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Abstract. Identifying and quantifying drought in retrospec-
tive is a necessity for better understanding drought conditions
and the propagation of drought through the hydrological cy-
cle and eventually for developing forecast systems. Hydro-
logical droughts refer to water deficits in surface and subsur-
face storage, and since these are difficult to monitor at larger
scales, several studies have suggested exploiting total water
storage data from the GRACE (Gravity Recovery and Cli-
mate Experiment) satellite gravity mission to analyze them.
This has led to the development of GRACE-based drought
indicators. However, it is unclear how the ubiquitous pres-
ence of climate-related or anthropogenic water storage trends
found within GRACE analyses masks drought signals. Thus,
this study aims to better understand how drought signals
propagate through GRACE drought indicators in the pres-
ence of linear trends, constant accelerations, and GRACE-
specific spatial noise. Synthetic data are constructed and ex-
isting indicators are modified to possibly improve drought
detection. Our results indicate that while the choice of the
indicator should be application-dependent, large differences
in robustness can be observed. We found a modified, tempo-
rally accumulated version of the Zhao et al. (2017) indicator
particularly robust under realistic simulations. We show that
linear trends and constant accelerations seen in GRACE data
tend to mask drought signals in indicators and that differ-
ent spatial averaging methods required to suppress the spa-
tially correlated GRACE noise affect the outcome. Finally,
we identify and analyze two droughts in South Africa using
real GRACE data and the modified indicators.

1 Introduction

Droughts are recurrent natural hazards that affect the envi-
ronment and economy with potentially catastrophic conse-
quences. Drought impacts range from reduced streamflow,
water scarcity, and reduced water quality to increased wild-
fires, soil erosion, and increased quantities of dust, crop fail-
ure, and large-scale famine. With climate change and pop-
ulation growth, the frequency and impact of droughts are
projected to increase for many regions of the world (IPCC,
2013). Drought types can be distinguished depending on
their effect on the hydrological cycle (e.g., Changnon, 1987;
Mishra and Singh, 2010). In this study we focus on hydro-
logical drought, a multiscale problem which may last weeks
or many years and which may affect local or continental re-
gions. For example, the severe drought between mid-2011
and mid-2012 affected millions of people in the entire east-
ern Africa region (Somalia, Djibouti, Ethiopia, and Kenya)
and led to famine with an estimated 258 000 deaths (Chec-
chhi and Robinson, 2013). From 2012 to 2016, the US state
of California experienced a historical drought that adversely
affected groundwater levels, forests, crops, and fish popu-
lations and led to widespread land subsidence (Mann and
Gleick, 2015; Moore et al., 2016). In contrast, European
droughts, for example in 2018, typically last a few months in
exceptionally dry summers. For South Africa, due to a com-
plex rainfall regime, areas and the percentage of land surface
affected by drought can vary strongly (Rouault and Richard,
2005).

Hydrological drought refers to a deficit of accessible wa-
ter, i.e., water in natural and man-made surface reservoirs and
subsurface storage, with respect to normal conditions. The
propagation of drought through the hydrological cycle typ-
ically begins with a lack of precipitation, leading to runoff
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and soil moisture deficit, followed by decreasing stream-
flow and groundwater levels (Changnon, 1987). However, no
unique standard procedures exist for measuring the deficit
of each of these factors and for defining normal conditions.
In order to arrive at operational definitions, which are re-
quired for triggering a response according to drought class
for example, a large variety of drought indicators has been
defined which typically seek to extract certain sub-signals
from observable fields (Bachmair et al., 2016; Wilhite, 2016;
Mishra and Singh, 2010; Van Loon, 2015). Reviews of hy-
drological drought indicators are contained in Keyantash and
Dracup (2002), Wilhite (2016), Mishra and Singh (2010),
and Tsakiris (2017). Streamflow is the most frequently used
observable measurement in these studies.

Drought detection is mostly restricted to single fluxes
(precipitation or streamflow) or storage (surface soil mois-
ture or reservoir levels) that are easy to measure. Much
fewer measurements are available to assess water content in
deeper soil layers and groundwater storage deficit or the to-
tal of all storages. The NASA and German Aerospace Center
(DLR) Gravity Recovery and Climate Experiment (GRACE)
satellite mission, launched in 2002, has changed this situ-
ation since GRACE-derived monthly gravity field models
can be converted to total water storage changes (TWSCs;
Wahr et al., 1998). GRACE consisted of two spacecraft fol-
lowing each other, which were linked together by an ultra-
precise microwave ranging instrument; these ranges are rou-
tinely processed to provide monthly gravity models and thus
maps of mass change. Since other mass transports in the
atmosphere and ocean are removed during the processing,
GRACE indeed provides quantitative measure of surface and
subsurface water storages (Chen et al., 2009; Frappart et al.,
2013). Meanwhile, GRACE has been continued with the
GRACE-FO (Follow-On) mission from which the first data
are now available.

Studies of drought detection with GRACE-TWSC can
be summarized in three groups: (i) using monthly maps of
TWSC directly, (ii) partitioning TWSC time series into sub-
signals that include drought signatures, or (iii) using in-
dicators. For example, Seitz et al. (2008) investigated the
2003 heat wave over seven central European basins using
GRACE time series; they found a good agreement between
TWSC and the combination of net precipitation and evap-
oration. Other studies focused on drought detection using
TWSC sub-signals, e.g., trends were used to identify drought
in central Europe (Andersen et al., 2005) and for the region
encompassing the Tigris, Euphrates, and western Iran (Voss
et al., 2013). After decomposing GRACE-TWSC into a sea-
sonal and non-seasonal signals, Chen et al. (2009) were able
to detect the 2005 drought in the central Amazon river basin
while, Zhang et al. (2015) identified two droughts in 2006
and 2011 in the Yangtze river basin. In the latter study, the
El Niño–Southern Oscillation (ENSO) was identified as a
possible driver for drought events in the Yangtze river basin.
However, neither GRACE nor GRACE-FO enable one to

separate different storage compartments, such as groundwa-
ter storage, without utilizing additional (e.g., compartment-
specific) observations or model outputs, and their spatial
and temporal resolutions (about 300 km and nominally 1
month respectively for GRACE) are limited. Several efforts
are therefore focused on assimilating GRACE-TWSC maps
into hydrological or land surface models (e.g., Zaitchik et al.,
2008; Eicker et al., 2014; Girotto et al., 2016; Springer,
2019).

Thus, perhaps not surprisingly, a number of GRACE-
based drought indicators have been suggested (e.g., Houborg
et al., 2012; Thomas et al., 2014; Zhao et al., 2017), typi-
cally either based on normalization or percentile rank meth-
ods. However, a comprehensive comparison and assessment
of these indicators is still missing, particularly in the presence
of (1) trend signals as picked up by GRACE in many regions
that may reflect non-stationary “normal” conditions, (2) cor-
related spatial noise that is related to the peculiar GRACE
orbital pattern, and (3) the inevitable spatial averaging ap-
plied to GRACE, which results in smoothing out noise (Wahr
et al., 1998). From a water balance perspective, GRACE-
TWSC variability mainly represents monthly total precipita-
tion anomalies (e.g., Chen et al., 2010; Frappart et al., 2013).
It is thus obvious that GRACE drought indicators will con-
tain signatures that are visible in meteorological drought in-
dicators, yet the difference should explain the magnitude of
other contributions (e.g., increased evapotranspiration due to
radiation) to hydrological drought.

Figure 1 shows a time series of region-averaged, detrended
and deseasoned GRACE water storage changes over east-
ern Brazil (Ceará state) compared to the region-averaged
6-month Standardized Precipitation Index (SPI) (McKee
et al., 1993) to illustrate the potential of GRACE-TWSC for
drought monitoring. As can be expected, TWSC and 6-month
SPI appear moderately similar (correlation 0.43), character-
ized by positive peaks, for example at the beginning of 2004
and at the end of 2009, and negative peaks at the beginning
of 2013. We also found correlations between TWSC and
6-month SPI in regions with different hydro-climatic con-
ditions for the Missouri river basin (0.31), Maharashtra in
western India (0.46), and South Africa (0.45) among other
regions. This motivates us to modify common GRACE in-
dicators to account for accumulation periods of input data,
e.g., used with 6-month SPI but also for periods that are
based on differences of input data. To our knowledge, this
is the first study where (modified) indicators are tested in a
synthetic framework based on a realistic signal that includes
a hypothetical drought. We hypothesize that in this way we
can (i) assess indicator robustness, with respect to identifying
a “true” drought of given duration and magnitude, and (ii) un-
derstand how trend signals and spatial noise propagate into
indicators and mask drought detection. In addition, we in-
vestigate to what extent the spatial averaging that is required
for analyzing GRACE data affects indicators. For this, we
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Figure 1. Detrended and deseasoned GRACE-TWSC [mm] (or-
ange) and the SPI [–] for 6 months of accumulated precipitation
(blue), spatially averaged for Ceará, Brazil.

compare spatially averaged gridded indicators to indicators
derived from spatially averaged TWSC.

This contribution is organized as follows: in Sect. 2 we
will review three GRACE-based drought indicators and mod-
ify them to accommodate either multi-month accumulation
or differencing, while in Sect. 3 our framework for testing
GRACE indicators in a realistic simulation environment will
be explained. Then, Sect. 4 will provide simulation results
and finally the results from real GRACE data. A discussion
and conclusion will complete the paper.

2 Indicators for hydrological drought

Hydrological drought indicators are mostly based on obser-
vations of single water storages or fluxes, e.g., for precipita-
tion, snowpack, streamflow, or groundwater. In general, indi-
cator definitions can be arranged into four categories: (1) data
normalization, (2) threshold-based, (3) quantile scores, and
(4) probability-based (e.g., Zargar et al., 2011; Keyantash
and Dracup, 2002; Tsakiris, 2017).

Since total water storage deficit may be viewed as a more
comprehensive information source on drought, the advent of
GRACE total water storage change data has led to new indi-
cators being developed. For example, Frappart et al. (2013)
developed a drought indicator based on yearly minima of
water storage and a method for standardization, and Kusche
et al. (2016) computed recurrence times of yearly minima
through the generalized extreme value theory. Other indica-
tors explore the monthly resolution of GRACE, e.g., the To-
tal Storage Deficit Index (TSDI; Agboma et al., 2009), the
GRACE-based Hydrological Drought Index (GHDI; Yi and
Wen, 2016), the Drought Severity Index (DSI; Zhao et al.,
2017), and the drought index (DI; Houborg et al., 2012). Fur-
ther, Thomas et al. (2014) presented a water storage deficit
approach to detect drought magnitude, duration, and severity
based on GRACE-derived TWSC. To our knowledge, only
the Zhao et al. (2017), Houborg et al. (2012), and Thomas
et al. (2014) methods are able to detect drought events from

monthly GRACE data without any additional information.
Therefore, these three indicators will be discussed further.

