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Abstract. An automatic workflow to measure surface flow
velocities in rivers is introduced, including a Python tool.
The method is based on particle-tracking velocimetry (PTV)
and comprises an automatic definition of the search area for
particles to track. Tracking is performed in the original im-
ages. Only the final tracks are geo-referenced, intersecting
the image observations with water surface in object space.
Detected particles and corresponding feature tracks are fil-
tered considering particle and flow characteristics to miti-
gate the impact of sun glare and outliers. The method can
be applied to different perspectives, including terrestrial and
aerial (i.e. unmanned-aerial-vehicle; UAV) imagery. To ac-
count for camera movements images can be co-registered in
an automatic approach. In addition to velocity estimates, dis-
charge is calculated using the surface velocities and wetted
cross section derived from surface models computed with
structure-from-motion (SfM) and multi-media photogram-
metry. The workflow is tested at two river reaches (paved
and natural) in Germany. Reference data are provided by
acoustic Doppler current profiler (ADCP) measurements. At
the paved river reach, the highest deviations of flow velocity
and discharge reach 4 % and 5 %, respectively. At the natural
river highest deviations are larger (up to 31 %) due to the ir-
regular cross-section shapes hindering the accurate contrast-
ing of ADCP- and image-based results. The provided tool
enables the measurement of surface flow velocities indepen-
dently of the perspective from which images are acquired.
With the contactless measurement, spatially distributed ve-
locity fields can be estimated and river discharge in previ-
ously ungauged and unmeasured regions can be calculated,
solely requiring some scaling information.

1 Introduction

Measuring the discharge of rivers is a major task in hydrom-
etry because of its importance in many hydrological and ge-
omorphological research questions, e.g. to understand the
characteristics of catchments and their adaption to climatic
changes. Different approaches exist to apply the velocity—
area method to measure discharge relying on information
about the flow velocity and the wetted river cross-section
area. Established tools to retrieve flow velocities are the ap-
plication of current meters, acoustic devices (i.e. acoustic
Doppler current profilers; ADCPs) or surface velocity radar
(Herschy, 2008; Merz, 2010; Morgenschweis, 2010; Grav-
elle, 2015; Welber et al., 2016). However, these velocity es-
timation methods are either labour intensive, require mini-
mum water depths, need prolonged measurement periods or
can endanger the operator during flood measurements.

A promising alternative is remote sensing tools utilising
image-based approaches. Due to their flexibility (only a cam-
era is needed) they are used frequently exploiting various
sensors and platforms for data acquisition. For instance, RGB
(red—green—blue) sensors have been used (e.g. Muste et al.,
2008) as well as thermal cameras (e.g. Puleo et al., 2012).
Ran et al. (2016) demonstrated the suitability of a low-cost
Raspberry Pi camera to observe flash floods, and Le Coz et
al. (2016) and Guillén et al. (2017) illustrated the usability
of crowd-sourced imagery for post-flood analysis. Image-
based setups allow for the assessment of temporally changing
flow dynamics (Sidorchuk et al., 2008) due to the potential
continuous recording of entire river reaches. Furthermore,
small-scale investigations are enabled as shown by Legout et
al. (2012), who measured the spatial distribution of surface
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runoff from depths of millimetres to centimetres, at a range
where other methods are failing.

Various algorithms exist for surface flow velocity monitor-
ing from image-based observations deploying tracking tools.
Four tracking approaches are applied frequently in the field
to monitor rivers. The first method is large-scale particle im-
age velocimetry (LSPIV) originally introduced by Fujita et
al. (1998). This approach uses the tracking of features at the
water surface that are caused due to natural occurring float-
ing particles or free surface deformations caused by ripples
or waves, e.g. due to wind or turbulence (Muste et al., 2008).
In general, the area of interest (i.e. the water surface) is di-
vided in sub-regions, and these sub-regions are used as tem-
plates. In the subsequent images, the corresponding areas are
searched for using correlation techniques.

Fujita et al. (2007) advanced the LSPIV approach by an al-
gorithm called space-time image velocimetry (STIV). STIV
performs faster because tracking is performed in 1D instead
of 2D. Profiles are extracted along the main flow direction to
subsequently draw particle movements along the time axis
(i.e. change along the profiles within succeeding frames),
leading to a space—time image. The resulting angle of the
pattern within that image resolves into the flow velocity.

The third possibility is the usage of optical flow algorithms
developed in the computer vision community. For instance,
the Lucas—Kanade (Lucas and Kanade, 1981) operation has
been utilised to measure surface velocities of large floods or
small rivers (Perks et al., 2016 or Lin et al., 2019, respec-
tively). The method aims to minimise greyscale value dif-
ferences between the template and search area adapting the
parameters of an affine transformation within an optimisation
procedure. Finally, particle-tracking velocimetry (PTV) is a
tracking option that uses correlation techniques as in LSPIV.
However, instead of using entire sub-regions as templates,
single particles are detected first and then searched for in the
subsequent images.

LSPIV is the most widely used method and can be consid-
ered as matured (Muste et al., 2011). Amongst other things, it
enabled the measurement of the hysteresis phenomena dur-
ing flood events (Tsubaki et al., 2011; Muste et al., 2011).
However, LSPIV mostly underestimates velocities, which is
revealed in more detail by Tauro et al. (2017), who prefer
PTV instead. In contrast to LSPIV PTV does not assume sim-
ilar flow conditions for the entire search area, and it is not in-
fluenced by surface frictional resistance (Lewis and Rhoads,
2015) or standing waves (Tsubaki et al., 2011).

Besides surface flow velocity another parameter has to be
considered to derive discharge measurements from image-
based tracking approaches. The depth averaged flow velocity,
used in the velocity—area method, does not necessarily cor-
respond to the surface flow velocity, which is amongst other
reasons due to the influence of riverbed roughness. There-
fore, a so-called velocity coefficient has to be used to ad-
just the surface velocities (Creutin et al., 2003; Le Coz et al.,
2010). Usually, the deeper the flow is, the higher the coeffi-
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cient is assumed to be (Le Coz et al., 2010). The coefficient
can vary with different river cross sections (Le Coz et al.,
2010), and it can change within the same cross section due
to varying water depths, which is likely for irregular profiles
(Gunawan et al., 2012). Muste et al. (2008) state that the co-
efficient mostly ranges between 0.79 to 0.93, but values as
low as 0.55 have been measured (Geng et al., 2015). Consid-
ering the correct velocity coefficient is important because it
has a high impact on the discharge estimation error in remote
sensing approaches (Dramais et al., 2011).

