Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1429-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-1429-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery
Anette Eltner
CORRESPONDING AUTHOR
Institute of Photogrammetry and Remote Sensing, Technische
Universität Dresden, Dresden, 01069, Germany
Hannes Sardemann
Institute of Photogrammetry and Remote Sensing, Technische
Universität Dresden, Dresden, 01069, Germany
Jens Grundmann
Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, 01069, Germany
Related authors
Robert Krüger, Xabier Blanch, Jens Grundmann, Ghazi Al-Rawas, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 243–250, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, 2024
Pedro Alberto Pereira Zamboni, Hanne Hendrickx, Dennis Sprute, Holger Flatt, Muhtasimul Islam Rushdi, Florian Brodrecht, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 483–490, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, 2024
Anette Eltner, David Favis-Mortlock, Oliver Grothum, Martin Neumann, Tomas Laburda, and Petr Kavka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2648, https://doi.org/10.5194/egusphere-2024-2648, 2024
Short summary
Short summary
This study develops a new method to improve the calibration and evaluation of models that predict soil erosion by water. By using advanced imaging techniques, we can capture detailed changes of the soil surface over time. This helps improve models that forecast erosion, especially as climate change creates new and unpredictable conditions. Our findings highlight the need for more precise tools to better model erosion of our land and environment in the future.
Hanne Hendrickx, Xabier Blanch, Melanie Elias, Reynald Delaloye, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2570, https://doi.org/10.5194/egusphere-2024-2570, 2024
Short summary
Short summary
This study introduces a novel AI-based method to track and analyse the movement of rock glaciers and landslides, key indicators of permafrost dynamics in high mountain regions. Using time-lapse images, our approach provides detailed velocity data, revealing patterns that traditional methods miss. This cost-effective tool enhances our ability to monitor geohazards, offering insights into climate change impacts on permafrost and improving safety in alpine areas.
Melanie Elias, Steffen Isfort, Anette Eltner, and Hans-Gerd Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 57–64, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, 2024
Robert Krüger, Pierre Karrasch, and Anette Eltner
Geosci. Instrum. Method. Data Syst., 13, 163–176, https://doi.org/10.5194/gi-13-163-2024, https://doi.org/10.5194/gi-13-163-2024, 2024
Short summary
Short summary
Low-cost sensors could fill gaps in existing observation networks. To ensure data quality, the quality of the factory calibration of a given sensor has to be evaluated if the sensor is used out of the box. Here, the factory calibration of a widely used low-cost rain gauge type has been tested both in the lab (66) and in the field (20). The results of the study suggest that the calibration of this particular type should at least be checked for every sensor before being used.
O. Grothum, A. Bienert, M. Bluemlein, and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 163–170, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, 2023
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
R. Blaskow and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 45–50, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, 2023
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Lea Epple, Andreas Kaiser, Marcus Schindewolf, and Anette Eltner
SOIL Discuss., https://doi.org/10.5194/soil-2021-85, https://doi.org/10.5194/soil-2021-85, 2021
Revised manuscript not accepted
Short summary
Short summary
Intensified extreme weather events due to climate change can result in changes of soil erosion. These unclear developments make an improvement of soil erosion modelling all the more important. Assuming that soil erosion models cannot keep up with the current data, this work gives an overview of 44 models, their strengths and weaknesses and discusses their potential for further development with respect to new and improved soil and soil erosion assessment techniques.
A. Eltner, D. Mader, N. Szopos, B. Nagy, J. Grundmann, and L. Bertalan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 717–722, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, 2021
T. S. Akiyama, J. Marcato Junior, W. N. Gonçalves, P. O. Bressan, A. Eltner, F. Binder, and T. Singer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1189–1193, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1189-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1189-2020, 2020
M. Kröhnert and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 543–550, https://doi.org/10.5194/isprs-archives-XLII-2-543-2018, https://doi.org/10.5194/isprs-archives-XLII-2-543-2018, 2018
H. Sardemann, A. Eltner, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1023–1027, https://doi.org/10.5194/isprs-archives-XLII-2-1023-2018, https://doi.org/10.5194/isprs-archives-XLII-2-1023-2018, 2018
D. Lin, A. Eltner, H. Sardemann, and H.-G. Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 201–208, https://doi.org/10.5194/isprs-annals-IV-2-201-2018, https://doi.org/10.5194/isprs-annals-IV-2-201-2018, 2018
A. Eltner, D. Schneider, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B5, 813–819, https://doi.org/10.5194/isprs-archives-XLI-B5-813-2016, https://doi.org/10.5194/isprs-archives-XLI-B5-813-2016, 2016
Anette Eltner, Andreas Kaiser, Carlos Castillo, Gilles Rock, Fabian Neugirg, and Antonio Abellán
Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, https://doi.org/10.5194/esurf-4-359-2016, 2016
Short summary
Short summary
Three-dimensional reconstruction of earth surfaces from overlapping images is a promising tool for geoscientists. The method is very flexible, cost-efficient and easy to use, leading to a high variability in applications at different scales. Performance evaluation reveals that good accuracies are achievable but depend on the requirements of the individual case study. Future applications and developments (i.e. big data) will consolidate this essential tool for digital surface mapping.