In order to stress the link between GRACE-based and
meteorological indicators, we first describe the relation of
TWSC and precipitation. Assuming evapotranspiration (E)
and runoff (Q) vary more regularly as compared to precip-
itation (i.e., 1E = 0 and 1Q= 0), the monthly GRACE-
TWSC (1s) corresponds to precipitation anomalies (1P )
accumulated since the GRACE storage monitoring began.

1s(t)=1t

t∑
t0

1P, (1)

where 1t is the time from t0 to t1. In contrast to Eq. (1), the
difference between GRACE months as in

1s (t2)−1s (t1)=1t

t2∑
t1

1P, (2)

which corresponds to the precipitation anomaly accumulated
between these months. Accumulated monthly TWSC thus
corresponds to an iterative summation over the precipitation
anomalies described by
t∑
t0

1s(t)=1t

t∑
τ=t0

τ∑
t0

1P. (3)

In the following, we will discuss and extend the definition of
Zhao et al. (2017), Houborg et al. (2012), and Thomas et al.
(2014) GRACE-based indicators, which are hence referred to
as the Zhao method, Houborg method, and Thomas method,
respectively.

2.1 Zhao method

In the approach of Zhao et al. (2017), one considers GRACE-
derived monthly gridded TWSC for n years as in

xi,j =1s
(
ti,j
)
, (4)

with

ti,j = i+

(
j −

1
2

)
1

12
i = 1, . . ., n j = 1, . . ., 12. (5)

Let us define the monthly climatology, i.e., mean monthly
TWSC, x̃j with j = 1, . . . , 12 and the standard deviation σ̃j
of the anomalies in month j with respect to the climatologi-
cal value as

x̃j =
1
n

n∑
i=1

xi,j , (6)

σ̃j =

(
1
n

n∑
i=1

(
xi,j − x̃j

)2)1/2

. (7)

Zhao et al. (2017) define their drought severity index
(GRACE-DSI) as the standardized anomaly

TWSC-DSIi,j =
xi,j − x̃j

σ̃j
(8)
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Table 1. Drought severity level of TWSC-DSI (Zhao et al., 2017).
The values of TWSC-DSI are unitless.

TWSC-DSI [–]

Drought severity level Min. Max.

Abnormal −0.8 −0.5
Moderate −1.3 −0.8
Severe −1.6 −1.3
Extreme −2.0 −1.6
Exceptional −2.0

of a given month ti,j and provide a scale from −2.0 (ex-
ceptional drought) to +2.0 (exceptionally wet), as shown in
Table 1. There is no particular probability distribution func-
tion (PDF) underlying the method; however if we assume
the anomalies for a given month follow a Gaussian PDF, it is
straightforward to compute the likelihood of a given month
falling in one of the Zhao et al. (2017) severity classes. For
example, 2.1 % of months would be expected to turn out to
be a period of exceptional drought and 2.1 % as exceptionally
wet. This can be applied to any other PDF.

Drought severity, however, should be related to the dura-
tion of a drought. For example McKee et al. (1993) showed
how typical time scales of 3, 6, 12, 24, and 48 months of pre-
cipitation deficits are related to their impact on usable wa-
ter sources. To account for the relation between severity and
duration in the Zhao et al. (2017) approach, we consider q
months accumulated of TWSC, which is approximately re-
lated to precipitation in Eq. (3) as

x+i,j,q =

q∑
k=1

1s
(
ti,j+1−q

)
, (9)

with ti,j+1−q = ti−1,j+13−q for j+1−q < 1 or equivalently
written for q months of averaged TWSC as

x+i,j,q =
1
q

q∑
k=1

1s
(
ti,j+1−q

)
. (10)

For example for q = 3, we would look for the 3-month
running mean for December–January–February, January–
February–March, and so on. In the next step, one computes,
for example, the climatology and anomalies as with the orig-
inal method. On the other hand, we can relate hydrological to
meteorological indicators using Eq. (2). To develop a TWSC
indicator that can be compared to indicators based on ac-
cumulated precipitation, one should rather consider the q-
month differenced TWSC

x−i,j,q =1s
(
ti,j
)
−1s

(
ti,j+1−q

)
. (11)

Thus, as with TWSC-DSIi,j in Eq. (8), we can define
two new multi-month indicators (TWSC-DSIA and TWSC-
DSID) through standardization by using accumulated (A)
and differenced (D) TWSC (Eqs. 9 and 11) as

Table 2. Drought severity level of TWSC-DI (Houborg et al., 2012).
The values of TWSC-DI are given in %.

TWSC-DI [%]

Drought severity level Min. Max.

Abnormal 20 30
Moderate 10 20
Severe 5 10
Extreme 2 5
Exceptional 0 2

TWSC-DSIAi,j,q =
x+i,j,q − x̃

+

j,q

σ̃+j,q
(12)

and

TWSA-DSIDi,j,q =
x−i,j,q − x̃

−

j,q

σ̃−j,q
. (13)

Finally, it is obvious that sampling the full climatological
range of dry and wet months is not yet possible with the lim-
ited GRACE data period. Therefore, Zhao et al. (2017) sug-
gest applying a bias correction to avoid the under- or overes-
timation of drought events. This implies using TWSC from
multi-decadal model runs, which is feasible but is not the fo-
cus of this study.

2.2 Houborg method

Houborg et al. (2012) define the drought indicator GRACE-
DI via the percentile of a given month, ti,j , with respect to
the cumulative distribution function (CDF). The GRACE-DI
is applied to TWSC by

TWSC-DIi,j =

∑
i

(
xj ≤ xi,j

)
∑
i

xj
· 100, (14)

i.e., all years containing month j are counted for which
TWSC is equal or lower than TWSC in month j and year i,
and these are normalized by the number of years that con-
tain month j . The indicator value is assigned to five sever-
ity classes as shown in Table 2. For example, exceptional
droughts occur up to 2 % of the entire time period at any
location.

Again, to relate drought severity to duration, we pro-
ceed via multi-month accumulation (Eq. 9) and differences
(Eq. 11) resulting in the definition of two new indicators
based on TWSC-DIi,j in Eq. (14),
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TWSC-DIAi,j,q =

∑
i

(
x+j,q ≤ x

+

i,j,q

)
∑
i

x+j,q
· 100, (15)

TWSC-DIDi,j,q =

∑
i

(
x−j,q ≤ x

−

i,j,q

)
∑
i

x−j,q
· 100. (16)

Assuming again that the CDF equals the cumulative Gaus-
sian PDF, 0.6 % of the months would be detected as ex-
ceptionally dry and 9.5 % of the months as abnormally dry.
Houborg et al. (2012) applied the percentile approach sepa-
rately to surface soil moisture, root zone soil moisture, and
groundwater storage, which were derived by assimilating
GRACE-derived TWSC into a hydrological model, and the
CDFs were adjusted to a long-term model run. Here, we fo-
cus on a simulated TWSC environment for the GRACE pe-
riod only, and, as explained in Sect. 2.1, we therefore disre-
gard the bias correction.

2.3 Thomas method

Thomas et al. (2014) define a drought by considering the
number of consecutive months below a threshold of TWSC.
Given TWSC observations xi,j and a threshold c, we can
compute anomalies by

1xi,j =

{
0 for xi,j ≥ c
xi,j − xj for xi,j < c.

. (17)

While the threshold can be derived from different concepts,
Thomas et al. (2014) use the monthly climatology xj (Eq. 6).
Here, we also consider using a fitted signal for defining the
threshold. The signal is computed by

x(t)= a0+ a1 (t − t0)+ a2
1
2
(t − t0)

2
+ b1 cos(ωt)

+ b2 sin(ωt)+ c1 cos(2ωt)+ c2 sin(2ωt), (18)

with time t with a constant a0, a linear trend term a1, a con-
stant acceleration term a2, annual signal terms b1 and b2, and
similarly semi-annual signal terms c1 and c2. Trends and pos-
sible accelerations in GRACE-TWSC can result from many
different hydrological processes. For example, accelerations
can result from trends in the flux precipitation, evapotranspi-
ration, and runoff (e.g., Eicker et al., 2016). In the following,
the linear trends are denoted as trends, and constant accelera-
tions are denoted as accelerations. The Thomas method then
identifies drought events through the computation of their
magnitude, duration, and severity: the magnitude or water
storage deficit is equal to1xi,j (Eq. 17), and the duration di,j
is given by the number of consecutive months where TWSC
is below the threshold. Thomas et al. (2014) propose a mini-
mum number of 3 consecutive months required for the com-
putation of drought duration. By using the deficit 1xi,j and

the duration di,j , the severity si,j of the drought event can
finally be computed by

si,j =1xi,jdi,j . (19)

Severity is therefore a measure of the combined impact of
duration and magnitude of water storage deficit (see Thomas
et al., 2014; Humphrey et al., 2016).

3 Framework to derive synthetic TWSC for computing
drought indicators

3.1 Methods

In order to analyze the performance of drought indicators,
we first construct a synthetic time series of “true” total water
storage changes on a grid. We base our drought simulations
on the GRACE data model

1s(t)= x(t)+ η(t)+ ε(t), (20)

including the introduced (in Sect. 2.3) signal x (which con-
tains seasonality and a constant, linear, and time-varying
trend; Eq. 18), an interannual signal η (which has been de-
trended and deseasoned and which will carry the simulated
true drought signature), and a GRACE-specific noise term ε.
To simulate the true signal as realistically as possible using
Eq. (20), we first analyze real GRACE-TWSC data follow-
ing the steps summarized in Fig. 2. We derive (1) the sig-
nal components, constant, trend, acceleration, annual, and
semi-annual sine wave, (2) temporal correlations, (3) a repre-
sentative drought signal quantified by strength and duration,
and (4) spatially correlated noise from GRACE error covari-
ance matrices. While the first three steps are generic and can
be used for simulating other observables, step 4 is directly
related to the measurement noise (in this case the GRACE
noise).

