Articles | Volume 23, issue 12
Hydrol. Earth Syst. Sci., 23, 5059–5068, 2019
https://doi.org/10.5194/hess-23-5059-2019
Hydrol. Earth Syst. Sci., 23, 5059–5068, 2019
https://doi.org/10.5194/hess-23-5059-2019

Technical note 16 Dec 2019

Technical note | 16 Dec 2019

Technical note: Uncertainty in multi-source partitioning using large tracer data sets

Alicia Correa et al.

Related authors

Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022,https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021,https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Tropical drought risk: estimates combining gridded vulnerability and hazard data
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360,https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Iron oxides control sorption and mobilisation of iodine in a tropical rainforest catchment
Laura Balzer, Katrin Schulz, Christian Birkel, and Harald Biester
SOIL Discuss., https://doi.org/10.5194/soil-2020-20,https://doi.org/10.5194/soil-2020-20, 2020
Manuscript not accepted for further review

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Sequential data assimilation for real-time probabilistic flood inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021,https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary
Key challenges facing the application of the conductivity mass balance method: a case study of the Mississippi River basin
Hang Lyu, Chenxi Xia, Jinghan Zhang, and Bo Li
Hydrol. Earth Syst. Sci., 24, 6075–6090, https://doi.org/10.5194/hess-24-6075-2020,https://doi.org/10.5194/hess-24-6075-2020, 2020
Short summary
Quantifying input uncertainty in the calibration of water quality models: reshuffling errors via the secant method
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-563,https://doi.org/10.5194/hess-2020-563, 2020
Revised manuscript accepted for HESS
Short summary
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020,https://doi.org/10.5194/hess-24-4641-2020, 2020
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020,https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary

Cited articles

Barthold, F. K., Tyralla, C., Schneider, K., Vaché, K. B., Frede, H.-G., and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis, Water Resour. Res., 47, W08519, https://doi.org/10.1029/2011WR010604, 2011. 
Barthold, F. K., Turner, B. L., Elsenbeer, H., and Zimmermann, A.: A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment, Hydrol. Process., 31, 1018–1033, https://doi.org/10.1002/hyp.11083, 2017. 
Bartov, G., Deonarine, A., Johnson, T. M., Ruhl, L., Vengosh, A., and Hsu-Kim, H.: Environmental Impacts of the Tennessee Valley Authority Kingston Coal Ash Spill. 1. Source Apportionment Using Mercury Stable Isotopes, Environ. Sci. Technol., 47, 2092–2099, https://doi.org/10.1021/es303111p, 2013. 
Belli, R., Borsato, A., Frisia, S., Drysdale, R., Maas, R., and Greig, A.: Investigating the hydrological significance of stalagmite geochemistry (Mg, Sr) using Sr isotope and particulate element records across the Late Glacial-to-Holocene transition, Geochim. Cosmochim. Ac., 199, 247–263, https://doi.org/10.1016/j.gca.2016.10.024, 2017. 
Berman, E. S. F., Gupta, M., Gabrielli, C., Garland, T., and McDonnell, J. J.: High-frequency field-deployable isotope analyzer for hydrological applications: RAPID COMMUNICATION, Water Resour. Res., 45, W10201, https://doi.org/10.1029/2009WR008265, 2009. 
Download
Short summary
The applications and availability of large tracer data sets have vastly increased in recent years leading to research into the contributions of multiple sources to a mixture. We introduce a method based on Taylor series approximation to estimate the uncertainties of such sources' contributions. The method is illustrated with examples of hydrology (14 tracers) and a MATLAB code is provided for reproducibility. This method can be generalized to any number of tracers across a range of disciplines.