Robert Krüger, Xabier Blanch, Jens Grundmann, Ghazi Al-Rawas, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 243–250, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, 2024
Pedro Alberto Pereira Zamboni, Hanne Hendrickx, Dennis Sprute, Holger Flatt, Muhtasimul Islam Rushdi, Florian Brodrecht, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 483–490, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-483-2024, 2024
Anette Eltner, David Favis-Mortlock, Oliver Grothum, Martin Neumann, Tomas Laburda, and Petr Kavka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2648, https://doi.org/10.5194/egusphere-2024-2648, 2024
Short summary
Short summary
This study develops a new method to improve the calibration and evaluation of models that predict soil erosion by water. By using advanced imaging techniques, we can capture detailed changes of the soil surface over time. This helps improve models that forecast erosion, especially as climate change creates new and unpredictable conditions. Our findings highlight the need for more precise tools to better model erosion of our land and environment in the future.
Hanne Hendrickx, Xabier Blanch, Melanie Elias, Reynald Delaloye, and Anette Eltner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2570, https://doi.org/10.5194/egusphere-2024-2570, 2024
Short summary
Short summary
This study introduces a novel AI-based method to track and analyse the movement of rock glaciers and landslides, key indicators of permafrost dynamics in high mountain regions. Using time-lapse images, our approach provides detailed velocity data, revealing patterns that traditional methods miss. This cost-effective tool enhances our ability to monitor geohazards, offering insights into climate change impacts on permafrost and improving safety in alpine areas.
Christian Mulsow, Hannes Sardemann, Laure-Anne Gueguen, Gottfried Mandelburger, and Hans-Gerd Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 289–295, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-289-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-289-2024, 2024
Katja Richter, David Mader, Hannes Sardemann, and Hans-Gerd Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 341–348, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-341-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-341-2024, 2024
Hannes Sardemann, Christian Mulsow, Laure-Anne Gueguen, Gottfried Mandlburger, and Hans-Gerd Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 363–369, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-363-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-363-2024, 2024
Melanie Elias, Steffen Isfort, Anette Eltner, and Hans-Gerd Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 57–64, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-57-2024, 2024
Robert Krüger, Pierre Karrasch, and Anette Eltner
Geosci. Instrum. Method. Data Syst., 13, 163–176, https://doi.org/10.5194/gi-13-163-2024, https://doi.org/10.5194/gi-13-163-2024, 2024
Short summary
Short summary
Low-cost sensors could fill gaps in existing observation networks. To ensure data quality, the quality of the factory calibration of a given sensor has to be evaluated if the sensor is used out of the box. Here, the factory calibration of a widely used low-cost rain gauge type has been tested both in the lab (66) and in the field (20). The results of the study suggest that the calibration of this particular type should at least be checked for every sensor before being used.
O. Grothum, A. Bienert, M. Bluemlein, and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 163–170, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-163-2023, 2023
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
R. Blaskow and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 45–50, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-45-2023, 2023
F. Maiwald and H. Sardemann
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 823–829, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-823-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-823-2022, 2022
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Lea Epple, Andreas Kaiser, Marcus Schindewolf, and Anette Eltner
SOIL Discuss., https://doi.org/10.5194/soil-2021-85, https://doi.org/10.5194/soil-2021-85, 2021
Revised manuscript not accepted
Short summary
Short summary
Intensified extreme weather events due to climate change can result in changes of soil erosion. These unclear developments make an improvement of soil erosion modelling all the more important. Assuming that soil erosion models cannot keep up with the current data, this work gives an overview of 44 models, their strengths and weaknesses and discusses their potential for further development with respect to new and improved soil and soil erosion assessment techniques.
H. Sardemann, C. Mulsow, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 689–692, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-689-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-689-2021, 2021
A. Eltner, D. Mader, N. Szopos, B. Nagy, J. Grundmann, and L. Bertalan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 717–722, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-717-2021, 2021
T. S. Akiyama, J. Marcato Junior, W. N. Gonçalves, P. O. Bressan, A. Eltner, F. Binder, and T. Singer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1189–1193, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1189-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1189-2020, 2020
Jens Grundmann, Sebastian Hörning, and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 225–237, https://doi.org/10.5194/hess-23-225-2019, https://doi.org/10.5194/hess-23-225-2019, 2019
M. Kröhnert and A. Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 543–550, https://doi.org/10.5194/isprs-archives-XLII-2-543-2018, https://doi.org/10.5194/isprs-archives-XLII-2-543-2018, 2018
H. Sardemann, A. Eltner, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1023–1027, https://doi.org/10.5194/isprs-archives-XLII-2-1023-2018, https://doi.org/10.5194/isprs-archives-XLII-2-1023-2018, 2018
D. Lin, A. Eltner, H. Sardemann, and H.-G. Maas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 201–208, https://doi.org/10.5194/isprs-annals-IV-2-201-2018, https://doi.org/10.5194/isprs-annals-IV-2-201-2018, 2018
A. Eltner, D. Schneider, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B5, 813–819, https://doi.org/10.5194/isprs-archives-XLI-B5-813-2016, https://doi.org/10.5194/isprs-archives-XLI-B5-813-2016, 2016
Anette Eltner, Andreas Kaiser, Carlos Castillo, Gilles Rock, Fabian Neugirg, and Antonio Abellán
Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, https://doi.org/10.5194/esurf-4-359-2016, 2016
Short summary
Short summary
Three-dimensional reconstruction of earth surfaces from overlapping images is a promising tool for geoscientists. The method is very flexible, cost-efficient and easy to use, leading to a high variability in applications at different scales. Performance evaluation reveals that good accuracies are achievable but depend on the requirements of the individual case study. Future applications and developments (i.e. big data) will consolidate this essential tool for digital surface mapping.