As an input to the simulation, GRACE-TWSC data are de-
rived by mapping monthly ITSG-GRACE2016 gravity field
solutions of degree and order 60, provided by the Graz Uni-
versity of Technology (Mayer-Gürr et al., 2016), to TWSC
grids. As per standard practice, we add degree-1 spheri-
cal harmonic coefficients from Swenson et al. (2008) and
degree 2, order 0 coefficients from laser ranging solutions
(Cheng et al., 2011). Then, we remove the temporal mean
field, apply DDK3 filtering (Kusche et al., 2009) to suppress
excessive noise, and map coefficients to TWSC via spherical
harmonic synthesis. We also remove the effect of ongoing
glacial isostatic adjustment (GIA) following A et al. (2013).

Droughts are a multiscale phenomenon, and for a realis-
tic simulation we must first define the largest spatial scale to
which we will apply the model of Eq. (20). In other words,
we first need to identify coherent regions in the input data
for which our approach is then applied at the grid scale prior
to step 1. For this, we apply two consecutive steps: we first
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Figure 2. Concept of the synthetic framework to generate synthetic TWSC.

compute temporal signal correlations by fitting an autore-
gressive (AR) model (Appendix A; Akaike, 1969) to de-
trended and deseasoned GRACE data. These TWSC residu-
als contain interannual and subseasonal signals including real
drought information. Next, temporal correlation coefficients
are used as an input for expectation maximization (EM) clus-
tering (Dempster et al., 1977; Redner and Walker, 1984) be-
cause regions with similar residual TWSC correlation within
the interannual and subseasonal signal are hypothesized here
to be more likely affected by the same hydrological pro-
cesses. The EM algorithm by Chen (2018) is modified to
identify regional clusters. The EM algorithm alternates an
expectation and a maximization step to maximize the like-
lihood of the data (e.g., Dempster et al., 1977; Redner and
Walker, 1984; Alpaydin, 2009). More details about EM clus-
tering are provided in Appendix B.

As a result of this procedure, we identified three clusters
located in eastern Brazil (EB), southern Africa (SA), and
western India (WI), which were indeed affected by droughts
in the past (e.g., Parthasarathy et al., 1987; Rouault and
Richard, 2003; Coelho et al., 2016). The location and shape
of the three chosen clusters are shown in Fig. 3, and a global
map of all clusters is provided in Fig. B1. Cluster delin-
eations from the above procedure should not be confused
with political boundaries or watersheds. The following sim-
ulation steps are then applied to each of these three clusters.

In step 1 we estimate the signal coefficients according to
Eq. (18) through least squares fit for each grid cell within the
cluster. The coefficients are then spatially averaged to create

a signal representative of the mean conditions within the re-
gion, and they are then used to create the constant, trends, and
the seasonal parts of the synthetic time series. To simulate re-
alistic temporal correlations at the regional scale (step 2), we
use the AR model identified beforehand (Fig. 2) and again
average AR model coefficients within the cluster. Then, we
apply an AR model with the estimated optimal order and
the averaged correlation coefficient (Eq. A1) to the synthetic
time series to add temporal correlations.

Simulating realistic drought events in step 3 is challeng-
ing because, to our knowledge, no unique procedure to sim-
ulate realistic drought periods for TWSC exists. For this rea-
son, we first perform a literature review to identify represen-
tative drought periods and magnitudes for selected regions.
Among others, this includes the 2003 European drought and
the drought in the Amazon basin in 2011 (e.g., Seitz et al.,
2008; Espinoza et al., 2011, respectively). TWSC data within
the identified drought period are then eliminated from the
time series. In the next step, the parameters describing the
constant, trend, acceleration, and seasonal signal compo-
nents before and after the drought are used to “extrapolate”
these signals during the drought period. By computing the
difference of the original GRACE-TWSC time series and
the continued signal in the drought period, we can separate
non-seasonal variations from the data, which represent the
drought magnitude. Our hypothesis is that the non-seasonal
variations that we derive from the procedure possibly show a
systematic behavior that can be parameterized. To extract this
systematic behavior, all extracted droughts are transformed
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Figure 3. AR(1) model coefficients (–) for global GRACE-TWSC. The polygons of the clusters of eastern Brazil, southern Africa, and
western India are added in magenta.

to a standard duration. To compare the different drought sig-
nals, a standard duration and a standard magnitude are arbi-
trarily set to 10 months and −100 mm, respectively. Finally,
a synthetic drought signal η is generated by using the ex-
tracted knowledge of drought duration, drought magnitude,
and systematic behavior, and it is added to the synthetically
generated signal (Eq. 20).

In step 4 we add GRACE-specific spatially correlated and
temporally varying noise ε (Eq. 20). First, for each month t
we extract a full variance–covariance matrix 6 for the re-
gion grid cells from GRACE-TWSC. Then, whenever 6 is
positive definite, we apply the Cholesky decomposition 6 =
RTR, while if 6 is only positive semi-definite, we apply
eigenvalue decomposition (Appendix C). Second, we gen-
erate a Gaussian noise series v of the length n, where n rep-
resents the number of grid cells within the cluster. Finally,
spatial noise in month t is simulated through

ε = RT v. (21)

The final synthetic signals for each grid cell within a cluster
will thus exhibit the same constant, trend, acceleration, sea-
sonal signal, temporal correlations, and drought signal, but it
has spatially different and correlated noise. In the following,
we will test the hypothesis that GRACE indicators depend
on the presence of trend and random input signals using the
generated synthetic time series.

We believe that our synthetic framework based on real
GRACE data has multiple benefits: (i) we are able to identify
the ability of an indicator by comparing the true drought du-
ration and magnitude (step 3) to the indicator results; (ii) we
are able to detect the influence of other typical GRACE sig-
nals on the drought detection; and (iii) the synthetic frame-

work enables us to identify strengths and weaknesses of each
analyzed indicator, and it thereby enables us to choose the
most suitable indicator for a specific application.

3.2 Synthetic TWSC

Here, we will briefly discuss the TWSC simulation following
methods described in the previous section.

When estimating AR models for detrended and desea-
soned global GRACE data, we find that for more than 70 %
of the global land TWSC grids are best represented by an
AR(1) process (Fig. A1). Therefore, we apply the AR(1)
model for each grid. Figure 3 shows the estimated AR model
coefficients, which represent the temporal correlations, rang-
ing from very low up to 0.3, e.g., over the Sahara or in south-
western Australia, up to about 0.8, e.g., in Brazil or in the
southeastern US. EM clustering is then based on these coef-
ficients.

The selected three clusters (Fig. 3) show differences be-
tween the signal coefficients of the functional model (step 1;
Eq. 18), which are hence discussed for the linear trend. We
find a mean linear trend for the eastern Brazil cluster of
1.0 mm TWSC per year, a higher trend of 5.0 mm per year
in southern Africa, and for western India a trend of 56.3 mm
per year (Table 3). The trends for eastern Brazil and south-
ern Africa in GRACE-TWSC have been identified before
(e.g., Humphrey et al., 2016; Rodell et al., 2018). We did not
find confirmations for the strong linear trend in western India
found, for example, by Humphrey et al. (2016), who identi-
fied about 7 mm per year within this region. We assume that
in this study the linear trend for western India is estimated as
strong positive because we additionally identify a strong neg-
ative acceleration of −8.03 mm yr−2 in western India. How-

www.hydrol-earth-syst-sci.net/24/227/2020/ Hydrol. Earth Syst. Sci., 24, 227–248, 2020



234 H. Gerdener et al.: Gravity Recovery and Climate Experiment (GRACE) drought indicators

ever, our simulation will cover weak and strong trends. In
fact, all coefficients show strong differences, which suggests
that we cover different hydrological conditions when simu-
lating TWSC for the three regions. In step 2 we identify cor-
relations of 0.74 in eastern Brazil, 0.79 in western India, and
0.42 in southern Africa (Table 3).

Performing literature research for drought duration and
magnitude (step 3) led to four droughts seen in GRACE-
TWSC (Table 4): the 2005 and 2010 droughts in the Ama-
zon (e.g., Chen et al., 2009; Espinoza et al., 2011), the
2011 drought in Texas (e.g., Long et al., 2013), and the
2003 drought in Europe (e.g., Seitz et al., 2008). To extract
the drought duration, we compared drought onset and end
identified in these and other papers. We found that different
studies do not exactly match, with inconsistencies likely due
to different methodologies used. Furthermore, some authors
only specified the year of drought. Droughts extracted from
the literature had a duration of 3 to 10 months (Fig. 4a–d).
Unless otherwise specified, we decided to base our simula-
tions on a duration of 9 months to represent a clear identi-
fiable drought duration. Extracted drought magnitudes range
from about −20 to −350 mm TWSC (Fig. 4a–d). Therefore,
in order to simulate a drought magnitude that has a clear in-
fluence on the synthetic time series, we set the magnitude to
−100 mm.

As described in Sect. 3.1, we transform these water stor-
age droughts to a standard duration and magnitude to un-
derstand whether a typical signature can be seen. However,
Fig. 4e remains inconclusive as there are, in particular, four
standardized droughts, which show a very different temporal
behavior: Toulouse in 2003, Óbidos in 2010, and Houston
and Dallas in 2011. When we remove those four time series
(Fig. 4f), a systematic behavior can be identified and parame-
terized using a linear or quadratic temporal model. However,
due to these difficulties, we decided to use the most simple
TWSC drought model, i.e., a constant water storage deficit
within a given time span.

In step 4, we project the simulation on a 0.5◦ grid and
add spatially correlated GRACE noise. A few representa-
tive time series of the gridded synthetic total water stor-
age change are shown in Fig. 5 for eastern Brazil, south-
ern Africa, and western India for the GRACE time period
from January 2003 to December 2016. The effect of realis-
tic GRACE noise (dark blue vs. light blue) is clearly visible,
particularly for the SA case with low annual amplitude. The
synthetic drought period is placed from January to Septem-
ber 2005 (light brown) in all three regions. Synthetic TWSC
variability includes considerable (semi-)annual variations for
EB based on Table 3. Furthermore, a strong negative accel-
eration is contained in the synthesized time series for eastern
Brazil (Table 3) leading to strong negative TWSC towards
the end of the time series. For western India a strong positive
trend leads to low TWSC at the begin of the time series.

