Articles | Volume 23, issue 10
Hydrol. Earth Syst. Sci., 23, 4333–4347, 2019
Hydrol. Earth Syst. Sci., 23, 4333–4347, 2019

Research article 25 Oct 2019

Research article | 25 Oct 2019

Time variability and uncertainty in the fraction of young water in a small headwater catchment

Michael Paul Stockinger et al.

Related authors

Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915,,, 2021
Short summary
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034,,, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202,,, 2021
Short summary
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172,,, 2021
Short summary
Small-scale topography explains patterns and dynamics of dissolved organic carbon exports from the riparian zone of a temperate, forested catchment
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086,,, 2021
Short summary
Effects of spatial resolution of terrain models on modelled discharge and soil loss in Oaxaca, Mexico
Sergio Naranjo, Francelino A. Rodrigues Jr., Georg Cadisch, Santiago Lopez-Ridaura, Mariela Fuentes Ponce, and Carsten Marohn
Hydrol. Earth Syst. Sci., 25, 5561–5588,,, 2021
Short summary
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534,,, 2021
Short summary

Cited articles

Barthold, F. K., Tyralla, C., Schneider, K., Vaché, K. B., Frede, H. G., and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis, Water Resour. Res., 47, W08519,, 2011. 
Bogena, H. R., Montzka, C., Huisman, J. A., Graf, A., Schmidt, M., Stockinger, M., von Hebel, C., Hendricks-Franssen, H. J., van der Kruk, J., Tappe, W., Lücke, A., Baatz, R., Bol, R., Groh, J., Pütz, T., Jakobi, J., Kunkel, R., Sorg, J., and Vereecken, H.: The TERENO-Rur Hydrological Observatory: A Multiscale Multi-compartment Research Platform for the Advancement of Hydrological Science, Vadose Zone J., 17, 1–22,, 2018. 
Bourgault, R. R., Ross, D. S., Bailey, S. W., Bullen, T. D., McGuire, K. J., and Gannon, J. P.: Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland setting, Geoderma, 307, 238–252, 2017. 
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T.: Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report), Pure Appl. Chem., 86,, 425–467, 2014. 
Christidis, N., Jones, G. S., and Stott, P. A.: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave, Nat. Clim. Change, 5, 46–50,, 2015. 
Short summary
Precipitation moves through the soil to become stream water. The fraction of precipitation that becomes stream water after 3 months (Fyw) can be calculated with the stable isotopes of water. Previously, this was done for all the isotope data available, e.g., for several years. We used 1 year of data to calculate Fyw and moved this calculation time window over the time series. Results highlight that Fyw varies in time. Comparison studies of different regions should take this into account.