Jens Grundmann, Ayisha Al-Khatri, and Niels Schütze
Proc. IAHS, 373, 31–35, https://doi.org/10.5194/piahs-373-31-2016, https://doi.org/10.5194/piahs-373-31-2016, 2016
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
High-resolution automated detection of headwater streambeds for large watersheds
Remote quantification of the trophic status of Chinese lakes
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept
A simple cloud-filling approach for remote sensing water cover assessments
Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions
Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
River-ice and water velocities using the Planet optical cubesat constellation
Exposure of tourism development to salt karst hazards along the Jordanian Dead Sea shore
A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry
Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series
Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle
Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model
Observing river stages using unmanned aerial vehicles
Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging
Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications
Satellite radar altimetry for monitoring small rivers and lakes in Indonesia
Quantifying river form variations in the Mississippi Basin using remotely sensed imagery
River ice flux and water velocities along a 600 km-long reach of Lena River, Siberia, from satellite stereo
Geometric dependency of Tibetan lakes on glacial runoff
Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data
River monitoring from satellite radar altimetry in the Zambezi River basin
Flood occurrence mapping of the middle Mahakam lowland area using satellite radar
Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling
Hydro-physical processes at the plunge point: an analysis using satellite and in situ data
Regional scale analysis of landform configuration with base-level (isobase) maps
Reconstructing the Tropical Storm Ketsana flood event in Marikina River, Philippines
Reading the bed morphology of a mountain stream: a geomorphometric study on high-resolution topographic data
Francis Lessard, Naïm Perreault, and Sylvain Jutras
Hydrol. Earth Syst. Sci., 28, 1027–1040, https://doi.org/10.5194/hess-28-1027-2024, https://doi.org/10.5194/hess-28-1027-2024, 2024
Short summary
Short summary
Headwaters streams, which are small streams at the top of a watershed, represent two-thirds of the total length of streams, yet their exact locations are still unknown. This article compares different techniques in order to remotely detect the position of these streams. Thus, a database of more than 464 km of headwaters was used to explain what drives their presence. A technique developed in this article makes it possible to detect headwater streams with more accuracy, despite the land uses.
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023, https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Short summary
1. Blue/red and green/red Rrs(λ) are sensitive to lake TSI. 2. Machine learning algorithms reveal optimum performance of TSI retrieval. 3. An accurate TSI model was achieved by MSI imagery data and XGBoost. 4. Trophic status in five limnetic regions was qualified. 5. The 10m TSI products were first produced in 555 typical lakes in China.
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023, https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022, https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Short summary
A 30 m LAke Water Secchi Depth (LAWSD30) dataset of China was first developed for 1985–2020, and national-scale water clarity estimations of lakes in China over the past 35 years were analyzed. Lake clarity in China exhibited a significant downward trend before the 21st century, but improved after 2000. The developed LAWSD30 dataset and the evaluation results can provide effective guidance for water preservation and restoration.
Pengcheng Su, Jingjing Liu, Yong Li, Wei Liu, Yang Wang, Chun Ma, and Qimin Li
Hydrol. Earth Syst. Sci., 25, 5879–5903, https://doi.org/10.5194/hess-25-5879-2021, https://doi.org/10.5194/hess-25-5879-2021, 2021
Short summary
Short summary
We identified ± 150 glacial lakes in the Poiqu River basin (central Himalayas), and we explore the changes in five lakes over the last few decades based on remote sensing images, field surveys, and satellite photos. We reconstruct the lake basin topography, calculate the water capacity, and propose a water balance equation (WBE) to explain glacial lake evolution in response to local weather conditions. The WBE also provides a framework for the water balance in rivers from glacierized sources.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Connor Mullen, Gopal Penny, and Marc F. Müller
Hydrol. Earth Syst. Sci., 25, 2373–2386, https://doi.org/10.5194/hess-25-2373-2021, https://doi.org/10.5194/hess-25-2373-2021, 2021
Short summary
Short summary
The level of lake water is rapidly changing globally, and long-term, consistent observations of lake water extents are essential for ascertaining and attributing these changes. These data are rarely collected and challenging to obtain from satellite imagery. The proposed method addresses these challenges without any local data, and it was successfully validated against lakes with and without ground data. The algorithm is a valuable tool for the reliable historical water extent of changing lakes.