4 Indicator-based drought identification with synthetic
and real GRACE data

4.1 Synthetic TWSC: masking effect of trend and
seasonality

Here, we analyze how non-drought signals, such as a lin-
ear or accelerated water storage trend and the ubiquitous
seasonal signal, propagate through the Zhao, Houborg, and
Thomas GRACE indicators (Sect. 2) and potentially mask
a drought. To this end, we select representative time series
from each of the three synthetic grids of total water storage
changes for eastern Brazil, southern Africa, and western In-
dia and apply the three methods. Since all results are based
on TWSC, we refer to TWSC-DSIA, TWSC-DSID, TWSC-
DIA, and TWSC-DID as DSIA, DSID, DIA, and DID, re-
spectively (again, with accumulated (A) and differenced (D)
variants).

We first assess the temporal characteristics of the Zhao
method (Sect. 2.1). Figure 6 (left) shows time series for the
DSI and DSIA (with 3, 6, 12, or 24 months of accumulated
TWSC). It is obvious that trend and acceleration propagate
into both DSI and DSIA (see eastern Brazil and western
India). Resulting indicator values (e.g., for the years 2015
and 2016) are lower than those compared to a small trend
(southern Africa) and this may lead to misinterpretations be-
cause a severe-to-mild drought is identified (−2 to −0.5),
while none is actually simulated. In contrast, the actual simu-
lated drought in 2005 is only identified as a moderate drought
(values up to −1.0) for EB.

In the presence of a small trend (5.0 mm yr−1) and accel-
eration (−0.38 mm yr−2; Table 3, SA), we do identify an ex-
ceptional drought (Fig. 6 DSIA for southern Africa). This
shows that the drought strength that we chose does indeed
lead to a correct identification of exceptional drought if no
masking occurs (but in the presence of GRACE noise), so
at this point we can determine that exceptional drought rep-
resents the true drought severity class. As expected, a trend
and/or an acceleration signal that are frequently observed in
GRACE analyses can lead to misinterpretations in the indica-
tors. However, the influence of the trend or acceleration also
depends on the timing of the drought period within the anal-
ysis window. For example, assuming we simulate the time
series with the same trend or acceleration but the drought
were to occur in 2014, the drought detection would not have
been influenced as much. Therefore, we decided to set up an
additional experiment and discuss the influence of different
trend strengths for the drought detection (Sect. 4.3).

The analysis reveals that DSI and DSIA indicators are
sensitive with respect to trends, while they are less sensi-
tive to the annual and semi-annual signal. The seasonal sig-
nal is clearly dampened (e.g., compare Fig. 5 to the DSIA
in Fig. 6). This is caused by removing the climatology
within the Zhao method (Eq. 8). Comparing DSIA3, DSIA6,
DSIA12, and DSIA24, e.g., for eastern Brazil, suggests that
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Table 3. Coefficients (a0 to c2 from Eq. 18 and φ1 from Eq. A1) for signals contained in GRACE-TWSC that were extracted within the
clusters of eastern Brazil, southern Africa, and western India. These coefficients are used to simulate synthetic TWSC.

Cluster Constant Linear Acceleration Annual Semi-annual AR-correlation

a0 trend a2 b1 b2 c2 c2 φ1
a1

Eastern Brazil 34.85 1.02 −1.77 6.83 106.12 4.69 9.47 0.74
southern Africa −24.00 4.98 −0.38 −4.31 −2.34 −1.23 1.07 0.42
Western India −139.37 56.30 −8.03 30.23 −122.69 −24.22 25.24 0.79

Figure 4. Extracted drought periods from GRACE-TWSC for the droughts in (a) Europe in 2003, (b) the Amazon river basin in 2005, (c) the
Amazon river basin in 2010, and (d) Texas in 2011. (e) All droughts from (a)–(d) were transformed to standard severity and duration. Panel
(f) is the same as (e) but after removing four time series with significant temporally different behavior.

with a longer accumulation period, indicator time series are
increasingly smoothed, and less severe droughts are identi-
fied (Fig. 6, left). Furthermore, the drought period appears
shifted in time, and its duration is prolonged. This can lead
to missing a drought identification if a trend or an acceler-
ation is contained in the analyzed time series, for example
for the 24-month DSIA for eastern Brazil. We find that all
DSIA data are able to unambiguously detect a drought close
to 2005, assuming that neither trend nor acceleration is ap-
parent (Fig. 6 DSIA for southern Africa). Particularly, the 3-
and 6-month DSIA data identify the drought close to 2005
for southern Africa, and its computation appears to dampen
the temporal noise that is present in the DSI.

In contrast we find that the 3-, 6-, 12-, and 24-month
TWSC-differencing DSID data exhibit stronger temporal
noise as compared to the DSIA and the DSI. This can be
seen in the light of Eq. (2) – these indicators are closer to me-
teorological indicators and thus do not inherit the integrating
property of TWSC. The DSID does not propagate a trend and
acceleration, annual signal, or semi-annual signal. All DSID
time series, for example for eastern Brazil (Fig. 6, right),

show a strong negative peak within the drought period, but
this peak does not cover the entire drought period for the 3-,
and 6-month differenced DSID. The negative peak within the
drought period is always followed by a strong positive peak;
when we consider Eq. (2), this lends to the interpretation
that a pronounced drought period is normally followed by
a very wet event to return to “normal” water storage condi-
tion. Despite higher noise and the positive peak and contrary
to the DSIA, all DSID data (DSID3, DSID6, DSID12, and
DSID24) correctly identify the drought within 2005 to be ex-
ceptionally dry for eastern Brazil and southern Africa. All
different DSID time series for WI identify at least a moder-
ate drought.

Analysis of the Houborg method shows a broadly simi-
lar behavior as compared to the Zhao method: the sensitiv-
ity of drought detection to an included trend or acceleration
depends on the indicator type. Using the DIA we can con-
firm the large influence of the trend or acceleration on the
indicator value, which is not the case for DID (e.g., Fig. 7
DIA and DID for eastern Brazil). Annual and semi-annual
water storage signals are all considerably weakened in the
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Table 4. Drought events in Europe, the Amazon river basin, and Texas with corresponding duration taken from the literature.

Region Year of Considered Examples in the literature
drought TWSC months

Europe 2003 June to August Andersen et al. (2005)
Rebetez et al. (2006)
Seitz et al. (2008)

Amazon river basin 2005 May to September Chen et al. (2009)
Frappart et al. (2012)

2010 June to September Espinoza et al. (2011)
Frappart et al. (2013)
Humphrey et al. (2016)

Texas 2011 February to October Humphrey et al. (2016)
Long et al. (2013)

Figure 5. Synthetic TWSC (mm) without (light blue) and with spatial GRACE noise (dark blue) using average parameters for the clusters in
eastern Brazil (EB), southern Africa (SA), and western India (WI). Light brown shows the simulated drought period.

Houborg method because they are effectively removed when
computing the empirical distribution for each month of the
year. Differences to the Zhao method appear when compar-
ing more general properties; e.g., we find that DI is more
noisy and the range of output values is restricted to about 7 %
to 100 % (Fig. 7). This restriction is caused by the length of
the time series; e.g., assuming we strive to identify an event
with exceptional dry values (≤ 2 %), we would need at least
50 years of monthly observations. Yet, with GRACE we only

have about 14 years of good monthly observations, so the
simulation was also restricted to this period. If we then take
the driest value that might occur only once, we can compute
the minimum value of DI to be 7.14 %. Hence the detection
of a period of exceptional or extreme drought is not possible
when referring to the duration of the GRACE-TWSC time se-
ries. As mentioned in Sect. 2.2, Houborg et al. (2012) applied
a bias correction to the empirical CDF to mitigate this restric-
tion. We do not follow Houborg’s approach here in order to

Hydrol. Earth Syst. Sci., 24, 227–248, 2020 www.hydrol-earth-syst-sci.net/24/227/2020/



H. Gerdener et al.: Gravity Recovery and Climate Experiment (GRACE) drought indicators 237

Figure 6. A representative example of the synthetic DSI, DSIA, and DSID (–) for the eastern Brazil (EB), southern Africa (SA), and western
India (WI) cluster over the periods of 3, 6, 12, and 24 months. Light brown shows the synthetic constructed drought period.

Figure 7. A representative example of the synthetic DI, DIA, and DID (%) for the eastern Brazil (EB), southern Africa (SA), and western
India (WI) cluster over the periods of 3, 6, 12, and 24 months. Light brown shows the synthetic constructed drought period.
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focus on the synthetic environment instead of the availability
of model outputs.

The Thomas method is applied to simulated TWSC data
to derive the magnitude, duration, and severity of a drought,
which we show in Fig. 8 for the EB region. We find that the
linear trend and acceleration propagate into the magnitude
(Fig. 8, top) when using TWSC deficits with climatology re-
moved (blue, Eq. 6) compared to using TWSC deficits with
removed trends, accelerations, and seasonality (red, Eq. 18).
When using non-climatological TWSC (blue), we identify a
strong deficit in 2015 and 2016 (Fig. 8, top), which suggests
a duration of up to 38 months (Fig. 8, center) and a severity
of about −4000 mm months (Fig. 8, bottom). Using the de-
trended and deseasoned TWSC (red), drought is mainly de-
tected in the true drought period (2005) and not at the end of
the time series. Thus we conclude that a trend or acceleration
indeed modifies the drought detection.

Results so far were derived by imposing a minimum du-
ration of 3 months (blue and red). When moving to a mini-
mum duration of 6 consecutive months (green, Fig. 8, middle
and bottom) we find this would lead to a decrease in identi-
fied severity by half, and the beginning of the drought period
shifts 3 months in time. This is in line with Thomas et al.
(2014). The same findings are made for southern Africa and
western India.

4.2 Synthetic TWSC: effect of spatially correlated
GRACE errors

Here, we investigate how robust the Zhao, Houborg, and
Thomas indicators are with respect to the spatially corre-
lated and time-variable GRACE errors. However, any anal-
ysis must take into account that GRACE results cannot be
evaluated directly at grid resolution.