When flow velocities and the velocity coefficient are
known, the area of the river cross section is needed to calcu-
late the discharge with the velocity—area method (e.g. Hauet
et al., 2008). Different tools exist for contactless river area
measurements of a cross section. Muste et al. (2014) show
that it is possible to use velocity pattern measured with
LSPIV to retrieve flow depth in shallow-flow conditions. An-
other approach is the utilisation of ground-penetrating radar
as illustrated for larger rivers by Costa et al. (2000). An ad-
ditional increasingly used method to retrieve the topographic
(and thus cross-section) information of the river reach is the
usage of structure-from-motion (SfM) photogrammetry (Elt-
ner et al., 2016). For instance, Ran et al. (2016) capture
stereo images to reconstruct the 3D information of a river
reach from overlapping images during low-flow conditions.
However, if water is present during data acquisition and the
riverbed is still visible, the underwater measurements have
to be corrected for refraction impacts (Mulsow et al., 2018)
or else heights of points below the water surface will be un-
derestimated. Woodget et al. (2015) introduce a workflow to
account for refraction using a constant correction value for
the case of Nadir viewing image collection. Dietrich (2017)
extends this correction procedure for the case of oblique im-
agery. Detert et al. (2017) were the first to perform fully con-
tactless, image-based discharge estimations using refraction
corrected river cross sections (adapting Woodget et al., 2015)
and surface flow velocities, all measured from unmanned-
aerial-vehicle (UAV) imagery. However, the authors relied
on a seeded flow to apply LSPIV.

Image-based tracking approaches can be applied to im-
agery captured terrestrially as well as from aerial platforms.
In the case of aerial imagery, the utilisation of UAVs for
data acquisition is increasing. The advantage of drones is
their flexibility and allowance to capture runoff patterns
during high-flow conditions (e.g. Tauro et al., 2016; Perks
et al., 2016; Detert et al., 2017; Koutalakis et al., 2019),
even enabling real-time data processing (Thumser et al.,
2017). However, a challenge to overcome is the correction
of camera movements during the UAV flight. Although cam-
era mounts are commonly stabilised, the remaining motion
needs to be accounted for. Tauro et al. (2016) subtract veloci-
ties measured in stable areas outside the river from velocities
tracked in the river. Another possibility is the usage of co-
registration. Thereby, either features (e.g. scale invariant fea-
ture transform — SIFT — features; Lowe, 2004) are searched
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for in stable areas (Fujita et al., 2015; Blois et al., 2016) or
ground control points (GCPs) are detected (Le Boursicaud
et al., 2016). Subsequently, these image points are matched
across the images. Afterwards, this information is used to ap-
ply a perspective transformation to each image to fit them to a
reference image. However, so far stable areas are still masked
manually.

In the case of terrestrial data acquisition, the conversion of
pixel measurements to metric velocity values is more chal-
lenging compared to UAV data due to a stronger deviation of
the perspective from an orthogonal projection, which leads to
decreasing accuracies with increasing distance to the sensor.
Therefore, Kim et al. (2008) suggest to avoid camera setups
with tilting angles larger than 10°. Most approaches ortho-
rectify the images prior to tracking to allow for a correct
scaling of the image tracks. However, performing the track-
ing in the original image would be favoured to minimise in-
terpolation errors, especially for oblique camera setups, and
to solely transform the tracked image point coordinates into
object space (Stumpf et al., 2016).

Several software tools already exist to perform image-
based velocimetry (e.g. PTVlab from Brevis et al., 2011;
PIVlab from Thielicke and Stamhuis 2014; Fudaa-LSPIV
at https://forge.irstea.fr/projects/fudaa-Ispiv (last access:
24 March 2020); KU-STIV developed by Fujita; Rectifica-
tion of Image Velocity Results — RIVeR — from Patalano
et al., 2017). These tools cover different processing steps
and tracking options to retrieve surface flow velocities and
discharge. In this study, we combine the entire workflow
from video, either captured with a UAV or from a terrestrial
camera, to the velocity of river reaches, considering image
stabilisation, automatic feature search area extraction, PTV,
track filtering and metric velocity retrieval via forward ray
intersection. An automatic flow velocity measurement tool
(FlowVelo tool) for image velocimetry is presented and pro-
vided to the public domain to overcome existing gaps dis-
cussed before. It is independent from the data acquisition
scheme and relies on PTV. Camera movements are accounted
for in a fully automatic approach if a sufficient amount of
shore area is visible. Furthermore, the search area for features
to track, i.e. the river area, is extracted automatically solely
requiring water level information and a 3D surface model
of the river reach. The 3D surface model is calculated from
image data with SfM photogrammetry additionally consid-
ering multi-media photogrammetry to retrieve both topogra-
phy and bathymetry. In order to improve tracking results, de-
tected features and velocity tracks are filtered with different
methods. Finally, we estimate discharge from surface flow
velocities and cross-sectional areas. The FlowVelo tool and
the whole workflow are investigated for two river reaches,
paved and natural, at which velocities and discharges are
compared to ADCP references.
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2 Methods

In this study, the FlowVelo tool is introduced that allows for
the measurement of flow velocity from videos independently
of the acquisition platform, i.e. either aerial or terrestrial. Dif-
ferent parameter options for feature detection and tracking as
well as track filtering are explained. Two experimental study
sites have been chosen to evaluate the performance of video-
based flow velocity estimation using camera frames acquired
from different perspectives. First the experimental study sites
are introduced, and afterwards the tool is explained.

2.1 Areas of interest

The experimental study sites are short river reaches in Sax-
ony, Germany (Fig. 1). One studied river reach is situated
at the Wesenitz. This river originates in the Lausitzer high-
lands, has a catchment size of about 280km? and exhibits
a river length of 83km. The area of interest is located at
the river gauge station Elbersdorf, which is operated by
the Staatliche Betriebsgesellschaft fiir Umwelt und Land-
wirtschaft, the Saxon state company for the environment and
agriculture. Here, annual average water level and discharge
for the hydrological year 2017 are 48 cm and 2.4 m>s~!, re-
spectively. Field campaigns were conducted on 31 March
and on 4 April 2017. During the campaigns, the water level
amounted 51 cm (discharge 2.7m3s™!). The investigated
river section at the Wesenitz is paved but influenced by local
sand banks at the river bottom. During the data acquisition
the river had a width of about 10 m.

The other river is the Freiberger Mulde, which origi-
nates in the Ore Mountains, has a catchment size of about
2980 km? and displays a river length of 124 km. The area of
interest is located close the gauge Nossen. Average discharge
and water level for the hydrological year 2016 are 5.6 m3 s~ !
and 65 cm, respectively. The gauge station is located 1 km
upstream of the studied river reach. The field campaign was
conducted on 26 October 2016. During this day discharge
and water level were 5.7m?s™! and 68 cm. The approxi-
mated river width was 15m. The chosen region of interest
at the Freiberger Mulde is a natural river section with non-
uniform flow conditions.

