Articles | Volume 22, issue 9
https://doi.org/10.5194/hess-22-5021-2018
https://doi.org/10.5194/hess-22-5021-2018
Research article
 | 
28 Sep 2018
Research article |  | 28 Sep 2018

Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches

Aynom T. Teweldebrhan, John F. Burkhart, and Thomas V. Schuler

Related authors

Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020,https://doi.org/10.5194/hess-24-4641-2020, 2020

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-64,https://doi.org/10.5194/hess-2024-64, 2024
Revised manuscript accepted for HESS
Short summary
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023,https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Why do our rainfall–runoff models keep underestimating the peak flows?
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023,https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary

Cited articles

Bavera, D., Michele, C., Pepe, M., and Rampini, A.: Melted snow volume control in the snowmelt runoff model using a snow water equivalent statistically based model, Hydrol. Process., 26, 3405–3415, 2012. 
Berezowski, T. and Batelaan, O.: Skill of remote sensing snow products for distributed runoff prediction, J. Hydrol., 524, 718–732, 2015. 
Beven, K.: Changing ideas in hydrology – the case of physically-based models, J. Hydrol., 105, 157–172, 1989. 
Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992. 
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41–51, 1993.