Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1429-2020
https://doi.org/10.5194/hess-24-1429-2020
Technical note
 | 
27 Mar 2020
Technical note |  | 27 Mar 2020

Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery

Anette Eltner, Hannes Sardemann, and Jens Grundmann

Related authors

Low-Cost sensors for measuring wadi discharge - a Raspberry Pi based seismometer and time-lapse camera setup
Robert Krüger, Xabier Blanch, Jens Grundmann, Ghazi Al-Rawas, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 243–250, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024,https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, 2024
Synergistic image and point cloud processing of UAV data for urban flood modeling: point cloud smart thinning and curb mapping
Pedro Alberto Pereira Zamboni, Hanne Hendrickx, Dennis Sprute, Holger Flatt, Muhtasimul Islam Rushdi, Florian Brodrecht, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 483–490, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024,https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, 2024
Using 3D observations with high spatio-temporal resolution to calibrate and evaluate a process-focused cellular automaton model of soil erosion by water
Anette Eltner, David Favis-Mortlock, Oliver Grothum, Martin Neumann, Tomas Laburda, and Petr Kavka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2648,https://doi.org/10.5194/egusphere-2024-2648, 2024
Short summary
AI-Based Tracking of Fast-Moving Alpine Landforms Using High Frequency Monoscopic Time-Lapse Imagery
Hanne Hendrickx, Xabier Blanch, Melanie Elias, Reynald Delaloye, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2570,https://doi.org/10.5194/egusphere-2024-2570, 2024
Short summary
UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide
Melanie Elias, Steffen Isfort, Anette Eltner, and Hans-Gerd Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 57–64, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024,https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, 2024

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
High-resolution automated detection of headwater streambeds for large watersheds
Francis Lessard, Naïm Perreault, and Sylvain Jutras
Hydrol. Earth Syst. Sci., 28, 1027–1040, https://doi.org/10.5194/hess-28-1027-2024,https://doi.org/10.5194/hess-28-1027-2024, 2024
Short summary
Remote quantification of the trophic status of Chinese lakes
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023,https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023,https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023,https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022,https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary

Cited articles

Adler, M.: Messungen von Durchflüssen und Strömungsprofilen mit einem Ultraschall-Doppler-Gerät (ADCP), Wasserwirtschaft, 83, 192–196, 1993. 
Blois, G., Best, J. L., Christensen, K. T., Cichella, V., Donahue, A., Hovakimyan, N., and Pakrasi, I.: UAV-based PIV for quantifying water-flow processes in large-scale natural environments, In 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 2016. 
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 2000. 
Brevis, W., Niño, Y., and Jirka, G. H.: Integrating cross - correlation and relaxation algorithms for particle tracking velocimetry, Exp. Fluids, 50, 135–147, 2011. 
Costa, J. E., Spicer, K. R., Cheng, R. T., Haeni, F. P., Melcher, N. B., Thurman, E. M., Plant, W. J., and Keller, W. C.: Measuring stream discharge by non-contact methods: A proof-of-concept experiment, Geophys. Res. Lett., 4, 553–556, 2000. 
Download
Short summary
An automatic workflow is introduced to measure surface flow velocities in rivers. The provided tool enables the measurement of spatially distributed surface flow velocities independently of the image acquisition perspective. Furthermore, the study illustrates how river discharge in previously ungauged and unmeasured regions can be retrieved, considering the image-based flow velocities and digital elevation models of the studied river reach reconstructed with UAV photogrammetry.