In our first analysis, indicators based on (synthetic) TWSC
grids are thus spatially averaged through two different meth-
ods (Sect. 3.1). We find that regional-scale DSI and DI indi-
cators, as well as the outputs derived by the Thomas method
for southern Africa computed from averaging TWSC first
(dark blue Fig. 9), are indeed different to the averaging in-
dicators computed at grid scale from TWSC (light blue,
Fig. 9). These differences can be explained by the inherent
non-linearity of the indicators. Since the synthetic data have
been constructed from the same constants, trends, seasonal
signal, temporal correlations, and drought signal, we isolate
the effect of GRACE noise on regional-scale indicators here.
Outside of the drought period we conclude that the sequence
in which we spatially average causes larger differences for DI
as compared to DSI. For southern Africa, the range of aver-
aged DI is about 7 %–100 %, while the range of the DI of
averaged TWSC is about 7 %–80 %. Within the drought pe-
riod the DI exhibits little difference between both averag-
ing methods. The DSI from averaged TWSC does suggest a
weaker severity in the drought period compared to averaged
DSI. In this case, both indicator averages identify the same

(exceptional) drought severity class. Yet we find that for both
DSI and DI the identification of drought severity is not sen-
sitive to the choice of the averaging method for this clus-
ter. However, for other cases these differences can be more
significant. These may lead to misinterpretation (e.g., May
and July 2005 for the DI for eastern Brazil, Fig. 9). For
the Thomas method, we cannot distinguish which result is
more significant, since we have no comparable true severity
amount for that indicator.

To determine the influence of the GRACE-specific spatial
noise on the detected drought severity, a second analysis is
applied. This analysis computes the share of the area for each
time step for which a given drought severity class is identi-
fied (Fig. 10). Since different grid cells for one time step only
differ in their spatial noise, it is important to understand that
identifying more than one severity class is directly related to
the noise. Only one class of drought would be detected for
one epoch, assuming the grid cells have no or exactly the
same noise. For example, we identify all classes of droughts
(abnormal to exceptional) in December 2015 by using DSI
for the eastern Brazil cluster (Fig. 10, top left). Thus, the spa-
tial noise has a large influence on the drought detection. To
establish which indicator is most affected, the indicators are
compared with each other.

We note that large differences are found between DSI, the
6-month accumulated DSIA, and the 6-month differenced
DSID within the given drought period for the eastern Brazil
region (Fig. 10, left). All three indicators manage to identify
the drought, but they also do so with a different duration and
percentage of the affected area. Within the simulated drought
period, the DSI indicator identified no more than 14 % of all
grid cells as being affected by exceptional drought where it
should be 100 %. On the other hand, the DSIA does not de-
tect exceptional drought in any grid cell. It is apparent that
this indicator misses the exceptional dry event because of the
included trend and acceleration.

When comparing the DSIA of eastern Brazil to the DSIA
of southern Africa (Fig. 10, center), we find that DSIA is able
to detect the drought strength correctly when there is a small
trend or acceleration present. However, DSIA appears more
robust against spatial noise, since it identifies severe drought
or drier in more than 90 % of grid cells, while the DSI indi-
cator identifies only about 60 %. As described in Sect. 4.1,
longer accumulation periods lead to smoother and thus more
robust indicators. We find that the DSID is more success-
ful in detecting exceptional drought: more than 80 % of the
DSID grid cells show exceptional drought, but the indica-
tor appears more noisy than DSIA. Finally, with regard to
the drought duration, we find that only DSI detects the true
period correctly. When identified via DSIA, the duration ap-
pears longer, and when identified in DSID, the period was
found shorter as compared to the true drought period.

Overall, we find that the different indicators of DSI, DSIA,
and DSID all come with advantages and disadvantages re-
garding the presence of spatial and temporal noise. The
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Figure 8. Drought magnitude (mm), duration (months) and severity (mm month−1) for the cluster in eastern Brazil (EB) using TWSC
with the removed climatology (dark blue) and TWSC with removed trend and seasonal signal (red). The minimum duration (MD) is set to
3 months (blue and red) or 6 months (green). Light brown shows the synthetic constructed drought period.

same findings were made for the indicators of the Houborg
method (results not shown). This analysis is not applied to
the Thomas method, because the method does not refer to
severity classes (Sect. 2.3).

4.3 Synthetic TWSC: experiments with variable trend,
drought duration, and severity

Two experiments were additionally constructed to examine
the influence of trends and drought parameters on the indica-
tor capability. First, we consider how strong a linear trend in
total water storage must be to mask drought in the indicators.
For this, we test different trends from−10 to 10 mm yr−1 for
DSI, DSIA, DI, DIA, and the Thomas method in the western
India region (since these indicators were identified as being
affected by trends; Sect. 4.1). No acceleration is included for
these tests. We find that trends between −1 and 1 mm yr−1

cause no influence on all indicators, while differences start
to appear when simulating a trend higher than 2 mm yr−1.
This propagates into the DSI, DSIA, DI, and DIA indicators
but did not affect the drought period.

A question we must ask is what would be the largest
trend magnitude that does not affect the correct detection of
drought duration and drought severity, and how can we verify
this. An obvious influence within the drought period in 2005
is found when simulating a trend of−7 mm or lower per year.
It is important at this point to understand that there is a rela-
tion between the timing of the drought and the sign of the

trend, i.e., whether the trend is positive or negative. Assum-
ing that a positive trend exists and the drought occurs closer
to the end of the time series, the trend may lead to a drought
that is identified as more dry than the true drought. But if the
trend is negative, the drought is identified more easily.

Other factors, e.g., the length of the time series, have an
influence on the masking by the trend and, as a result, af-
fect drought detection. The longer the input time series, the
more sensitive the drought detection is to the trend. At the
same time, the magnitude of the trend needs to be considered
relative to the variability or range of TWSC. For example, a
−6 mm yr−1 trend has a larger influence on the drought de-
tection if the range of TWSC is −50 to 50 mm compared to
−200 to 200 mm. As a reference, the synthetic time series
for western India, without any trend or acceleration signal,
ranges from about −323 to 87 mm. So, deriving a general
quantity for these dependencies is difficult.

In a second experiment, we assess which input drought
duration and magnitude would at least be visually recog-
nized in the indicators. We choose 3, 6, 9, 12, and 24 months
for the simulated duration and −40, −60, −80, −100, and
−120 mm for the drought magnitude and apply both the
Zhao and the Houborg methods. We compare the changes for
one indicator time series for the eastern Brazil region. The
drought always begins in January 2005 for the first tests. In
general, we found that the identification of the severity class
is less sensitive to changes in the drought duration, since a
drought duration of 3, 6, 9, 12, and 24 months mostly re-
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Figure 9. DSI and DI average in southern Africa (SA; a, b), severity average for the Thomas method (SA; c), and DI average in eastern
Brazil (EB, d) by applying two different methods: the average of the indicators for all grids (light blue) and the indicators of averaged TWSC
(dark blue). The grey shaded area represents the bandwidth for all grids. Light brown shows the synthetic constructed drought period.

sults in equal drought severity classes, for example, a drought
magnitude of 120 mm. Thus, we concentrate our analysis on
changes in drought magnitude.

Exceptional drought is only classified by the Zhao method
for eastern Brazil for a simulated drought magnitude of
120 mm; this is related to the trend and acceleration signal
contained in the simulated TWSC and was already found in
Sect. 4.1. For the Zhao method, extreme drought is identified
when simulating a drought magnitude of at least −100 mm,
while only a period of severe and moderate drought is identi-
fied when simulating a magnitude of −80 and −60 mm. The
Houborg method fails to identify extreme and exceptional
drought, as described in Sect. 4.1. Thus, simulating a mag-
nitude of −100 and −120 mm is identified as severe drought
for all simulated drought periods (3 to 24 months), while sim-
ulating a lower magnitude (−80 and −60 mm) causes mod-
erate or abnormal dry events to be identified. We find that

both methods are not able to clearly detect a drought that has
a magnitude of−40 mm or weaker if the duration is between
3 and 24 months. This experiment supports our findings in
Sect. 3.2.

4.4 Application to real GRACE data: droughts in
South Africa

For South Africa, droughts are a recurrent climatic phe-
nomenon. The complex rainfall regime has led to multiple
occurrences of drought events in the past, for example to a
strong drought in 1983 (e.g., Rouault and Richard, 2003; Vo-
gel et al., 2010; Malherbe et al., 2016). These past droughts
appeared in varying climate regions, at different times of the
year, and with a different severity. Since 1960, many of them
were linked to El Niño (e.g., Rouault and Richard, 2003;
Malherbe et al., 2016).
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Figure 10. Drought-affected area of the DSI, DSIA, and DSID (%) considering the different drought severity classes within the clusters of
eastern Brazil (EB) and southern Africa (SA).

Figure 11. Percentage of drought-affected area for the 6-month DSIA (–) considering the different drought severity classes. Application on
real GRACE-TWSC over South Africa from 2003 to 2016.

Based on the simulation results, we chose the 6-month ac-
cumulated DSIA to identify droughts for (the administrative
area of) South Africa (GADM, 2018) in the GRACE total
water storage data. DSIA has proven to be more robust with
respect to the peculiar, GRACE-typical spatial and temporal
noise as compared to the other tested indicators (Sect. 4.1
and 4.2).

GRACE-DSIA6 suggests two drought periods, from mid-
2003 to mid-2006 and from 2015 to 2016 (Fig. 11). The first
drought event is identified to affect at least 70 % of the area of
South Africa. While 2003 was indeed a year of abnormal-to-
severe dry conditions, extreme drought occurred during the
period of 2004 to mid-2006. Figure 11 reveals that a small
area (about 7976 km2, close to Lesotho) even experienced ex-
ceptional drought during 2004. This period is confirmed by
the Emergency Events Database (EM-DAT, 2018) recording
of a drought event in 2004 (e.g., Masih et al., 2014). Extreme

drought in 2004 mainly occurred in central and southeastern
South Africa; this is exemplified in Fig. 12a for April 2004.
Another confirmation is found in Malherbe et al. (2016),
who identified a drought period from 2003 to 2007 by using
the SPI.

Despite affecting less area (about 50 % to 70 %; Fig. 11),
the second drought in 2015 and 2016 is perceived as more
intense than the drought from 2003 to 2006. Based on the
GRACE-DSIA6 data, we conclude that in 2016 at least 30 %
of South Africa was affected by extreme drought and about
20 % experienced an exceptional drought. The 2016 drought
occurred in the northeastern part of South Africa (Fig. 12b).
For comparison, the EM-DAT database similarly identi-
fied 2015 as a drought event, but it did not classify 2016 as
such. We speculate that the differences are due to the drought
criteria of EM-DAT (disasters are included when, for exam-
ple, 10 or more people died or 100 or more people were af-
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Figure 12. DSIA6 (–) for real GRACE-TWSC data within South Africa (black line; GADM, 2018) for (a) April 2004 and (b) March 2016.

fected). However, EM-DAT lists 2016 as a year of extreme
temperature, which might be related to our detected drought.
Furthermore, we can confirm the 2015–2016 drought is
marked by a lower maximum precipitation in these years
than in other years (about 65 mm) and by meteorological
indicators indicating a period of severe-to-extreme drought
(SPI; Standardized Precipitation Evapotranspiration Index;
Vincente-Serrano et al., 2010; Weighted Anomaly Standard-
ized Index; Lyon and Barnston, 2015).

