,
https://doi.org/10.5194/hess-22-6279-2018, 2018.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale modeling
with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Short summary
Fine-resolution lake temperature measurements (2 min, 15 depths) show different lake responses to atmospheric forcings: (1) continuous diurnal oscillations in the temperature in the first 5 m of the lake, (2) occasional diurnal oscillations in the temperature at depths from 7 to 20 m, and (3) occasional surface and internal seiches. Due to the sloped lake bottom, surface seiches produced the high-frequency oscillations in the lake temperatures with periods of 9 min at depths from 9 to 17 m.
Fine-resolution lake temperature measurements (2 min, 15 depths) show different lake responses...