Song Shu, Hongxing Liu, Richard A. Beck, Frédéric Frappart, Johanna Korhonen, Minxuan Lan, Min Xu, Bo Yang, and Yan Huang
Hydrol. Earth Syst. Sci., 25, 1643–1670, https://doi.org/10.5194/hess-25-1643-2021, https://doi.org/10.5194/hess-25-1643-2021, 2021
Short summary
Short summary
This study comprehensively evaluated 11 satellite radar altimetry missions (including their official retrackers) for lake water level retrieval and developed a strategy for constructing consistent long-term water level records for inland lakes. It is a two-step bias correction and normalization procedure. First, we use Jason-2 as the initial reference to form a consistent TOPEX/Poseidon–Jason series. Then, we use this as the reference to remove the biases with other radar altimetry missions.
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Short summary
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain water level observations. Improvements in instrument design have increased the capabilities of altimeters to observe inland water bodies, including rivers. In this study, we demonstrate how a dense Sentinel-3 water surface elevation monitoring network can be established at catchment scale using publicly accessible processing platforms. The network can serve as a useful supplement to ground observations.
Jean Bergeron, Gabriela Siles, Robert Leconte, Mélanie Trudel, Damien Desroches, and Daniel L. Peters
Hydrol. Earth Syst. Sci., 24, 5985–6000, https://doi.org/10.5194/hess-24-5985-2020, https://doi.org/10.5194/hess-24-5985-2020, 2020
Short summary
Short summary
We want to assess how well the Surface Water and Ocean Topography (SWOT) satellite mission will be able to provide information on lake surface water elevation and how much of an impact wind conditions (speed and direction) can have on these retrievals.
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary
Short summary
The flow of freshwater in rivers is commonly studied with computer programs known as hydrological models. An important component of those programs lies in the description of the river environment, such as the channel resistance to the flow, that is critical to accurately predict the river flow but is still not well known. Satellite data can be combined with models to enrich our knowledge of these features. Here, we show that the coming SWOT mission can help better know this channel resistance.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.
Najib Abou Karaki, Simone Fiaschi, Killian Paenen, Mohammad Al-Awabdeh, and Damien Closson
Hydrol. Earth Syst. Sci., 23, 2111–2127, https://doi.org/10.5194/hess-23-2111-2019, https://doi.org/10.5194/hess-23-2111-2019, 2019
Short summary
Short summary
The Dead Sea shore is a unique salt karst system. Development began in the 1960s, when the water resources that used to feed the Dead Sea were diverted. The water level is falling at more than 1 m yr−1, causing a hydrostatic disequilibrium between the underground fresh water and the base level. Despite these conditions, tourism development projects have flourished. Here, we show that a 10 km long strip of coast that encompasses several resorts is exposed to subsidence, sinkholes and landslides.
Tim Busker, Ad de Roo, Emiliano Gelati, Christian Schwatke, Marko Adamovic, Berny Bisselink, Jean-Francois Pekel, and Andrew Cottam
Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, https://doi.org/10.5194/hess-23-669-2019, 2019
Short summary
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
Andrew Ogilvie, Gilles Belaud, Sylvain Massuel, Mark Mulligan, Patrick Le Goulven, and Roger Calvez
Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, https://doi.org/10.5194/hess-22-4349-2018, 2018
Short summary
Short summary
Accurate monitoring of surface water extent is essential for hydrological investigation of small lakes (1–10 ha), which supports millions of smallholder farmers. Landsat monitoring of long-term surface water dynamics is shown to be suited to lakes over 3 ha based on extensive hydrometric data from seven field sites over 15 years. MNDWI water classification optimized here for the specificities of small water bodies reduced mean surface area errors by 57 % compared to published global datasets.
Filippo Bandini, Daniel Olesen, Jakob Jakobsen, Cecile Marie Margaretha Kittel, Sheng Wang, Monica Garcia, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 4165–4181, https://doi.org/10.5194/hess-22-4165-2018, https://doi.org/10.5194/hess-22-4165-2018, 2018
Short summary
Short summary
Water depth observations are essential data to forecast flood hazard, predict sediment transport, or monitor in-stream habitats. We retrieved bathymetry with a sonar wired to a drone. This system can improve the speed and spatial scale at which water depth observations are retrieved. Observations can be retrieved also in unnavigable or inaccessible rivers. Water depth observations showed an accuracy of ca. 2.1 % of actual depth, without being affected by water turbidity or bed material.
