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Abstract. Parameter uncertainty estimation is one of the ma-
jor challenges in hydrological modeling. Here we present
parameter uncertainty analysis of a recently released dis-
tributed conceptual hydrological model applied in the Nea
catchment, Norway. Two variants of the generalized like-
lihood uncertainty estimation (GLUE) methodologies, one
based on the residuals and the other on the limits of ac-
ceptability, were employed. Streamflow and remote sensing
snow cover data were used in conditioning model parame-
ters and in model validation. When using the GLUE limit of
acceptability (GLUE LOA) approach, a streamflow observa-
tion error of 25 % was assumed. Neither the original limits
nor relaxing the limits up to a physically meaningful value
yielded a behavioral model capable of predicting streamflow
within the limits in 100 % of the observations. As an alterna-
tive to relaxing the limits, the requirement for the percentage
of model predictions falling within the original limits was re-
laxed. An empirical approach was introduced to define the
degree of relaxation. The result shows that snow- and water-
balance-related parameters induce relatively higher stream-
flow uncertainty than catchment response parameters. Com-
parable results were obtained from behavioral models se-
lected using the two GLUE methodologies.

1 Introduction

Hydrological models have numerous applications of central
importance to society including for planning, design, and
management of environmental and water resources. The op-
eration of hydropower systems is mainly constrained by the
availability of water resources. Hydrological models play an

important role in forecasting the local inflows to the system
on scales ranging from hours to years. With due recognition
of the need for accurate prediction of streamflow and snow
storage, Statkraft (2018) has recently released a new model-
ing framework mainly tailored for an operational purpose. In
this study, one of the conceptual models of this framework
was subjected to uncertainty analysis. Conceptual hydrologi-
cal models typically have one or more calibration parameters
and commonly require some form of inverse modeling to es-
timate model parameters from observations (Crawford and
Linsley, 1966). During calibration, equifinality arises when
different parameter sets give equally good results in terms of
predefined efficiency criteria (Beven, 1993; Savenije, 2001;
Wagener et al., 2003). The generalized likelihood uncertainty
estimation (GLUE) methodology (Beven and Binley, 1992)
is an extension of the generalized sensitivity analysis concept
of Hornberger and Spear (1981), and it accepts equifinality
as a working paradigm for parameter calibration of hydro-
logical models (Choi and Beven, 2007). It is based on the
concept that all models of hydrological systems are highly
simplified representations of reality (e.g., Reichert and Om-
lin, 1997), and hence it is expected to have several different
model structures and parameter sets that describe the system
in an adequate way (Blazkova and Beven, 2002). When deal-
ing with nonlinear systems, the classic hydrological approach
of using a single set of model parameters may lead to large
predictive biases (e.g., Mantovan and Todini, 2006).

Hydrological modeling is affected by four main sources
of uncertainty related to input data, validation data, model
structure, and model parameters (e.g., Renard et al., 2010).
Input data uncertainties may arise from measurement limi-
tations and scaling issues, for example, due to forcing data
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downscaling. Errors of the rating curve affect streamflow es-
timates and thereby lead to validation data uncertainty. Struc-
tural uncertainty may result from the underlying assump-
tions and simplifications in the model formulation as well as
from application of the model to conditions inconsistent with
the model structure (Tripp and Niemann, 2008). Parametric
uncertainty reflects the inability to specify exact values of
model parameters (Renard et al., 2010) and it may stem from
errors in input data and observations used for model condi-
tioning as well as be due to epistemic errors in model struc-
ture. An increased awareness of these modeling uncertainties
and the need for quality control of such models requires the
integration of uncertainty analysis into the modeling process
from the very beginning (Beven, 1989; Saltelli et al., 2006;
Refsgaard et al., 2007).