2.2 Data acquisition

Different data were collected during the field campaigns at
both river sections. Amongst other things, ADCP measure-
ments were performed as a flow velocity reference; GCPs
were defined to geo-reference the video data; and UAV and
terrestrial imagery were acquired to perform image-based
flow velocity estimation.

2.2.1 ADCP measurements

For the ADCP measurements the moving boat approach with
StreamPro from RDI is used. Velocity profiles were mea-

Hydrol. Earth Syst. Sci., 24, 1429-1445, 2020


https://forge.irstea.fr/projects/fudaa-lspiv

1432 A. Eltner et al.: Flow velocity and discharge measurement in rivers

L
i

£ ADCP
lproﬁle

Flow
direction

10m @ Casio EX-F1

Figure 1. Areas of interest at the Wesenitz (a) and the Freiberger Mulde (b) displayed with UAV orthophotos calculated from video frames.
Surface flow velocities measured with an ADCP and the corresponding locations of the measurement cross sections within the river are
illustrated. Ground control points are used to reference the image data at both river reaches. Red squares highlight GCPs used for terrestrial
and UAV data at the Freiberger Mulde and UAV data at the Wesenitz. Green squares show the location of GCPs used for terrestrial imagery
at the Wesenitz. Check points (blue squares) are used to assess the accuracy of the 3D reconstruction from video frames at the Freiberger
Mulde. Camera locations of the terrestrial image sequence acquisition are illustrated as pictograms, and corresponding image extent areas
are shown (displayed area of interests in RGB correspond to the aerial image extents).

sured with a blanking range of 14 cm near the water sur-
face. Data were processed using the AGILA software from
the German Federal Institute of Hydrology (BfG). Measure-
ments along the boat track were projected onto a reference
cross-sectional area. Afterwards surface flow velocities were
extrapolated to allow for a comparison to the image-based
values. For the extrapolation, power functions were fitted
to the measured vertical velocity profile for each individual
ADCP ensemble using the software AGILA (for more detail
see Adler, 1993, and Morgenschweis, 2010). Then, veloci-
ties at the water surface were calculated with these functions.
Thus, all ADCP measurements of the profile were considered
to extrapolate surface velocities.

At the Wesenitz ADCP measurements were performed at
one cross section in eight repetitions (Fig. 1a). Average water
surface velocity was about 0.7ms~!, and the resulting dis-
charge amounted to 2.7m>s~! (Table 1). At the Freiberger
Mulde three cross sections were chosen (Fig. 1b) to acquire
data that allow for a spatially distributed assessment of the
image-based data. Average river surface velocities ranged be-
tween 0.60 and 0.76 ms~! (Table 1).

The spatial variation of flow velocities is larger at the
Freiberger Mulde, where measurements were performed in
a natural river reach, which is in contrast to the flow ve-
locity range at the Wesenitz, where data were captured at a
standardised gauge station. Thus, only one profile was mea-
sured at the Wesenitz. The discharge at the Freiberger Mulde
is 5.88 m> s~! on average but reveals a standard deviation of
0.25m?>s~!. The estimated discharge of the river reach there-
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fore reveals a variation of about 4 %, which can be attributed
to inconsistencies during data acquisition. A decrease of the
velocity coefficient, which has been derived from the ADCP
measurements, with decreasing water depth is observed. At
the Freiberger Mulde, cross sections 1 and 3 (Table 1) have
lower water depth compared to profile 2. Thus, the velocity
coefficients are lower.

2.2.2 Image-based data

At both river reaches video sequences were acquired with
terrestrial cameras and with a camera installed on the UAV
AscTec Falcon 8. The airborne image data were captured
at flying heights of about 20 and 30 m at the Wesenitz and
Freiberger Mulde, respectively. Videos were captured with a
frame rate of 25 frames per second (fps) and with a resolu-
tion of 1920 x 1080 pixels using the Sony NEX-5N camera
with a fixed lens with a focal length of 16 mm. The ground
sampling distance (GSD) is about 7 mm at the Wesenitz and
about 9 mm at the Freiberger Mulde.

The terrestrial cameras were installed at bridges across the
river (Fig. 1). At the Wesenitz three cameras were installed
to evaluate the performance of different cameras (Fig. 1a).
Two Canon EOS 1200D cameras and one Canon EOS 500D
camera were set up. The 1200D cameras captured video se-
quences at 25 fps and with a resolution of 1920 x 1080 pix-
els. The 500D captured frames with a higher rate (30 fps)
and smaller image resolution (1280 x 720 pixels). All three
cameras were facing downstream. At the Freiberger Mulde
the Casio EX-F1 camera, equipped with a zoom lens fixed to
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Table 1. River velocities measured with ADCP.

1433

Profile Mean Mean Maximum Velocity  Cross-section  Discharge
velocity  surface surface  coefficient area (m2 s—h

(m s )  velocity velocity =) (mz)

(ms™ 1) (m s_l)

Wesenitz - 0.59 0.70 0.82 0.84 4.63 2.72
Freiberger Mulde 1 0.48 0.60 0.92 0.80 11.75 5.60
2 0.58 0.70 0.93 0.83 10.45 6.01
3 0.59 0.76 1.03 0.78 10.30 6.04

7.5 mm, was used. Videos were captured at 30 fps and a reso-
lution of 640 x 480 pixels. The camera was facing upstream.
The terrestrial cameras were calibrated for both rivers to
allow for the correction of image distortion impacts. To es-
timate the interior geometry of the cameras, images of an
in-house calibration field have been captured in a specific
calibration pattern (Luhmann et al., 2014). These images, to-
gether with approximate coordinates of the calibration field
and approximations of the interior camera orientations were
used in a free-network bundle adjustment within AICON 3D
Studio to calibrate each camera. More details regarding the
workflow are given in Eltner and Schneider (2015).

2.3 High-resolution topography of the river reaches

Local 3D surface models describing the topography of the
river reaches are necessary to scale the image measurements.
Therefore, high-resolution topography data were acquired at
both rivers using SfM photogrammetry (Eltner et al., 2016;
James et al., 2019). SfM in combination with multi-view
stereo (MVS) matching allows for the digital reconstruction
of the topography from overlapping images and some GCPs.
Thereby, homologous image points in overlapping images
are detected and matched automatically. From these homolo-
gous points and some assumptions about the interior camera
model, the position and orientation of each captured image
(i.e. camera pose) can be calculated. With known network
geometry, a dense point cloud can be computed, reconstruct-
ing the 3D information for almost each image pixel. The re-
sulting 3D surface models are geo-referenced during the re-
construction or afterwards via GCPs.