Kiana Zolfaghari, Claude R. Duguay, and Homa Kheyrollah Pour
Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017, https://doi.org/10.5194/hess-21-377-2017, 2017
Short summary
Short summary
A remotely-sensed water clarity value (Kd) was applied to improve FLake model simulations of Lake Erie thermal structure using a time-invariant (constant) annual value as well as monthly values of Kd. The sensitivity of FLake model to Kd values was studied. It was shown that the model is very sensitive to variations in Kd when the value is less than 0.5 m-1.
Tomasz Niedzielski, Matylda Witek, and Waldemar Spallek
Hydrol. Earth Syst. Sci., 20, 3193–3205, https://doi.org/10.5194/hess-20-3193-2016, https://doi.org/10.5194/hess-20-3193-2016, 2016
Short summary
Short summary
We study detectability of changes in water surface areas on orthophotomaps. We use unmanned aerial vehicles to acquire visible light photographs. We offer a new method for detecting changes in water surface areas and river stages. The approach is based on the application of the Student's t test, in asymptotic and bootstrapped versions. We test our approach on aerial photos taken during 3-year observational campaign. We detect transitions between all characteristic river stages using drone data.
E. Lalot, F. Curie, V. Wawrzyniak, F. Baratelli, S. Schomburgk, N. Flipo, H. Piegay, and F. Moatar
Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015, https://doi.org/10.5194/hess-19-4479-2015, 2015
Short summary
Short summary
This work shows that satellite thermal infrared images (LANDSAT) can be used to locate and quantify groundwater discharge into a large river (Loire River, France - 100 to 300 m wide). Groundwater discharge rate is found to be highly variable with time and space and maximum during flow recession periods and in winter. The main identified groundwater discharge area into the Loire River corresponds to a known discharge area of the Beauce aquifer.
M. D. Wilson, M. Durand, H. C. Jung, and D. Alsdorf
Hydrol. Earth Syst. Sci., 19, 1943–1959, https://doi.org/10.5194/hess-19-1943-2015, https://doi.org/10.5194/hess-19-1943-2015, 2015
Short summary
Short summary
We use a virtual mission analysis on a ca. 260km reach of the central Amazon River to assess the hydraulic implications of potential measurement errors in swath-altimetry imagery from the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission. We estimated water surface slope from imagery of water heights and then derived channel discharge. Errors in estimated discharge were lowest when using longer reach lengths and channel cross-sectional averaging to estimate water slopes.
Y. B. Sulistioadi, K.-H. Tseng, C. K. Shum, H. Hidayat, M. Sumaryono, A. Suhardiman, F. Setiawan, and S. Sunarso
Hydrol. Earth Syst. Sci., 19, 341–359, https://doi.org/10.5194/hess-19-341-2015, https://doi.org/10.5194/hess-19-341-2015, 2015
Short summary
Short summary
This paper investigates the possibility of monitoring small water bodies through Envisat altimetry observation. A novel approach is introduced to identify qualified and non-qualified altimetry measurements by assessing the waveform shapes for each returned radar signal. This research indicates that small lakes (extent < 100 km2) and medium-sized rivers (e.g., 200--800 m in width) can be successfully monitored by satellite altimetry.
Z. F. Miller, T. M. Pavelsky, and G. H. Allen
Hydrol. Earth Syst. Sci., 18, 4883–4895, https://doi.org/10.5194/hess-18-4883-2014, https://doi.org/10.5194/hess-18-4883-2014, 2014
Short summary
Short summary
Many previous studies have used stream gauge data to estimate patterns of river width and depth based on variations in river discharge. However, these relationships may not capture all of the actual variability in width and depth. We have instead mapped the widths of all of the rivers wider than 100 m (and many narrower) in the Mississippi Basin and then used them to also improve estimates of depth as well. Our results show width and depth variations not captured by power-law relationships.