Uncertainty analysis techniques can be classified as
frequentist or Bayesian approaches, probabilistic or non-
probabilistic approaches (e.g., Montanari et al., 2009), or
as formal or informal approaches (e.g., Vrugt et al., 2009).
Among the most widely used techniques in hydrological
modeling are the formal Bayesian and the GLUE meth-
ods (Jin et al., 2010). The formal Bayesian approach makes
strong assumptions about the statistics of observed data;
with the likelihood function defined based on assumptions
about the nature of the residuals (Schoups and Vrugt, 2010).
However, the choice of an adequate likelihood function has
been the subject of considerable debate. According to Beven
and Smith (2015), a formal probabilistic likelihood func-
tion will have limited value since non-stationary epistemic
uncertainties cannot be adequately represented by a statis-
tical model. In GLUE, the likelihood measure is associated
with a parameter set and should ideally reflect all the dif-
ferent sources of uncertainty (Beven and Smith, 2015). The
original GLUE methodology has been the subject of debate
for using a subjectively set threshold of behavioral models
(e.g., Mantovan and Todini, 2006; Stedinger et al., 2008;
Clark et al., 2011; Nearing et al., 2016). This problem is
common to most residual-based model selection methods
(Schaefli, 2016). The extended concept of behavioral models
in the GLUE limits of acceptability approach (GLUE LOA)
(Beven, 2006) attempts to overcome this drawback through
use of error bounds of the observational dataset.

The GLUE LOA methodology involves specifying limits
around some observational data within which model predic-
tions are required to lie and thereby considered acceptable
for the intended model application. The acceptability limits
are set prior to running a model and, among other consider-
ations, they are expected to take into account incommensu-
rability and uncertainty in both the input and evaluation data
(Beven, 2009). However, identification of models that repro-
duce the observed system behavior within the limits of mea-
surement error is not easy due to time-varying errors in the
input data and model structure (e.g., Beven, 2016). This diffi-
culty is even more pronounced when input and other sources
of errors are not explicitly accounted for in defining the LOA.

Good quality time series data and associated uncertainties
are not always readily available. For example, in regulated
catchments the inflow hydrograph is often estimated from
changes in storage volume and outflows using the water bal-
ance equation. Thus, as in the case of our study catchment, no
stage–discharge relationship exists for estimating the stream-
flow uncertainty using the usual practice, i.e., by fitting dif-
ferent rating curves. In such instances the alternative is to as-
sume an observation error proportional to the observational
data. However, the identification of behavioral models with-
out due consideration to such less precise observation error
estimates may lead to the rejection of a useful model (i.e.,
making a type II error). Some of the measures taken to min-
imize the risk of making a type II error when identifying be-
havioral models using the GLUE LOA include extending the
limits (e.g., Blazkova and Beven, 2009; Liu et al., 2009) and
using different model realizations for different periods of a
hydrological year (e.g., Choi and Beven, 2007). In this study,
instead of relaxing the limits, the percentage of observations
where model predictions are required to fall within the ac-
ceptability limits was relaxed.

The GLUE methodology has been widely used in vari-
ous disciplines (Beven, 2009; Efstratiadis and Koutsoyian-
nis, 2010) primarily due to its conceptual simplicity and ease
of implementation. Further, its suitability for parallel imple-
mentation on distributed computer systems as well as its gen-
eral strategy in dealing with equifinality in model calibration
make it an appealing framework (Blasone et al., 2008; Shen
et al., 2012; Mirzaei et al., 2015).

In this study model parameters were constrained using
streamflow and the MODIS snow cover product (Hall et al.,
2006). Multi-criteria model conditioning helps to reduce pre-
diction uncertainty through improved parameter identifica-
tion (e.g., Efstratiadis and Koutsoyiannis, 2010; Finger et
al., 2015), and GLUE provides a flexible approach for using
multi-criteria methods through different ways of combining
measures. Besides streamflow, one of the observations com-
monly used in multi-criteria conditioning of rainfall-runoff
models in snow-dominated catchments is snow data. Remote
sensing snow cover data have been used in several hydro-
logical modeling studies for deriving and updating a snow
depletion curve (SDC) (e.g., Lee et al., 2005; Kolberg and
Gottschalk, 2006; Bavera et al., 2012), as well as in multi-
criteria-based model calibration and simulated snow cover
validation (e.g., Udnaes et al., 2007; Parajka and Bloschl,
2008; Berezowski et al., 2015). However, studies involving
combined uncertainty of streamflow and snow cover predic-
tions using the GLUE methodology are still missing in the
literature.