At the Wesenitz the 3D surface model of the river reach
was calculated from 85 terrestrially captured images with a
Canon EOS 600D (20 mm fixe lens) and from 20 UAV im-
ages (Eltner et al., 2018). The SfM calculations were per-
formed in Agisoft Metashape. At the Freiberger Mulde seven
frames of the video sequence, which is also used for later
PTV processing, were utilised to perform SfM photogram-
metry to retrieve the corresponding 3D model of the river
reach.

GCPs made of white circles on a black background were
installed in order to reference the 3D data as well as the
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image-based velocity measurements. They were measured
with a total station at the Freiberger Mulde and during the
first campaign at the Wesenitz. During the second campaign
at the Wesenitz GCPs were extracted from cobblestone cor-
ners (with sufficient contrast) at the gauge, which are visible
in the terrestrial images used for the 3D model reconstruc-
tion. GCPs were measured in at least five images for suffi-
cient redundancy and thus more reliable coordinate calcula-
tion.

The bathymetric information of the river reaches was re-
trieved using the same UAV data as for the topographic in-
formation above the water level. Refraction impacts are ac-
counted for using by the tool provided by Dietrich (2017).
Underwater points, camera poses and interior camera param-
eters as well as the water level need to be provided. The cor-
rected point clouds can be noisy and were therefore filtered
and smoothed in CloudCompare using a statistical outlier fil-
ter to detect isolated points and using a moving least-square
filter. Eltner et al. (2018) revealed that accuracies at the cen-
timetre scale can be reached using multi-media SfM at the
Wesenitz river reach. Due to opaque water conditions at the
Freiberger Mulde, imagery of a previous UAV flight (6 weeks
earlier and with no flood events happening during that pe-
riod) had to be used to reconstruct the underwater area.

2.4 Surface flow velocity workflow — the FlowVelo tool

This section introduces the general approach to measure sur-
face flow velocities from either terrestrial or airborne video
sequences. Thereby, essential processing steps are described
in more detail. The FlowVelo tool is realised in Python and
using the OpenCV (Open Source Computer Vision Library)
library (Bradski, 2000). Figure 2 illustrates the entire data
processing workflow of the tool.

2.4.1 Frame preparation

Video sequences are converted into individual frames prior
to the data processing. Afterwards, image co-registration is
necessary if the camera is not stable during video capturing,
as is the case for the UAV data. Each frame of the entire
video sequence is co-registered to the first frame of the same
sequence to correct camera movements and thus to enable
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Figure 2. Workflow to retrieve flow velocities from video se-
quences.

all frames to capture the same scene. This processing step
is preformed fully automatically. In each frame Harris cor-
ner features are detected (Harris and Stephens, 1988), which
are then matched to the first frame of the sequence using
SIFT (Lowe, 2004) or ORB descriptors (Rublee et al., 2011).
The suitability of co-registration in different conditions and
over longer periods of time has been illustrated in Eltner et
al. (2018), who introduce a terrestrial camera gauge for water
level measurements.

Harris features in the water region are detected as out-
liers due to their changing appearance between subsequent
frames leading to matching failure. And if moving features in
the water area still might be matched, they are latest filtered
during the parameter estimation of the homography because
these points will be considered as outliers during the model
fitting with RANSAC (random sample consensus; Fischler
and Bolles, 1981). Thus, only stable and reliable homologous
image points outside the river are kept and used to calculate
the homography parameters between the first frame and all
subsequent frames. Finally, a perspective transformation is
applied to ensure that all frames fit to the first image. It has
to be mentioned that this approach is only working as long as
enough stable areas are visible on both river shores.

In the FlowVelo tool five parameters can be set to adjust
the co-registration of each individual scenery. The maximum
number of key points defines how many features are max-
imally searched for in each frame. Larger numbers can in-
crease the robustness and accuracy of matching but also the
processing time. The number of good matches determines
how many matched features between two frames are needed
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minimally to find the homography. Again, larger values in-
crease the robustness, but they can also lead to a failure of
processing if fewer feature matches are found than appointed
here. Furthermore, it can be defined which feature descrip-
tor is chosen for matching, if features are matched back and
forth increasing the accuracy and processing time, and if im-
age co-registration is performed to the first frame or in a se-
ries to each consequent frame of the sequence.

2.4.2 Finding features to track

A search area in the river region has to be defined to detect
particles before tracking. This is due to the circumstance that
most feature detectors look for regions with high contrast.
Therefore, points of interest would be found on the land,
where contrast is usually higher than on the water surface.
Thus, in a first step the river area has to be masked in the
images and defined as the search area for tracking before ap-
plying particle detection.

Feature search area and pose estimation

The feature search area is a region of interest that is defined
as a function of the water level to mask the image. The wa-
ter level and a 3D surface model of the river reach (Fig. 3a)
observed by the camera have to be known to define this wa-
ter area automatically. The 3D surface model is clipped with
the water level value to solely keep the points below the wa-
ter surface. Afterwards, these points are projected into im-
age space (Fig. 3b). Therefore, information about the pose
and the interior geometry of the camera is necessary. In the
FlowVelo tool, information about the camera pose is either
estimated with spatial resection considering the GCP coordi-
nates in image and object space and the interior camera pa-
rameters (for more details see Eltner et al., 2018) or it can be
simply stated if the pose has been defined by other measures.

Next, the 3D point cloud of the observed river reach is
projected into a 2D image (Fig. 3b). To fill gaps, potentially
arising for 3D surface models with a low resolution, a mor-
phological closing is performed. Finally, the contour of the
underwater area is extracted to define the search mask for the
individual frames. If several contours are detected, the largest
contour is chosen. If a 3D surface model is not present for au-
tomatic feature search area detection, the area of interest for
tracking can also be provided via a mask file.

Feature detection and filtering

Particles are detected with the Shi-Tomasi feature (good
feature to track; GFTT) detector (Shi and Tomasi, 1994).
Thereby, features are detected similar to the Harris corner
detector, but a different score is considered to decide for a
valid feature (Fig. 3c). Many more feature detectors are pos-
sible. Tauro et al. (2018) test several methods and show that
the GFTT detector performs well and also finds features in
regions of poor contrast.
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Figure 3. Defining the search area to extract particles to track.
(a) 3D point cloud of the investigated river reach at the Wesenitz.
Coloured points (colourised with RGB information according to
their real-world object colour) are 3D points above the water sur-
face reconstructed with StM photogrammetry. White points are 3D
points below the water surface reconstructed with SfM and cor-
rected for refraction effects. (b) 3D point cloud below the water
level projected into image space. Green line depicts contour line,
which is used as search mask for feature detection. (c¢) Detected and
filtered features considered for tracking (blue circles).

The elimination of particles, which are not suitable for
tracking, is necessary. For instance, reflections of sunlight at
waves showing high contrasts on the water surface need to
be removed to avoid the erroneous tracking of fake particles
(Lewis and Rhoads, 2015). Therefore, a nearest neighbour
search is performed to find areas with strong clusters of par-
ticles. If there are too many features within a defined search
radius, the particle will be excluded from further analysis. In
addition, features are removed that reveal brightness values
below a threshold, e.g. to avoid the inclusion of wave shad-
ows as features.