A. Kääb, M. Lamare, and M. Abrams
Hydrol. Earth Syst. Sci., 17, 4671–4683, https://doi.org/10.5194/hess-17-4671-2013, https://doi.org/10.5194/hess-17-4671-2013, 2013
V. H. Phan, R. C. Lindenbergh, and M. Menenti
Hydrol. Earth Syst. Sci., 17, 4061–4077, https://doi.org/10.5194/hess-17-4061-2013, https://doi.org/10.5194/hess-17-4061-2013, 2013
N. M. Velpuri and G. B. Senay
Hydrol. Earth Syst. Sci., 16, 3561–3578, https://doi.org/10.5194/hess-16-3561-2012, https://doi.org/10.5194/hess-16-3561-2012, 2012
C. I. Michailovsky, S. McEnnis, P. A. M. Berry, R. Smith, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 16, 2181–2192, https://doi.org/10.5194/hess-16-2181-2012, https://doi.org/10.5194/hess-16-2181-2012, 2012
H. Hidayat, D. H. Hoekman, M. A. M. Vissers, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 16, 1805–1816, https://doi.org/10.5194/hess-16-1805-2012, https://doi.org/10.5194/hess-16-1805-2012, 2012
M. Potes, M. J. Costa, and R. Salgado
Hydrol. Earth Syst. Sci., 16, 1623–1633, https://doi.org/10.5194/hess-16-1623-2012, https://doi.org/10.5194/hess-16-1623-2012, 2012
A. T. Assireu, E. Alcântara, E. M. L. M. Novo, F. Roland, F. S. Pacheco, J. L. Stech, and J. A. Lorenzzetti
Hydrol. Earth Syst. Sci., 15, 3689–3700, https://doi.org/10.5194/hess-15-3689-2011, https://doi.org/10.5194/hess-15-3689-2011, 2011
C. H. Grohmann, C. Riccomini, and M. A. C. Chamani
Hydrol. Earth Syst. Sci., 15, 1493–1504, https://doi.org/10.5194/hess-15-1493-2011, https://doi.org/10.5194/hess-15-1493-2011, 2011
C. C. Abon, C. P. C. David, and N. E. B. Pellejera
Hydrol. Earth Syst. Sci., 15, 1283–1289, https://doi.org/10.5194/hess-15-1283-2011, https://doi.org/10.5194/hess-15-1283-2011, 2011
S. Trevisani, M. Cavalli, and L. Marchi
Hydrol. Earth Syst. Sci., 14, 393–405, https://doi.org/10.5194/hess-14-393-2010, https://doi.org/10.5194/hess-14-393-2010, 2010
Cited articles
Adler, M.: Messungen von Durchflüssen und Strömungsprofilen mit
einem Ultraschall-Doppler-Gerät (ADCP), Wasserwirtschaft, 83,
192–196, 1993.
Blois, G., Best, J. L., Christensen, K. T., Cichella, V., Donahue, A.,
Hovakimyan, N., and Pakrasi, I.: UAV-based PIV for quantifying water-flow
processes in large-scale natural environments, In 18th International
Symposium on the Application of Laser and Imaging Techniques to Fluid
Mechanics, 2016.
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 2000.
Brevis, W., Niño, Y., and Jirka, G. H.: Integrating cross - correlation and
relaxation algorithms for particle tracking velocimetry, Exp.
Fluids, 50, 135–147, 2011.
Costa, J. E., Spicer, K. R., Cheng, R. T., Haeni, F. P., Melcher, N. B.,
Thurman, E. M., Plant, W. J., and Keller, W. C.: Measuring stream discharge by
non-contact methods: A proof-of-concept experiment, Geophys. Res.
Lett., 4, 553–556, 2000.
Creutin, J. D., Muste, M., Bradley, A. A., Kim, S. C., and Kruger, A.:
River gauging using PIV techniques: a proof of concept experiment on the
Iowa River, J. Hydrol., 277, 182–194, 2003.
Detert, M., Johnson, E. D., and Weitbrecht, V.: Proof-of-concept for
low-cost and non-contact synoptic airborne river flow measurements.
Int. J. Remote Sens., 38, 2780–2807, 2017.
Dietrich, J. T.: Bathymetric Structure-from-Motion: extracting shallow
stream bathymetry from multi-view stereo photogrammetry, Earth Surface
Proc. Land., 42, 355–364, 2017.
Dramais, G., Le Coz, J., Camenen, B., and Hauet, A.: Advantages of a mobile
LSPIV method for measuring flood discharges and improving stage-discharge
curves, Journal of Hydro-Environment Research, 5, 301–312, 2011.
Eltner, A.: Dataset (video sequences and orientation information) to measure river surface flow velocities, https://doi.org/10.25532/OPARA-32, 2019.
Eltner, A.: FlowVeloTool, available at: https://github.com/AnetteEltner/FlowVeloTool, last access: 24 March 2020.
Eltner, A. and Schneider, D.: Analysis of Different Methods for 3D
Reconstruction of Natural Surfaces from Parallel-Axes UAV Images,
Photogramm. Rec., 30, 279–299, 2015.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.: Image-based surface reconstruction in geomorphometry – merits, limits and developments, Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Fischler, M. A. and Bolles, R. C.: Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,
Commun. ACM, 24, 381–395, 1981.
Fujita, I., Muste, M., and Kruger, A.: Large-scale particle image velocimetry
for flow analysis in hydraulic engineering applications, J.
Hydraul. Res., 36, 397–414, 1998.
Fujita, I., Watanabe, H., and Tsubaki, R.: Development of a non - intrusive
and efficient flow monitoring technique: The space – time image velocimetry
(STIV), International Journal of River Basin Management, 5, 105–114, 2007.
Fujita, I., Notoya, Y., and Shimono, M.: Development of UAV-based river surface
velocity measurement by STIV based on high-accurate image stabilization
techniques, E-proceedings of the 36th IAHR World Congress, 2015.
Genç, O., Ardıçlıoğlu, M., and Necati, A.: Calculation of
mean velocity and discharge using water surface velocity in small streams,
Flow Meas. Instrum., 41, 115–120, 2015.
