Articles | Volume 24, issue 1
Hydrol. Earth Syst. Sci., 24, 227–248, 2020
https://doi.org/10.5194/hess-24-227-2020
Hydrol. Earth Syst. Sci., 24, 227–248, 2020
https://doi.org/10.5194/hess-24-227-2020
Research article
16 Jan 2020
Research article | 16 Jan 2020

A framework for deriving drought indicators from the Gravity Recovery and Climate Experiment (GRACE)

Helena Gerdener et al.

Related authors

RECOG RL01: correcting GRACE total water storage estimates for global lakes/reservoirs and earthquakes
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021,https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Global-scale drought risk assessment for agricultural systems
Isabel Meza, Stefan Siebert, Petra Döll, Jürgen Kusche, Claudia Herbert, Ehsan Eyshi Rezaei, Hamideh Nouri, Helena Gerdener, Eklavyya Popat, Janna Frischen, Gustavo Naumann, Jürgen V. Vogt, Yvonne Walz, Zita Sebesvari, and Michael Hagenlocher
Nat. Hazards Earth Syst. Sci., 20, 695–712, https://doi.org/10.5194/nhess-20-695-2020,https://doi.org/10.5194/nhess-20-695-2020, 2020
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Mathematical applications
Integrating process-based information into an ANN for root-zone soil moisture prediction
Roiya Souissi, Mehrez Zribi, Chiara Corbari, Marco Mancini, Sekhar Muddu, Sat Kumar Tomer, Deepti B. Upadhyaya, and Ahmad Al Bitar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-63,https://doi.org/10.5194/hess-2022-63, 2022
Revised manuscript accepted for HESS
Short summary
Coherence of global hydroclimate classification systems
Kathryn L. McCurley Pisarello and James W. Jawitz
Hydrol. Earth Syst. Sci., 25, 6173–6183, https://doi.org/10.5194/hess-25-6173-2021,https://doi.org/10.5194/hess-25-6173-2021, 2021
Short summary
Design flood estimation for global river networks based on machine learning models
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021,https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Attributing correlation skill of dynamical GCM precipitation forecasts to statistical ENSO teleconnection using a set-theory-based approach
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021,https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary
Projecting the impacts of end of century climate extremes on the hydrology in California
Fadji Zaouna Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-472,https://doi.org/10.5194/hess-2021-472, 2021
Revised manuscript accepted for HESS
Short summary

Cited articles

A, G., Wahr, J., Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, 2013. a
Agboma, C. O., Yirdaw, S. Z. and Snelgrove, K. R.: Intercomparison of the total storage deficit index (TSDI) over two Canadian Prairie catchments, J. Hydrol., 374, 351–359, https://doi.org/10.1016/j.jhydrol.2009.06.034, 2009. a
Akaike, H.: Fitting autoregressive models for prediction, Ann. Inst. Stat. Math., 21, 243–247, https://doi.org/10.1007/BF02532251, 1969. a, b
Alpaydin, E.: Introduction to machine learning, MIT Press, Cambridge, Massachusetts, USA, 2009. a
Andersen, O. B., Seneviratne, S. I., Hinderer, J. and Viterbo, P.: GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave, Geophys. Res. Lett., 32, L18405, https://doi.org/10.1029/2005GL023574, 2005. a, b
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
GRACE-derived drought indicators enable us to detect hydrological droughts based on changes observed in all storages. By performing synthetic experiments, we find that droughts identified by existing and modified indicators are biased by trends and GRACE-based spatial noise. A modified version of the Zhao et al. (2017) indicator is found to be particularly robust against spatial noise and is therefore applied to real GRACE data over South Africa.