2.4.3 Feature tracking
When features have been detected, they are tracked through

subsequent frames (Fig. 4). This tracking is performed us-
ing normalised cross-correlation (NCC). Normalisation al-
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lows accounting for brightness and illumination differences
between different frames. The positions of the detected fea-
tures are chosen to define templates with a specific kernel
size (mostly 10 pixels in this study; Supplement 1). In the
next frame NCC is performed within a defined search area
(mostly 15 pixels in this study; Supplement 1) to find the
positions with highest correlation scores for each feature, po-
tentially corresponding to the new positions on the water sur-
face of the migrated particles.

To refine the matching, an additional sub-pixel accurate
processing is performed. Thereby, template and matched
search area of the same size are converted into the frequency
domain to measure the phase shift between both, and af-
terwards the sub-pixel peak location is determined with a
weighted centroid fit. The final matched locations define the
new templates for tracking in the next frame. This tracking
approach is performed for a specified number of frames. In
this study, features are tracked for 20 frames, and new fea-
tures are detected every 15th frame. It can be suitable to de-
tect features more frequently than the number of frames they
are tracked across because features can change their appear-
ance, and new features can enter the area of view, although
the already detected features are still tracked.

2.4.4 Track filtering

Figure 4 shows that false tracking results can still occur,
e.g. tracks that significantly deviate from the main flow di-
rection. This is amongst other reasons due to remaining
speckle detected as features or due to tracking of features
with a low contrast leading to ambiguous matching scores.
Therefore, resulting velocity tracks need to be filtered. Tauro
et al. (2018) remove false trajectories considering mini-
mum track length and track orientation. In this study, we
also make assumptions about the flow characteristics of the
river (Fig. 5). We consider six parameters: minimum frame
amount of a tracked feature, minimum and maximum track-
ing distances, flow steadiness, range of track directions, and
deviation from the average flow direction. Each track has to
fulfil these criteria to be considered as reliable velocity infor-
mation. Thereby, each track is the combination of the indi-
vidual sub-tracks from frame to frame, with feature detection
performed in the first frame.

The first criterion considers the minimum percentage of
frames across which the features have to be traceable (here
65 %). The underlying assumption is that if the feature is only
traceable across a few frames, then it is more likely not a
well-defined flowing particle at the water surface but may for
instance be a speckle occurrence due to sun glare. However,
the minimum value can be set to 0 to avoid any constraints
regarding flow velocities and camera frame rates.

The second and third filter criteria are the distances across
which features were tracked, comprising thresholds for min-
imum and maximum distances. The distance thresholds can
be roughly approximated when the image scale and the range
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Figure 4. Exemplary display of the tracking result from one frame to the next.

of expected river flow velocity are known. In this study, the
minimum and maximum distance parameters are set to 0.1
and 10 pixels, respectively.

The fourth criterion considers the directional flow be-
haviour of the feature with a steadiness parameter. Therefore,
directions of sub-tracks (from frame to frame) are analysed
for each track. Tracks are excluded when the standard devi-
ation is above a defined threshold (30° in this study). The
idea is that river observations are performed during nearly
uniform flow conditions. Thus, high frequencies of changes
in flow directions within a track indicate measurement errors
and should be filtered. In addition to this steadiness param-
eter, the range of all sub-track directions is also considered
as a measure of the flow behaviour. If the range is above a
defined threshold, the track will be excluded (here 120°).

For the last criterion the main flow direction of the river
is examined. The average direction of all tracks is calculated,
and if the direction of the individual tracks are larger or below
a buffer threshold (here 30°), they are rejected from further
processing. The buffer value has to be defined considering
the general variability of the river surface flow pattern. The
lower the parameter is chosen to be, the more a uniform flow
is assumed to be. It has to be noted that the directional filter
has a limited applicability in more complex flow conditions,
e.g. turbulent, non-uniform rivers. In such situation, local fil-
ters should be preferred over these global values.

2.4.5 Velocity retrieval

In the last processing stage, measured distances are trans-
formed from pixel values to metric units to receive flow ve-
locities in metres per second. With a known camera pose and
interior camera geometry, image measurements can be pro-
jected into object space. This leads to a 3D representation of
the light ray emerging from the image plane and proceed-
ing through the camera’s projection centre. 3D object coor-
dinates of an image measurement can be calculated by in-
tersecting its ray with a 3D surface model of the river. In
this case the water surface, assumed to be planar at the water
level, defines the location of intersection. The starting and
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ending points of each track are intersected with the water
plane to retrieve real-world coordinates. From the distance
between start and end and considering the camera’s frame
rate as well as the number of tracked frames, metric flow ve-
locities are retrieved. Finally, the metric velocity tracks are
filtered once more with a statistical outlier filter to remove
remaining outliers (Fig. 6). The threshold is defined as the
sum of the average velocity with a multiple of its standard
deviation (e.g. Thielicke and Stamhuis, 2014). The lower the
multiple is chosen, the more features will be filtered, and
only tracks will be kept which have values close to the aver-
age velocity. In this study, the parameter was set to 1.5. This
processing step is more important for challenging tracking
situations.

Regarding tracking reliability, it should be noted that in
the case of terrestrial cameras with an oblique view onto the
river velocity, measurements are preferred closer to the sen-
sor. Particles move across a larger number of pixels in close
range to the camera than in further distances, e.g. an erro-
neous measurement of 1 pixel close to the camera might re-
sult in a measurement error of 1 cm, whereas at a further dis-
tance it can correspond to 1 m. Furthermore, tracking accu-
racy decreases significantly in far ranges due to increasing
glancing ray intersections with the water surface.

2.5 Discharge estimation

The bathymetric information as well as the flow velocities
are needed to calculate the discharge. Thereby, sole UAV
data can be used as shown by Detert et al. (2017). In this
study, we cut river cross sections from the reconstructed
bathymetry and topography at the approximate locations of
the ADCP measurements. Afterwards, we extract the water
level information by manually detecting the water line in
at least three overlapping images and spatially intersecting
these point measurements in the object space.

The surface flow velocity values are averaged and multi-
plied with the velocity coefficients estimated from the ADCP
measurements to account for depth-averaged velocities (Ta-
ble 1). This approach is suitable at the Wesenitz. But at the
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Raw tracks

Figure 5. Result of tracked features after filtering has been applied to the video sequence of the 500D camera (with a temporal length of
23 s). Sub-tracks are displayed, and the number of tracks refers to full tracks (combination of sub-tracks). (a) Raw tracks prior any filtering.
(b) Filtered tracks after applying minimum and maximum distance thresholds. (¢) Filtered tracks after applying a minimum count of sub-
tracks over which features need to be tracked. (d) Filtered tracks after considering standard deviation of sub-track directions. (e) Filtered
tracks after considering deviation from average flow direction and the range of orientation angles of sub-tracks. (f) Filtered tracks converted

into metric values to receive flow velocities in metres per second.