5 Discussion

The framework developed in this study enables us to simulate
GRACE-TWSC data with realistic signal and noise proper-
ties and thus to assess the ability of GRACE drought indica-
tors to detect drought events in a controlled environment with
known truth. This will be extended to GRACE-FO in the near
future. GRACE studies have often been based on simplified
noise models (e.g., Zaitchik et al., 2008; Girotto et al., 2016),
where the GRACE noise model is not derived from the used
GRACE data but, for example, from literature and assumed
to be spatially uniform and uncorrelated. However, it is im-
portant to account for realistic error and signal correlation
(e.g., Eicker et al., 2014), in particular for drought studies
where one will push the limits of GRACE spatial resolution.
This signal correlation includes information about, for exam-
ple, the geographic latitude, the density of the satellite orbits,
the time dependencies of mission periods or north–south de-
pendencies.

However, identifying a drought signal from real GRACE-
TWSC data is indeed challenging since we do not know in
advance what the signature of a drought looks like; a para-
metric drought model does not yet exist, and our experiment
(Sect. 3.2) to extract such a model from TWSC data and
known droughts did not lead to conclusive results. Still we

believe that this first – to our knowledge – approach, despite
being based on a small number of drought periods, identified
a similar systematic behavior of different drought periods
and should be pursued further. Based on literature and our
own experiments (Sect. 4.3) we chose to define our “box”-
like GRACE drought model as an immediate and constant
water storage deficit.

When analyzing the Zhao, Houborg, and Thomas meth-
ods, we find that trends and accelerations in GRACE water
storage maps tend to bias not only DSI, DI, and the Thomas
indicator (which use non-climatological TWSC) but also
DSIA and DIA (which use accumulated TWSC). The indica-
tors DSID and DID, which utilize time-differenced TWSC,
were not found to be biased by trends and accelerations; the
same goes for the Thomas method when based on detrended
and deseasoned TWSC. When we simulated smaller trends
or accelerations, all indicators were able to detect drought,
but they identified a different timing, duration, and strength,
for example for the SA cluster (trend of 4.98 mm yr−1, accel-
eration of−0.38 mm yr−2). This suggests removing the trend
in GRACE data first, but this must be done with care, since
it can also influence the detection of, for example, long-term
droughts. The same is true for removing the trend and sea-
sonal signal prior of applying the Thomas method, although
in this study we found that the removal of these signals sim-
plified the correct drought detection (Sect. 4.1).

An experiment was then set up to understand the influence
of the trend on the detected drought duration and severity.
Several factors play a role here, e.g., the length of the time
series, the TWSC range in relation to the trend magnitude,
and the sign of the trend. We found that providing a general
rule appears nearly impossible.

As expected, we find time series for the modified time-
differencing GRACE indicators DSID and DID as much
noisier when compared to the time-accumulating indicators
DSIA and DIA; this can be linked to precipitation (Sect. 2)
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driving total water storage. The drought period was identified
to be shorter than the true simulated drought period, e.g., for
DSID3 and DSID6. After these drought periods, strongly
wet periods were detected. Regarding future applications, we
suggest a direct comparison of the DSID and meteorological
indicators, in particular for confirming or rejecting drought
duration and the following wet periods.

On the other hand, computing accumulated indicators im-
plies a temporal smoothing causing the drought period to
appear lagged in time; however for accumulation periods of
3 and 6 months the lag was found to be insignificant. DSIA
and DIA are thus more robust against temporal and spatial
GRACE noise as compared to DSID and DID, and again we
would suggest utilizing 3 or 6 months accumulation periods.
In general, we found the Zhao and Thomas indicators per-
formed better in detecting the correct drought strength than
the Houborg method, at least for the limited duration of the
GRACE time series that we have at the time of writing.

By simulating the effect of spatial noise on drought detec-
tion, we found that some indicators appear less robust. Anal-
ysis of the percentage of the drought-affected area showed
that the GRACE spatial noise limits correct drought detec-
tion. Again, DSIA was identified to be more robust compared
to DSI and DSID – it was the only indicator that identified
exceptional drought in nearly all grid cells. A second ex-
periment was conducted to examine if the influence of the
spatial noise can be reduced by using spatial averages. We
found that spatially averaging DSI and DI appears less robust
against the spatial noise compared to computing the indica-
tor of the averaged TWSC. At this point we therefore suggest
to compute the indicator from the spatially averaged TWSC.
Since DI showed stronger difference between both averag-
ing methods than DSI, we conclude that DI is generally less
robust against spatial noise than DSI. In our real-data case
study, due to these findings, the DSIA6 was thus applied to
GRACE-TWSC, and it identified two drought periods: mid-
2003 to mid-2006 in central and southeastern South Africa
and 2015 to 2016 in northeastern South Africa.

6 Conclusions and outlook

A framework has been developed that enables a better under-
standing of the masking of drought signals when applying
the methods of Zhao et al. (2017), Houborg et al. (2012), and
Thomas et al. (2014). Four new GRACE-based indicators
(DSIA, DSID, DIA, and DID) were derived and tested; these
are modifications of the above mentioned approaches based
on time-accumulated and time-differenced GRACE data. We
found that indeed most indicators were mainly sensitive to
water storage trends and to the GRACE-typical spatial noise.

Among these various indicators, we identified the DSIA6
as particularly well-performing; i.e., it is less sensitive to
GRACE noise and is well capable of identifying the correct
severity of drought, at least in absence of trends. However,
the choice of the indicator should always be made in the con-
text of the application.

We see ample possibilities to extend our framework. Fu-
ture work should focus on better defining the onset and end
of a drought and developing a signature for a TWSC drought.
One should also consider other observable measurements in
the simulation, such as groundwater for example, which can
be derived from GRACE and by removing other storage con-
tributions from direct modeling or through data assimilation.

In the GRACE community, efforts are currently being
made to “bridge” the GRACE time series to the beginning
of the GRACE-FO data period (e.g., Jäggi et al., 2016; Lück
et al., 2018). These gap-filling data will inevitably have much
higher noise and spatial correlations that may be very dif-
ferent from GRACE data, and drought detection capabil-
ity should be investigated through simulation first. On the
other hand, GRACE-FO is supposed to provide more pre-
cise measurements, and thus less influence of spatial noise on
the drought detection may be expected. The combination of
GRACE-FO data and a thorough understanding and “tuning”
of GRACE drought identification methods, possibly through
this framework, might then enable us to identify water stor-
age droughts more precisely.
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Figure A1. Histogram of the optimal order of an AR model for
global detrended and deseasoned GRACE-TWSC on land grids.

Appendix A: AR model coefficients computations

To extract temporal correlations from the GRACE total water
storage changes we apply an autoregressive model, which is
described by

X(t)= φ1X(t − 1)+ . . .+φpX(t −p)+ εt , (A1)

where X represents the observed process at time t , p is the
model order, φ is the correlation parameters, and ε is a white-
noise process (Akaike, 1969). Here, detrended and desea-
soned TWSC are used as the observed process X(t) because
the remaining residuals contain interannual and subseasonal
signal data as the drought information, which we want to ex-
tract with this approach. The approach is then applied for
different model orders. The optimal order of the AR model
is adjusted by means of the information criteria, for example
the Akaike information criterion (AIC) and the Bayesian in-
formation criterion (BIC). Then, by using the optimal order,
the AR model coefficients φ, which represent the temporal
correlations, can be computed using a least squares adjust-
ment.

The results for the optimal order of interannual and sub-
seasonal TWSC is shown in Fig. A1. Most of the global land
grids of detrended and deseasoned TWSC show an optimal
order of 1 (about 70 %).

Appendix B: EM clustering

Expectation maximization represents a popular iterative al-
gorithm that is widely used for clustering data. EM partitions
data into clusters of different sizes and aims at finding the
maximum likelihood of parameters of a predefined probabil-
ity distribution (Dempster et al., 1977). In the case of a Gaus-
sian distribution the EM algorithm maximizes the Gaussian
mixture parameters, which are the Gaussian meanµk , covari-
ance 6k , and mixing coefficients πk (Szeliski, 2010). The
algorithm then iteratively applies two consecutive steps to
maximize the parameters: the expectation step (E step) and
the maximization step (M step). Within the E step we esti-
mate the likelihood that a data point xt is generated from the
kth Gaussian mixture by

zik =
1
Zi
πkN (x|µk,6k) . (B1)

The M step then re-estimates the parameters for each Gaus-
sian mixture as follows:

µk =
1
Nk

∑
i

zikxi, (B2)

6k =
1
Nk

∑
i

zik (xi −µk)(xi −µk)
T , (B3)

πk =
Nk

N
(B4)

by using the number of points assigned to each cluster via

Nk =
∑
i

zik. (B5)

Using the maximized parameters, EM assigns each data point
to a cluster. The final global distributed clusters of the AR pa-
rameters (Fig. 3) are shown in Fig. B1. These clusters were
derived by modifying and applying an EM algorithm pro-
vided by Chen (2018).
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Figure B1. Clusters based on EM clustering applied to the global AR model coefficients.

Appendix C: Eigenvalue decomposition

The decomposition of the variance–covariance matrix 6 by
using Cholesky decomposition fails when6 is positive semi-
definite. To still be able to decompose the matrix, we can use
eigenvalue decomposition, but this is accompanied by a loss
of information due to the rank deficiency. The decomposition
is then examined by 6 = UDUT , where U is a matrix with
the eigenvectors of 6 in each column and D is a diagonal
matrix of the eigenvalues. In this case, a decomposed matrix
can be related to RT introduced in Sect. 3.1. RT can be com-
puted by U

√
D. In Sect. 3.1, we multiply RT with a normal

distributed noise time series of the same length as the rows
of 6. In this case, the number of normal distributed noise
time series n is then replaced by the rank of 6.
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Data availability. GRACE-TWSCs are freely available at
http://skylab.itg.uni-bonn.de/data_and_models/grace/hydrology/
total_water_storage/ (Gerdener et al., 2019). Information about
the postprocessing of the data can be found at https://www.
apmg.uni-bonn.de/daten-und-modelle/grace-monthly-solutions
(Gerdener et al., 2018).