Gravelle, R.: Discharge Estimation: Techniques and Equipment. In:
Geomorphological Techniques, chap. 3, Sec. 3.5, British Society for
Geomorphology, 2015.
Guillén, F., Patalano, A., García, C. M., and Bertoni, J. C.: Use
of LSPIV in assessing urban flash flood vulnerability, Nat. Hazards, 87,
383–394, 2017.
Gunawan, B., Sun, X., Sterling, M., Shiono, K., Tsubaki, R., Rameshwaran,
P., and Knight, D. W.: The application of LS-PIV to a small irregular river
for inbank and overbank flows, Flow Meas. Instrum., 24,
1–12, 2012.
Harris, C. and Stephens, M.: A Combined Corner and Edge Detector, in: Proc. of
4th Alvey Vision Conference, 147–155, 1988.
Hauet, A., Kruger, A., Krajewski, W. F., Bradley, A., Muste, M., Creuting,
J.-D., and Wilson, M.: Experimental System for Real-Time Discharge Estimation
Using an Image-Based Method, J. Hydrol. Eng., 13,
105–110, 2008.
Herschy, R. W.: Streamflow Measurement. CRC Press, 3rd edition, 510 pp.,
2008.
James, M., Chandler, J., Eltner, A., Fraser, C., Miller, P., Mills, J.,
Noble, T., Robson, S., and Lane, S.: Guidelines on the use of Structure from
Motion Photogrammetry in Geomorphic Research, Earth Surf. Proc.
Land., 44, 2081–2084, 2019.
Kim, Y., Muste, M., Hauet, A., Krajewski, W. F., Kruger, A., and Bradley,
A.: Stream discharge using mobile large-scale particle image velocimetry: A
proof of concept, Water Resour. Res., 44, W09502, https://doi.org/10.1029/2006WR005441, 2008.
Koutalakis, P., Tzoraki, O., and Zaimes, G.: UAVs for Hydrologic Scopes?:
Application of a Low-Cost UAV to Estimate Surface Water Velocity by Using
Three Different Image-Based Methods, Drones, 3, 14, https://doi.org/10.3390/drones3010014, 2019.
Le Boursicaud, R., Pénard, L., Hauet, A., Thollet, F., and Le Coz, J.:
Gauging extreme floods on YouTube: Application of LSPIV to home movies for
the post-event determination of stream discharges, Hydrol. Process.,
30, 90–105, 2016.
Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B.:
Performance of image-based velocimetry (LSPIV) applied to flash-flood
discharge measurements in Mediterranean rivers, J. Hydrol., 394,
42–52, 2010.
Le Coz, Jérôme, Patalano, A., Collins, D., Guillén, N. F.,
García, C. M., Smart, G. M., Bind, J., Chiaverini, A., Le Boursicaud,
R. L., Dramais, G., Braud, I., and Braud, I.: Crowdsourced data for flood
hydrology: Feedback from recent citizen science projects in Argentina,
France and New Zealand, J. Hydrol., 541, 766–777, 2016.
Legout, C., Darboux, F., Hauet, A., Esteves, M., Renaux, B., Denis, H., and
Cordier, S.: High spatial resolution mapping of surface velocities and
depths for shallow overland flow, Earth Surf. Proc. Land., 73,
984–993, 2012.
Leitão, J. P., Peña-haro, S., Lüthi, B., Scheidegger, A., Moy,
M., and Vitry, D.: Urban overland runo ff velocity measurement with
consumer-grade surveillance cameras and surface structure image velocimetry,
J. Hydrol., 565, 791–804, 2018.
Lewis, Q. and Rhoads, B.: Resolving two-dimensional flow structure in rivers
using large-scale particle image velocimetry: An example from a stream
confluence, Water Resour. Res., 51, 7977–7994, 2015.
Lin, D., Grundmann, J., and Eltner, A.: Evaluating Image Tracking Approaches for Surface Velocimetry with Thermal Tracers, Water Resour. Res., 55, 3122–3136, 2019.
Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints,
Int. J. Comput. Vision, 60, 91–110, 2004.
Lucas, B. and Kanade, T.: An iterative image registration technique with an application to stereo vision, IJCAI'81: Proceedings of the 7th international joint conference on Artificial intelligence, 2, 674–679, 1981.
Luhmann, T., Robson, S., Kyle, S., and Boehm, J.: Close-Range Photogrammetry and
3-D Imaging, 2nd edition, De Gruyter, Berlin, Germany, 683 pp., 2014.
Merz, J.: Discharge Measurements in Low Flow Conditions With ADCP Technology
– First Experiences in Nepal, Journal of Hydrology and Meteorology, 7,
40–48, 2010.
Morgenschweis, G.: Hydrometrie, Springer-Verlag Berlin Heidelberg, 582 pp.,
2010.
Mulsow, C., Kenner, R., Bühler, Y., Stoffel, A., and Maas, H.-G.:
Subaquatic digital elevation models from UAV-imagery. International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Science,
XLII-2, 739–744, 2018.