Freiberger Mulde the method is restricted due to the irregu-
lar river cross sections limiting the application of a constant
velocity coefficient. Finally, discharge is estimated by multi-
plying the cross-section area with the depth-averaged veloc-

1ty.
3 Results and discussion

In this section, results of the accuracies of the image process-
ing are displayed; tracked flow velocities are evaluated; and
discharge estimations are analysed.
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3.1 Accuracy assessment of camera pose estimation
and image co-registration

To enable an accurate measurement of flow velocities, it is
necessary to consider how well the camera pose has been
estimated. Furthermore, for cameras in motion the accuracy
of frame co-registration has to be evaluated as well, to ensure
that tracked movements of the particles indeed correspond to
river flow instead of camera movements.

The accuracy of camera pose estimation can be estimated
because more than three GCPs are available. In general, the
camera pose will be calculated more accurately if GCPs are
distributed around the area of interest in the object space and
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Figure 6. Accuracy of co-registration of video frames to single master frame displayed in image space (black axis) and the corresponding
accuracy in object space (red axis) at the river Wesenitz (a) and Freiberger Mulde (b). Note that the images are only extracts from the original

(bigger) images.

if images capture them in such a way that they cover the
entire image extent because it allows for a stable image-to-
object geometry. Furthermore, for the highest accuracy de-
mands, GCPs need to be measured with high accuracy in
object space and ideally with sub-pixel accuracy in image
space. At both river reaches, accuracies are better for the ter-
restrial cameras (Table 2), which is due to a higher GSD as
cameras are significantly closer to the area of interest com-
pared to the UAV cameras. At the Wesenitz, another rea-
son for the larger deviations is the circumstance that well-
marked, artificial GCPs were used for the terrestrial images,
whereas GCPs were extracted from the 3D surface models to
estimate the UAV camera pose leading to lower point coor-
dinate accuracies.

Small template regions (10 pixels in size) in stable areas
have been chosen (Fig. 6) to estimate the accuracy of frame
co-registration. At the Freiberger Mulde only GCPs could be
used as templates because the remaining area of interest is
covered by vegetation that changes frequently. At the We-
senitz cobble stone corners close to the river surface are cho-
sen because it is important to see how well co-registration
performs close to the water body for which velocities are es-
timated. Each extracted reference location is tracked through
the frame sequence via NCC. In case of a perfect align-
ment, the templates should remain at the same image loca-
tion throughout the sequence. In this study, at the Freiberger
Mulde average deviation between tracked frames to the first
frame amounts 0.5 £ 0.6 pixels for all templates, which cor-
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responds to a co-registration accuracy of 4.3+£5.2 mm. At the
Wesenitz, co-registration reveals an accuracy of 1.0+1.6 pix-
els (6.8 &= 11.3 mm). The lower image coverage of the right
shore at the Wesenitz leads to a lower quality of the frame co-
registration when compared to the Freiberger Mulde reach
because features for frame matching are only kept outside
the water area as the appearance of the river surface changes
too quickly. Therefore, higher deviations are measured at
the right shore than at the left shore. Considering only the
matched targets at the left river side reveals an error range
similar to the Freiberger Mulde.

3.2 Flow velocity measurements at the Wesenitz

The tracking results and retrieved flow velocities show a di-
verse picture for the different cameras. For instance, the final
number of flow velocity tracks is different for each device
(Table 2). The lowest number of tracks is measured for the
UAV camera. However, this camera solely captured a very
short video sequence (about 3 s) that could be used for track-
ing. Furthermore, the GSDs of the UAV data are much lower
than the GSD of the terrestrial cameras due to a larger sensor-
to-object distance. The terrestrial cameras reveal a signifi-
cantly denser field of flow velocity tracks (Fig. 7). The ter-
restrial cameras captured videos of a length of about 0.5 min.
Although video lengths of the terrestrial cameras are simi-
lar, the number of final velocity tracks varies. The camera
closest to the water surface and with the least oblique view
(1200D-II) reveals the highest track number. The 1200D-I
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Table 2. Accuracy of camera pose estimation and density of tracking results. sO corresponds to the average reprojection error after the

adjusted spatial resection.

Accuracy ‘ Tracking density
sO | Number of Number of Number of final
SD (m) (pixel) frames  raw tracks tracks

X Y z \

Wesenitz UAV camera 0.172 0.274 0.162 1.1 78 271 58
500D 0.027 0.066 0.039 0.9 690 3552 439
1200D-1 0.042 0.169 0.080 3.2 700 4781 603
1200D-11 0.041 0.127 0.073 1.6 640 14786 1239
Freiberger Mulde UAV camera 0.085 0.078 0.031 0.5 73 844 126
Casio EX-F1 ~ 0.018 0.010 0.015 0.3 750 3886 334

camera reveals a lower number of velocity measurements,
although frame resolution and focal length are the same, and
video length is even longer. The third camera (500D) depicts
lowest track number, which is mainly due to a lower frame
resolution.

Besides considerations of the camera geometry, track fil-
tering is another very important aspect to retrieve reliable ve-
locity measurements. The filtered track number is about a
magnitude lower than the raw track amount for the terres-
trial cameras (Table 2), highlighting the importance of video
sequences with sufficient temporal duration. Thus, tracking
should be performed as long as possible to increase the ro-
bustness of velocity filtering.

Comparing the range of flow velocity values between the
different terrestrial cameras and the UAV camera reveals a
good fit (Fig. 7), which also coincides with the ADCP ref-
erence (Table 3). Furthermore, regions of faster and slower
velocities are revealed in the terrestrial image data that also
show within the acoustic data. The average deviation of all
cameras to the ADCP measurements are calculated for video-
based track values that are within a maximal perpendicular
distance to the ADCP profile of 1 m. The difference amounts
t0 0.03+0.06 ms~!. However, it is difficult to perform an ex-
act comparison to the ADCP measurements because the pre-
cise location of the ADCP cross section in the local coordi-
nate system of the river reach is not known, as the ADCP boat
was not equipped with any positioning tool, and its move-
ment across the water surface was neither tracked nor syn-
chronised. Therefore, accuracy assessment of the spatial ve-
locity pattern is limited. Nevertheless, we were able to iden-
tify the start and end points of the cross sections at the shore
in the imagery. Therefore, we could approximately estimate
the locations of the cross sections in the decimetre range,
which allows for velocity comparison if the surface flow ve-
locity pattern does not become too variable within the short-
est distances. This has to be kept in mind when assessing the
velocity differences, especially at the Freiberger Mulde.
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Average surface flow velocities from the image-based
measurements are higher or similar to the (extrapolated)
ADCP retrieved surface velocity of 0.7ms™!, except for
camera 1200D-II, which depicts lower values, also compared
to the other cameras (Table 4). A potential reason is the dif-
ferent coverage of the cross section with measured velocity
values. 1200D-II reveals the highest velocity value density
and covers a larger part of the cross section (Fig. 7). More
regions with lower velocities are measured by the 1200D-II,
whereas the other cameras feature less cross-section cover-
age, and more values are measured in areas of faster veloci-
ties.