Author contributions. HG, OE, and JK designed all computations,
and HG carried them out. HG prepared the paper with contributions
from OE and JK.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We acknowledge the funding from the Ger-
man Federal Ministry of Education and Research (BMBF) for the
“GlobeDrought” project through its funding measure Global Re-
source Water (GRoW).

Financial support. This research has been supported by
the Bundesministerium für Bildung und Forschung (grant
no. 02WGR1457A).

Review statement. This paper was edited by Bettina Schaefli and
reviewed by two anonymous referees.

References

A, G., Wahr, J., Zhong, S.: Computations of the viscoelastic re-
sponse of a 3-D compressible Earth to surface loading: an appli-
cation to Glacial Isostatic Adjustment in Antarctica and Canada,
Geophys. J. Int., 192, 557–572, 2013.

Agboma, C. O., Yirdaw, S. Z. and Snelgrove, K. R.: Inter-
comparison of the total storage deficit index (TSDI) over
two Canadian Prairie catchments, J. Hydrol., 374, 351–359,
https://doi.org/10.1016/j.jhydrol.2009.06.034, 2009.

Akaike, H.: Fitting autoregressive models for prediction, Ann. Inst.
Stat. Math., 21, 243–247, https://doi.org/10.1007/BF02532251,
1969.

Alpaydin, E.: Introduction to machine learning, MIT Press, Cam-
bridge, Massachusetts, USA, 2009.

Andersen, O. B., Seneviratne, S. I., Hinderer, J. and Viterbo, P.:
GRACE-derived terrestrial water storage depletion associated
with the 2003 European heat wave, Geophys. Res. Lett., 32,
L18405, https://doi.org/10.1029/2005GL023574, 2005.

Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M.,
Svoboda, M., Knutson, C., Smith, K. H., Wall, N., Fuchs, B.,
Crossman, N. D. and Overton, I. C.: Drought indicators revisited:
the need for a wider consideration of environment and society:
Drought indicators revisited, Wiley Interdisciplin. Rev.: Water,
3, 516–536, https://doi.org/10.1002/wat2.1154, 2016.

Changnon, S. A.: Detecting Drought Conditions in Illinois, Circu-
lar 169, Illinois State Water Survey, Champaign, 1987.

Checchi, F. and Robinson, W. C.: Mortality among populations of
southern and central Somalia affected by severe food insecurity
and famine during 2010–2012, Food and Agriculture Organiza-
tion of the United Nations, Rome, Washington, 2013.

Chen, J. L., Wilson, C. R., Tapley, B. D., Yang, Z. L. and Niu, G.
Y.: 2005 drought event in the Amazon River basin as measured
by GRACE and estimated by climate models, J. Geophys. Res.,
114, B05404, https://doi.org/10.1029/2008JB006056, 2009.

Chen, J. L., Wilson, C. R., Tapley, B. D., Longuevergne, L., Yang, Z.
L., and Scanlon, B. R.: Recent La Plata basin drought conditions
observed by satellite gravimetry, J. Geophys. Res., 115, D22108,
https://doi.org/10.1029/2010JD014689, 2010.

Chen, M.: EM Algorithm for Gaussian Mixture Model
(EM GMM), MATLAB Central File Exchange, available
at: https://www.mathworks.com/matlabcentral/fileexchange/
26184-em-algorithm-for-gaussian-mixture-model-em-gmm, lst
access: September 2018.

Cheng, M., Ries, J. C. and Tapley, B. D.: Variations of the Earth’s
figure axis from satellite laser ranging and GRACE, J. Geophys.
Res., 116, B01409, https://doi.org/10.1029/2010JB000850,
2011.

Coelho, C. A. S., de Oliveira, C. P., Ambrizzi, T., Reboita, M. S.,
Carpenedo, C. B., Campos, J. L. P. S., Tomaziello, A. C. N., Pam-
puch, L. A., Custódio, M. de S., Dutra, L. M. M., Da Rocha,
R. P., and Rehbein, A.: The 2014 southeast Brazil austral sum-
mer drought: regional scale mechanisms and teleconnections,
Clim. Dynam., 46, 3737–3752, https://doi.org/10.1007/s00382-
015-2800-1, 2016.

Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum Likeli-
hood from Incomplete Data via the EM Algorithm, J. Roy. Stat.
Soc., 39, 1–38, 1977.

Eicker, A., Schumacher, M., Kusche, J., Döll, P., and Schmied,
H. M.: Calibration/Data Assimilation Approach for In-
tegrating GRACE Data into the WaterGAP Global Hy-
drology Model (WGHM) Using an Ensemble Kalman
Filter: First Results, Surv. Geophys., 35, 1285–1309,
https://doi.org/10.1007/s10712-014-9309-8, 2014.

Eicker, A., Forootan, E., Springer, A., Longuevergne, L.,
and Kusche, J.: Does GRACE see the terrestrial wa-
ter cycle “intensifying”: Water Cycle Intensification
With GRACE, J. Geophys. Res.-Atmos., 121, 733–745,
https://doi.org/10.1002/2015JD023808, 2016.

EM-DAT: The Emergency Events Database, Université catholique
de Louvain (UCL) – CRED, D. Guha-Sapir, Brussels, Bel-
gium, available at: https://www.emdat.be/, last access: 5 Decem-
ber 2018.

Espinoza, J. C., Ronchail, J., Guyot, J. L., Junquas, C.,
Vauchel, P., Lavado, W., Drapeau, G., and Pombosa, R.: Cli-
mate variability and extreme drought in the upper Solimões
River (western Amazon Basin): Understanding the excep-
tional 2010 drought, Geophysical Research Letters, 38, L13406,
https://doi.org/10.1029/2011GL047862, 2011.

Frappart, F., Papa, F., Santos da Silva, J., Ramillien, G., Pri-
gent, C., Seyler, F., and Calmant, S.: Surface freshwa-
ter storage and dynamics in the Amazon basin during the
2005 exceptional drought, Environ. Res. Lett., 7, 044010,
https://doi.org/10.1088/1748-9326/7/4/044010, 2012.

Hydrol. Earth Syst. Sci., 24, 227–248, 2020 www.hydrol-earth-syst-sci.net/24/227/2020/

http://skylab.itg.uni-bonn.de/data_and_models/grace/hydrology/total_water_storage/
http://skylab.itg.uni-bonn.de/data_and_models/grace/hydrology/total_water_storage/
https://www.apmg.uni-bonn.de/daten-und-modelle/grace-monthly-solutions
https://www.apmg.uni-bonn.de/daten-und-modelle/grace-monthly-solutions
https://doi.org/10.1016/j.jhydrol.2009.06.034
https://doi.org/10.1007/BF02532251
https://doi.org/10.1029/2005GL023574
https://doi.org/10.1002/wat2.1154
https://doi.org/10.1029/2008JB006056
https://doi.org/10.1029/2010JD014689
https://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model-em-gmm
https://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model-em-gmm
https://doi.org/10.1029/2010JB000850
https://doi.org/10.1007/s00382-015-2800-1
https://doi.org/10.1007/s00382-015-2800-1
https://doi.org/10.1007/s10712-014-9309-8
https://doi.org/10.1002/2015JD023808
https://www.emdat.be/
https://doi.org/10.1029/2011GL047862
https://doi.org/10.1088/1748-9326/7/4/044010


H. Gerdener et al.: Gravity Recovery and Climate Experiment (GRACE) drought indicators 247

Frappart, F., Ramillien, G., and Ronchail, J.: Changes in
terrestrial water storage versus rainfall and discharges
in the Amazon basin, Int. J. Climatol., 33, 3029–3046,
https://doi.org/10.1002/joc.3647, 2013.

GADM database: version 3.4, available at: https://www.gadm.org/
(last access: 13 January 2020), 2018.

Gerdener, H., Schulze, K., Yakhontova, A., Engels, O., and Kusche,
K.: Description of post-processing steps for generating GRACE
Level-3 monthly solutions, available at: https://www.apmg.
uni-bonn.de/daten-und-modelle/grace-monthly-solutions (last
access: 16 January 2020), 2018.

Gerdener, H., Schulze, K., Yakhontova, A., Engels, O., and
Kusche, K.: GRACE Level-3 monthly solutions, available at:
http://skylab.itg.uni-bonn.de/data_and_models/grace/hydrology/
total_water_storage/ (last access: 16 January 2020), 2019.

Girotto, M., De Lannoy, G. J. M., Reichle, R. H., and Rodell, M.:
Assimilation of gridded terrestrial water storage observations
from GRACE into a land surface model, Water Resour. Res., 52,
4164–4183, https://doi.org/10.1002/2015WR018417, 2016.

Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik,
B. F.: Drought indicators based on model-assimilated Grav-
ity Recovery and Climate Experiment (GRACE) terrestrial wa-
ter storage observations, Water Resour. Res., 48, W07525,
https://doi.org/10.1029/2011WR011291, 2012.

Humphrey, V., Gudmundsson, L., and Seneviratne, S. I.: Assess-
ing Global Water Storage Variability from GRACE: Trends, Sea-
sonal Cycle, Subseasonal Anomalies and Extremes, Surv. Geo-
phys., 37, 357–395, https://doi.org/10.1007/s10712-016-9367-1,
2016.

IPCC: Climate Change 2013: The Physical Science Basis, in: Con-
tribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY,
USA, 1535 pp., 2013.

Jäggi, A., Dahle, C., Arnold, D., Bock, H., Meyer, U., Beutler, G.,
and van den IJssel, J.: Swarm kinematic orbits and gravity fields
from 18 months of GPS data, Adv. Space Res., 57, 218–233,
https://doi.org/10.1016/j.asr.2015.10.035, 2016.

Keyantash, J. and Dracup, J. A.: The Quantification of Drought:
An Evaluation of Drought Indices, B. Am. Meteorol. Soc., 83,
1167–1180, 2002.

Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorre-
lated GRACE time-variable gravity solutions by GFZ, and their
validation using a hydrological model, J. Geod., 83, 903–913,
https://doi.org/10.1007/s00190-009-0308-3, 2009.