Muste, M., Fujita, I., and Hauet, A.: Large-scale particle image
velocimetry for measurements in riverine environments, Water Resour.
Res., 44, W00D14, https://doi.org/10.1029/2008WR006950, 2008.
Muste, M., Ho, H., and Kim, D.: Considerations on direct stream flow
measurements using video imagery: Outlook and research needs, J.
Hydro.-Environ. Res., 5, 289–300, 2011.
Muste, M., Hauet, A., Fujita, I., Legout, C., and Ho, H. C.: Capabilities
of large-scale particle image velocimetry to characterize shallow
free-surface flows, Adv. Water Resour., 70, 160–171, 2014.
Patalano, A., Marcelo Garcia, C., and Rodriguez, A.: Rectification of Image
Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale
water surface Particle Image Velocimetry (PIV) and Particle Tracking
Velocimetry (PTV), Comput. Geosci., 109, 323–333, 2017.
Perks, M. T., Russell, A. J., and Large, A. R. G.: Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs), Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, 2016.
Puleo, J. A., Mckenna, T. E., Holland, K. T., and Calantoni, J.:
Quantifying riverine surface currents from time sequences of thermal
infrared imagery, Water Resources, 48, W01527, https://doi.org/10.1029/2011WR010770, 2012.
Ran, Q. H., Li, W., Liao, Q., Tang, H. L., and Wang, M. Y.: Application of
an automated LSPIV system in a mountainous stream for continuous flood flow
measurements, Hydrol. Process., 30, 3014–3029, 2016.
Rublee, E, Rabaud, V., Konolige, K., and Bradski, G.: ORB: An efficient alternative to SIFT or SURF, 2011 International Conference on Computer Vision, Barcelona, 2564–2571, https://doi.org/10.1109/ICCV.2011.6126544, 2011.
Shi, J. and Tomasi, C.: Computer vision and pattern recognition, Proceedings of IEEE Computer Society Conference
on CVPR, 593–600, 1994.
Sidorchuk, A., Schmidt, J., and Cooper, G.: Variability of shallow overland
flow velocity and soil aggregate transport observed with digital
videography, Hydrol. Process., 22, 4035–4048, 2008.
Stumpf, A., Augereau, E., Delacourt, C., and Bonnier, J.: Photogrammetric
discharge monitoring of small tropical mountain rivers: A case study at
Rivière des Pluies, Réunion Island, Water Resour. Res., 52,
WR018292, https://doi.org/10.1002/2015WR018292, 2016.
Tauro, F., Petroselli, A., and Arcangeletti, E.: Assessment of
drone-based surface fl ow observations, Hydrol. Process., 30,
1114–1130, 2016.
Tauro, F., Piscopia, R., and Grimaldi, S.: Streamflow Observations From
Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking
Velocimetry?, Water Resour. Res., 53, 10374–10394, 2017.
Tauro, F., Tosi, F., Mattoccia, S., Toth, E., Piscopia, R., and
Grimaldi, S.: Optical Tracking Velocimetry (OTV): Leveraging Optical Flow
and Trajectory-Based Filtering for Surface Streamflow Observations, Remote
Sensing, 10, 2010, https://doi.org/10.3390/rs10122010, 2018.
Thielicke, W. and Stamhuis, E.: PIVlab – Towards User-friendly, Affordable and
Accurate Digital Particle Image Velocimetry in MATLAB, J. Open
Res. Softw., 2, e30, https://doi.org/10.5334/jors.bl, 2014.
Thumser, P., Haas, C., Tuhtan, J. A., Fuentes-Pérez, J. F., and Toming,
G.: RAPTOR-UAV: Real-time particle tracking in rivers using an unmanned
aerial vehicle, Earth Surf. Proc. Land., 42, 2439–2446, 2017.
Tsubaki, R., Fujita, I., and Tsutsumi, S.: Measurement of the flood discharge of a
small-sized river using an existing digital video recording system, J. Hydro-Environ. Res., 5, 313–321, 2011.
Welber, M., Le Coz, J., Laronne, J., Zolezzi, G., Zamler, D., Dramais, G.,
Hauet, A., and Salvaro, M.: Field assessment of noncontact stream gauging using
portable surface velocity radars (SVR), Water Resour. Res., 52,
1108–1126, 2016.
Woodget, A. S., Carbonneau, P. E., Visser, F., and Maddock, I. P.:
Quantifying submerged fluvial topography using hyperspatial resolution UAS
imagery and structure from motion photogrammetry, Earth Surf. Proc.
Land., 40, 47–64, 2015.
Short summary
An automatic workflow is introduced to measure surface flow velocities in rivers. The provided tool enables the measurement of spatially distributed surface flow velocities independently of the image acquisition perspective. Furthermore, the study illustrates how river discharge in previously ungauged and unmeasured regions can be retrieved, considering the image-based flow velocities and digital elevation models of the studied river reach reconstructed with UAV photogrammetry.
An automatic workflow is introduced to measure surface flow velocities in rivers. The provided...