Interestingly, an impact of the missing camera calibration
of the UAV images is not obvious. Lens distortion parame-
ters were only modelled for the terrestrial cameras but were
discarded for the UAV camera. The impact is assumed to be
minimal because the camera distortion is usually especially
large for cameras with very wide angles, which is not the case
for the UAV camera. Furthermore, the distortion impact is
more important when features are tracked for large distances
in the image, which is also not the case in this study because
features are mostly tracked between subsequent frames for
only a few pixels.

3.3 Flow velocity measurements at the Freiberger
Mulde

At the Freiberger Mulde a more diverse spatial velocity pat-
tern becomes obvious (Fig. 8). Especially the UAV data re-
veal areas of increased and decreased velocities along the
river reach. Velocity ranges coincide with the ADCP mea-
surements. Average deviations of the closest tracks to the
reference values (similar to the approach in Sect. 3.2) are
on average —0.01 £0.07ms~! for the terrestrial and UAV
camera and for all cross sections. However, velocities are ei-
ther overestimated or underestimated at different profiles and
for different cameras (Table 3). The flow velocities for the
UAV data are lower at profile 3 compared to the reference.
However, due to the strong changes of flow velocities within
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Figure 7. Flow velocities estimated at the Wesenitz using video frames captured with three different terrestrial cameras and a camera on
a UAV platform. Final tracks after the statistical outlier filter (Fig. 5f) are displayed. Green border indicates area, in which image-based

measurements are compared to ADCP velocities.

Table 3. Deviation between ADCP measurements and video-based flow velocities. Differences are calculated for tracks within a range of

1 m and are closest to the ADCP measurements.

Surface velocity
difference (m s_l)

Average SD  Track count

Wesenitz UAV camera 0.03 0.07 10
500D 0.00 0.06 24

1200D-1 0.02 0.07 56

1200D-11 0.08 0.06 88

Average 0.03 0.06 -

Freiberger Mulde  UAV camera  Profile 1 0.03 0.09 8
UAV camera  Profile 2 0.01 0.06 8

UAV camera  Profile 3 —0.05 0.06 8

Casio EX-F1  Profile 1 —0.01 0.05 10

Average 0.01 0.07 -

short distances, especially at cross section 3 (Fig. 1), a pos-
sible reason can be false mapping of ADCP values to image-
based values. The assumption that velocity underestimation
at that cross section is due to imprecise point-based veloc-
ity comparison is backed when comparing the average cross
section UAV-retrieved surface velocity (Table 4) with the av-
erage ADCP velocity. In that case, the UAV data reveal larger
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values (0.79 versus 0.76 ms ™!, respectively), confirming the
observations at cross sections 1 and 2.

The terrestrial camera depicts a lower spatial density of ve-
locities compared to the terrestrial cameras at the Wesenitz
(Table 2), although the video sequence has a comparable
length. This is due to the significantly lower image resolu-
tion as well as the larger distance to the object. Therefore,
fewer features are detectable. The average flow velocity at
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Table 4. Discharge estimated using flow velocities and cross sections retrieved from UAV data.

Average surface flow velocity at

Cross-section ~ Discharge (m3 s_l)

the cross section (m s_l) area (mz) Average SD
Wesenitz UAV camera 0.71 4.57 2.73 0.27
500D 0.72 2.76 0.15
1200D-1 0.71 2.72 0.16
1200D-11 0.67 2.58 0.16
Average 2.70 0.18
SD 0.08
Freiberger Mulde = UAV camera  Profile 1 0.79 11.61 7.34 0.74
Profile 2 0.77 10.35 6.60 0.60
Profile 3 0.79 9.19 5.64 0.43
Casio EX-F1  Profile 1 0.76 11.61 7.06 0.46
Average 6.66 0.56
SD 0.75

Terrestrial camera

-

)

;,f'/'f// M//f?/

UAV camera )

Figure 8. Flow velocities estimated at the Freiberger Mulde using video frames captured with a terrestrial camera and a camera on a UAV
platform. Green border indicates area, in which image-based measurements are compared to ADCP velocities.

cross section 1 and the average of contrasted individual ve-
locity tracks are smaller than the reference. However, error
behaviour of the image-based data might be less favourable
at cross section 1, where the comparison is made for im-
age tracks measured at the far reach of the image. The sharp
glancing angles at the water surface lead to higher uncertain-
ties of the corresponding 3D coordinate.

The decision about how to set the parameters for tracking
(e.g. patch size) and filtering (e.g. statistical threshold) re-
mains challenging, especially in long-term applications when
spatiotemporal flow conditions can change strongly (Hauet
et al., 2008). Thus, in future studies intelligent decision ap-
proaches for corresponding parameters need to be developed,
for instance where measurements are performed iteratively
with changing parameters.
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3.4 Camera-based discharge retrieval

Discharge estimations at the Wesenitz do not show large
deviations between the cameras because velocity estimates
showed low deviations, as well (Table 4). Solely the 1200D-
II camera displays a lower discharge. The average discharge
for all cameras amounts to 2.7 m> s~!, which corresponds to
the discharge measured by the ADCP. Deviations to the ref-
erence are below 4 %, highlighting the great potential of the
UAV application to retrieve discharge estimates solely from
image data in regular river cross sections. Standard devia-
tions of the discharge estimations due to the consideration
of the standard deviation of the surface flow velocities are
small, ranging from 0.18 m®s™! (7 %) to 0.56m>s~! (8 %)
at the Wesenitz and Freiberger Mulde, respectively (Table 4).

At the Freiberger Mulde, discharge estimates do not fit as
well to the reference measurements. Velocities are only ob-
served in the main flow of the river, where flow velocities
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are higher. Deviations to the ADCP reference are larger for
the terrestrial camera, whose measurements are only com-
pared to profile 1, which shows a large range of flow velocity
and depicts very low values outside the main flow (Fig. 1).
Comparing single velocity values to nearby ADCP measure-
ments, instead of comparing averaged cross-section informa-
tion, reveals that the accuracies of image-based velocity mea-
surements are indeed higher (Table 3). Neglecting the slower
flow velocities in the shallower river region outside the main
flow leads to overestimated discharge values for the irregu-
larly shaped cross sections, which is in contrast to the regular
cross section at the Wesenitz. In addition, using the average
velocity coefficient is adverse, because the irregular profile
shape indicates a changing coefficient (Kim et al., 2008).

