Articles | Volume 23, issue 12
https://doi.org/10.5194/hess-23-4933-2019
https://doi.org/10.5194/hess-23-4933-2019
Research article
 | 
03 Dec 2019
Research article |  | 03 Dec 2019

Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes?

Kabir Rasouli, John W. Pomeroy, and Paul H. Whitfield

Related authors

A long-term hydrometeorological dataset (1993–2014) of a northern mountain basin: Wolf Creek Research Basin, Yukon Territory, Canada
Kabir Rasouli, John W. Pomeroy, J. Richard Janowicz, Tyler J. Williams, and Sean K. Carey
Earth Syst. Sci. Data, 11, 89–100, https://doi.org/10.5194/essd-11-89-2019,https://doi.org/10.5194/essd-11-89-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary

Cited articles

Abdi, H., and Williams, L. J.: Tukey's honestly significant difference (HSD) test, in: Encyclopedia of Research Design, edited by: Salkind, N., Sage, Thousand Oaks, CA, USA, 1–5, 2010. 
Alberta Natural Regions Committee: Natural Regions and Subregions of Alberta, compiled by: Downing, D. J. and Petapiece, W. W., Government of Alberta Publication Number T/852, Edmonton, Alberta, Canada, 254 pp., 2006. 
Bales, R. C., Hopmans, J. W., O'Geen, A. T., Meadows, M., Hartsough, P. C., Kirchner, P., Hunsaker, C. T., and Beaudette, D.: Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest, Vadose Zone J., 10, 786–799, 2011. 
Beniston, M.: Climatic change in mountain regions: a review of possible impacts, in Climate variability and change in high elevation regions: past, present & future, 5–31, Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-015-1252-7_2, 2003. 
Bennett, K. E., Werner, A. T., and Schnorbus, M.: Uncertainties in hydrologic and climate change impact analyses in headwater basins of British Columbia, J. Climate, 25, 5711–5730, 2012. 
Download
Short summary
The combined effects of changes in climate, vegetation, and soils on mountain hydrology were modeled in three mountain basins. In the Yukon, an insignificant increasing effect of vegetation change on snow was found to be important enough to offset the climate change effect. In the Canadian Rockies, a combined effect of soil and climate change on runoff became significant, whereas their individual effects were not significant. Only vegetation change decreased runoff in the basin in Idaho.
Share