Kusche, J., Eicker, A., Forootan, E., Springer, A., and Longuev-
ergne, L.: Mapping probabilities of extreme continental water
storage changes from space gravimetry, Geophys. Res. Lett., 43,
8026–8034, https://doi.org/10.1002/2016GL069538, 2016.

Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y.,
Fernando, D. N., and Save, H.: GRACE satellite monitor-
ing of large depletion in water storage in response to the
2011 drought in Texas, Geophys. Res. Lett., 40, 3395–3401,
https://doi.org/10.1002/grl.50655, 2013.

Lück, C., Kusche, J., Rietbroek, R., and Löcher, A.: Time-
variable gravity fields and ocean mass change from 37 months

of kinematic Swarm orbits, Solid Earth, 9, 323–339,
https://doi.org/10.5194/se-9-323-2018, 2018.

Lyon, B. and Barnston, A. G.: ENSO and the Spatial Extent of In-
terannual Precipitation Extremes in Tropical Land Areas, J. Cli-
mate, 18, 5095–5109, https://doi.org/10.1175/JCLI3598.1, 2005.

Malherbe, J., Dieppois, B., Maluleke, P., Van Staden, M., and Pillay,
D. L.: South African droughts and decadal variability, Nat. Haz-
ards, 80, 657–681, https://doi.org/10.1007/s11069-015-1989-y,
2016.

Mann, M. E. and Gleick, P. H.: Climate change and California
drought in the 21st century, P. Natl. Acad. Sci. USA, 112, 3858–
3859, https://doi.org/10.1073/pnas.1503667112, 2015.

Masih, I., Maskey, S., Mussá, F. E. F., and Trambauer, P.: A re-
view of droughts on the African continent: a geospatial and
long-term perspective, Hydrol. Earth Syst. Sci., 18, 3635–3649,
https://doi.org/10.5194/hess-18-3635-2014, 2014.

Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger,
B., and Zehentner, N.: ITSG-Grace2016 – Monthly and Daily
Gravity Field Solutions from GRACE, GFZ Data Services,
https://doi.org/10.5880/icgem.2016.007, 2016.

McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of
drought frequency and duration to time scales, American Meteo-
rolocial Society, Anaheim, CA, 179–183, 1993.

Mishra, A. K. and Singh, V. P.: A review of
drought concepts, J. Hydrol., 391, 202–216,
https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.

Moore, J., Woods, M., Ellis, A. and B. Moran, B.: Aerial survey
results: California, Region 5, USDA Forest Service, 2016.

Parthasarathy, B., Sontakke, N. A., Monot, A. A., and Kothawale,
D. R.: Droughts/floods in the summer monsoon season over dif-
ferent meteorological subdivisions of India for the period 1871–
1984, J. Climatol., 7, 57–70, 1987.

Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K.,
Kropp, J. P., and Menzel, A.: Heat and drought 2003 in Eu-
rope: a climate synthesis, Ann. of Forest Sci., 63, 569–577,
https://doi.org/10.1051/forest:2006043, 2006.

Redner, R. A. and Walker, H. F.: Mixture Densities, Maximum
Likelihood and the EM Algorithm, SIAM Rev., 26, 195–239,
https://doi.org/10.1137/1026034, 1984.

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beau-
doing, H. K., Landerer, F. W.. and Lo, M.-H.: Emerging
trends in global freshwater availability, Nature, 557, 651–659,
https://doi.org/10.1038/s41586-018-0123-1, 2018.

Rouault, M. and Richard, Y.: Intensity and spatial extension of
drought in South Africa at different time scales, Water SA, 29,
489–500, 2003.

Rouault, M. and Richard, Y.: Intensity and spatial extent of
droughts in southern Africa, Geophys. Res. Lett., 32, L15702,
https://doi.org/10.1029/2005GL022436, 2005.

Seitz, F., Schmidt, M. and Shum, C. K.: Signals of extreme
weather conditions in Central Europe in GRACE 4-D hydro-
logical mass variations, Earth Planet. Sc. Lett., 268, 165–170,
https://doi.org/10.1016/j.epsl.2008.01.001, 2008.

Springer, A.: A water storage reanalysis over the European conti-
nent: assimilation of GRACE data into a high-resolution hydro-
logical model and validation, PhD thesis, Rheinische Friedrich-
Wilhelms Universität Bonn, Bonn, urn:nbn:de:hbz:5n-53930,
2019.

www.hydrol-earth-syst-sci.net/24/227/2020/ Hydrol. Earth Syst. Sci., 24, 227–248, 2020

https://doi.org/10.1002/joc.3647
https://www.gadm.org/
https://www.apmg.uni-bonn.de/daten-und-modelle/grace-monthly-solutions
https://www.apmg.uni-bonn.de/daten-und-modelle/grace-monthly-solutions
http://skylab.itg.uni-bonn.de/data_and_models/grace/hydrology/total_water_storage/
http://skylab.itg.uni-bonn.de/data_and_models/grace/hydrology/total_water_storage/
https://doi.org/10.1002/2015WR018417
https://doi.org/10.1029/2011WR011291
https://doi.org/10.1007/s10712-016-9367-1
https://doi.org/10.1016/j.asr.2015.10.035
https://doi.org/10.1007/s00190-009-0308-3
https://doi.org/10.1002/2016GL069538
https://doi.org/10.1002/grl.50655
https://doi.org/10.5194/se-9-323-2018
https://doi.org/10.1175/JCLI3598.1
https://doi.org/10.1007/s11069-015-1989-y
https://doi.org/10.1073/pnas.1503667112
https://doi.org/10.5194/hess-18-3635-2014
https://doi.org/10.5880/icgem.2016.007
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1051/forest:2006043
https://doi.org/10.1137/1026034
https://doi.org/10.1038/s41586-018-0123-1
https://doi.org/10.1029/2005GL022436
https://doi.org/10.1016/j.epsl.2008.01.001


248 H. Gerdener et al.: Gravity Recovery and Climate Experiment (GRACE) drought indicators

Swenson S. C., Chambers, D. P., and Wahr, J.: Estimating
geocenter variations from a combination of GRACE and
ocean model output, J. Geophys. Res.-Solid, 113, B08410,
https://doi.org/10.1029/2007JB005338, 2008.

Szeliski, R.: Computer Vision: Algorithms and Applications,
Springer Science and Business Media, London, 2010.

Thomas, A. C., Reager, J. T., Famiglietti, J. S., and Rodell, M.: A
GRACE-based water storage deficit approach for hydrological
drought characterization, Geophys. Res. Lett., 41, 1537–1545,
https://doi.org/10.1002/2014GL059323, 2014.

Tsakiris, G.: Drought Risk Assessment and Management, Water Re-
sour. Manage., 31, 3083–3095, https://doi.org/10.1007/s11269-
017-1698-2, 2017.

Van Loon, A. F.: Hydrological drought explained: Hydrological
drought explained, Wiley Interdisciplin. Rev.: Water, 2, 359–392,
https://doi.org/10.1002/wat2.1085, 2015.

Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The
Standardized Precipitation Evapotranspiration Index, J. Climate,
23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.

Vogel, C., Koch, I. and Van Zyl, K.: “A Persistent Truth” – Reflec-
tions on Drought Risk Management in Southern Africa, Weather
Clim. Soc., 2, 9–22, https://doi.org/10.1175/2009WCAS1017.1,
2010.

Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., and
Swenson, S. C.: Groundwater depletion in the Middle East from
GRACE with implications for transboundary water management
in the Tigris-Euphrates-Western Iran region, Water Resour. Res.,
49, 904–914, https://doi.org/10.1002/wrcr.20078, 2013.

Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the
Earth’s gravity field: Hydrological and oceanic effects and their
possible detection using GRACE, J. Geophys. Res.-Solid, 103,
30205–30229, https://doi.org/10.1029/98JB02844, 1998.

Wilhite, D. A.: Droughts: A Global Assesment, Routledge, London,
2016.

Yi, H. and Wen, L.: Satellite gravity measurement mon-
itoring terrestrial water storage change and drought in
the continental United States, Scient. Rep., 6, 19909,
https://doi.org/10.1038/srep19909, 2016.

Zaitchik, B. F., Rodell, M., and Reichle, R. H.: Assimilation of
GRACE Terrestrial Water Storage Data into a Land Surface
Model: Results for the Mississippi River Basin, J. Hydromete-
orol., 9, 535–548, https://doi.org/10.1175/2007JHM951.1, 2008.

Zargar, A., Sadiq, R., Naser, B., and Khan, F. I.: A review of drought
indices, Environ. Rev., 19, 333–349, 2011.

Zhang, Z., Chao, B. F., Chen, J., and Wilson, C. R.: Terrestrial water
storage anomalies of Yangtze River Basin droughts observed by
GRACE and connections with ENSO, Global Planet. Change,
126, 35–45, https://doi.org/10.1016/j.gloplacha.2015.01.002,
2015.

Zhao, M., Velicogna, I., and Kimball, J. S.: A global gridded dataset
of GRACE drought severity index for 2002–14: Comparison with
PDSI and SPEI and a case of the Australia millenium drought, J.
Hydrometeorol., 18, 2117–2129, 2017.

Hydrol. Earth Syst. Sci., 24, 227–248, 2020 www.hydrol-earth-syst-sci.net/24/227/2020/

https://doi.org/10.1029/2007JB005338
https://doi.org/10.1002/2014GL059323
https://doi.org/10.1007/s11269-017-1698-2
https://doi.org/10.1007/s11269-017-1698-2
https://doi.org/10.1002/wat2.1085
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1175/2009WCAS1017.1
https://doi.org/10.1002/wrcr.20078
https://doi.org/10.1029/98JB02844
https://doi.org/10.1038/srep19909
https://doi.org/10.1175/2007JHM951.1
https://doi.org/10.1016/j.gloplacha.2015.01.002

	Abstract
	Introduction
	Indicators for hydrological drought
	Zhao method
	Houborg method
	Thomas method

	Framework to derive synthetic TWSC for computing drought indicators
	Methods
	Synthetic TWSC

	Indicator-based drought identification with synthetic and real GRACE data
	Synthetic TWSC: masking effect of trend and seasonality
	Synthetic TWSC: effect of spatially correlated GRACE errors
	Synthetic TWSC: experiments with variable trend, drought duration, and severity
	Application to real GRACE data: droughts in South Africa

	Discussion
	Conclusions and outlook
	Appendix A: AR model coefficients computations
	Appendix B: EM clustering
	Appendix C: Eigenvalue decomposition
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