Another important issue that needs to be noted is the cir-
cumstance that the image-based discharge estimation reveals
a high variability that is sensitive to the defined wetted cross
section extracted with the defined water level. For instance,
at the Wesenitz already a 1 cm offset in the water level value
causes a discharge difference of 0.08 m’s~! (3%), and an
offset of 3 cm causes a difference of 7% (0.2 m>s1). Dif-
ferent studies already highlight that the correct water level is
important for accurate discharge estimation due to the wet-
ted cross-section area error but that it is less relevant for
the accuracy of the flow velocities due to erroneous ortho-
rectification (Dramais et al., 2011; Le Boursicaud et al.,
2016; Leitao et al., 2018).

3.5 Limits and perspectives

In this study, a workflow for surface flow velocity and dis-
charge measurements in rivers using terrestrial and UAV im-
agery was tested successfully. In general, three main pro-
cessing steps are necessary, i.e. retrieving terrain informa-
tion via SfM photogrammetry, estimating the flow velocity
with PTV and eventually calculating the discharge with the
information from both previous steps. However, some con-
straints need to be considered. The FlowVelo tool requires
at least the video frames, the camera pose (either estimated
within in the tool considering GCP information or provided
externally), the water level and some estimates of the interior
camera geometry (at least focal length and sensor size and
resolution are needed). Furthermore, if the camera was not
stable during the image acquisition, camera movements can
be corrected automatically if sufficient shore areas are visi-
ble in the frames. With this information and pre-processing,
scaled river surface velocities are retrievable fully automati-
cally.

However, some characteristics of the tool have to be con-
sidered. One aspect is the shore visibility in the frames for
the co-registration. To guarantee stable areas that are large
enough at larger rivers, increasing the flying height might
be necessary, potentially reducing the visibility of features
to track. Alternatively, cameras with wider opening angles
might be needed, potentially resulting in stronger lens distor-
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tions. Furthermore, assumptions about the flow characteris-
tics need to be made for successful filtering, which implies
either some experience with image velocimetry in riverine
environments or some trials to find the most suitable filtering
parameters. Consideration of a suitable choice of the thresh-
old of the statistical outlier filter is important, as well. If the
filter is chosen too strictly, it can lead to the loss of valid ve-
locity tracks, which is especially probable in rivers with com-
plex flow patterns and a large range of velocities. Another
important factor of the image velocimetry tool to consider is
the impact of the choices of thresholds on processing time.
On the one hand, the more often features are detected and
the more frames they are tracked across, the more reliable
and robust tracking results are possible because track filtering
will receive a larger sample for processing. However, track-
ing more features across an increased number of frames also
increases processing time significantly, which is especially
relevant for cameras with high frame rates and image reso-
lutions. Nevertheless, in this study the maximum processing
time (for the terrestrial cameras at the Wesenitz that captured
videos with lengths of about 0.5 min) was still below 5 min
on an average computer.

Measuring surface velocities implies sensitivities to exter-
nal impacts such as winds, waves or raindrops, potentially
falsifying an already established ratio between surface and
average flow velocity, i.e. velocity coefficient, due to decreas-
ing or increasing the surface velocity depending on the wind
and wave direction and velocity. However, windy and rainy
conditions should be avoided using any surface velocity mea-
surement. The accuracy and reliability of the surface veloc-
ity measurement can be improved by adding traceable par-
ticles to increase the seeding density as shown by Detert et
al. (2017). In this study, only natural particles floating at the
river surfaces at both study areas were used, which did not
cover the entire observed cross section, leading to data gaps
complicating the retrieval of discharge from the sparsely dis-
tributed velocity values.

The FlowVelo tool does not provide discharge informa-
tion, yet, because discharge estimation requires additional
parameters which need to be determined prior to using im-
age velocimetry as an accurate automatic remote sensing ap-
proach. For instance, the water level and the related cross-
sectional area are needed, and the velocity coefficient has to
be known, which is a point of uncertainty especially at irregu-
lar river reaches. In this study, the velocity coefficient was es-
timated from the ADCP measurements dividing the mean ve-
locity of the cross section with the average surface velocity.
However, alternative approaches, e.g. hydraulic modelling,
should be analysed in more detail in future studies to evalu-
ate if they can support the retrieval of more suitable velocity
coefficients. This becomes especially interesting due to novel
possibilities of high-resolution bathymetric and topographic
data, e.g. using SfM approaches for river mapping.
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4 Conclusion

In this study, we introduce a remote sensing workflow for au-
tomatic flow velocity calculation and discharge estimation.
The approach can be applied to terrestrial as well as aerial
imagery. Thus, the importance of the acquisition scheme is
secondary. However, visibility of tracked particles across the
entire river cross section is relevant as indicated by the com-
parison of three different terrestrial cameras observing nearly
the same river reach but revealing variations in the velocity
estimates.

Camera movements during the video acquisition are sta-
bilised using an automatic image co-registration method. To
estimate flow velocity, particles on the water surface are de-
tected and tracked using PTV. A feature search area is de-
fined automatically solely relying on information about the
water level and the topography of the river reach. The de-
tected and tracked particles are filtered with cluster analysis
and by making assumptions about the flow characteristics.
Discharge is retrieved using the depth-averaged flow velocity
and the wetted cross section, which is derived from a 3D sur-
face model reconstructed with multi-media photogrammetry
applied to UAV imagery.

Two study sites have been observed with different terres-
trial cameras and with a UAV platform. Comparing the re-
sults with ADCP reference measurements reveals a high ac-
curacy potential for surface flow velocities calculated with
PTV and automatic image co-registration, especially at stan-
dard gauging setups (maximal error of 4 %). At irregular
cross sections, an accuracy assessment of velocity tracking
is limited due to high demands of position accuracies of the
reference measurements. Discharge estimates with maximal
errors of 5 % could be achieved at the standard track cross
section. At irregular profiles, discharge calculation reveals
significantly higher differences to reference measurements of
7 %-31 %. This is, amongst other reasons, due to incomplete
velocity measurements across the entire river cross section,
leading to discharge overestimation when tracks are only re-
trieved in the faster-flowing river region. Thus, further im-
provements of the tool for irregular cross sections as well as
considering artificial flow seeding is advisable in future stud-
ies.

The workflow, including the provided velocity tracking
tool Flow Velo, allows for a contactless measurement of spa-
tially distributed surface velocity fields and the estimation of
river discharge in previously ungauged and unmeasured re-
gions, making it especially suitable for applications to assess
flood events.
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