The main objective of this study is to assess parameter
uncertainty for a recently developed distributed conceptual
hydrological model using the GLUE methodology with due
consideration to the model’s main application as an opera-
tional hydrological model. The second objective is to inves-
tigate the potential value of snow cover data as additional
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observation in conditioning model parameters in the study
area. The third objective is to assess the possibility of using
a time-relaxed GLUE LOA approach for constraining model
parameters. In doing so, we employ a novel empirical ap-
proach for implicitly accounting for the effects of input and
observational data errors by relaxing the percentage of time
steps in which predictions of model realizations fall within
the limits.

This paper is organized as follows. First the (i) hydrologi-
cal model and (ii) the study site and relevant data used in this
study are briefly described in Sect. 2.1 and 2.2. The proce-
dures followed to set up the uncertainty analyses are then
outlined in Sect. 2.3. In Sect. 3, the results from parame-
ter uncertainty as well as the uncertainty of streamflow and
snow cover predictions using the residual-based GLUE ap-
proach are presented. The results from the relaxed GLUE
LOA are also presented in this section. Finally, in Sects. 4
and 5, the analysis results and their implication on the hy-
drologic model, the data and the methodologies followed are
discussed and conclusions are drawn.

2 Methods and materials

2.1 The hydrological model

The Statkraft Hydrological Forecasting Toolbox,
Shyft (https://github.com/statkraft/shyft, last access:
1 March 2018), is an open-source distributed hydrological
modeling framework developed by Statkraft (Burkhart et
al., 2016). The modeling framework has three main models
(method stacks) and, in this study, the PT_GS_K model
was used for uncertainty analysis. PT_GS_K is a conceptual
model with several adjustable parameters depending on the
climatic and physiographic characteristics of the study area
where the model is applied. This model requires temperature,
precipitation, radiation, relative humidity, and wind speed
as forcing data. PT_GS_K uses the Priestley–Taylor (PT)
method (Priestley and Taylor, 1972) for estimating potential
evaporation; a quasi-physical-based method for snowmelt,
sub-grid snow distribution and mass balance calculations
(GS method); and a simple storage–discharge function
(Lambert, 1972; Kirchner, 2009) for catchment response
calculation (K). Overall, these three methods constitute
the PT_GS_K model in Shyft. The framework establishes
a sequence of spatially distributed cells of arbitrary size
and shape. As such it can provide lumped (single cell) or
discretized (spatially distributed) calculations, as in this
study. The model was applied to each of the grid cells and
for each time step.

Within the GS method, precipitation falling in each grid
cell is classified as solid or liquid precipitation depending on
a threshold temperature (tx) and on the local temperature val-
ues. The snowmelt energy is the sum effect of different en-
ergy sources in the system such as shortwave and long-wave

radiation as well as the turbulent sensible and latent energy
fluxes. Among other factors, the energy contribution from
shortwave radiation depends on snow albedo. For a given
time step (t), the snow albedo of each grid cell depends on
the minimum (αmin) and maximum (αmax) albedo values as
well as on air temperature (Ta) (Eq. 1). In this method the de-
cay rates of albedo due to snow ageing as a function of tem-
perature, i.e., the fast (fast ADR, αfdr) and slow (slow ADR,
αsdr) albedo decay rates corresponding to temperature condi-
tions above and below 0 ◦C, respectively, are parameterized.
Turbulent heat contribution is the sum of latent and sensible
heat. Wind turbulence is linearly related to wind speed using
a wind constant and wind scale from the intercept and slope
of the linear function, respectively (Hegdahl et al., 2016).

αt =


αmin+ (αt−1−αmin) ·

(
1

21/αfdr

)
Ta > 0 ◦C

αt−1+ (αmax−αmin) ·

(
1

2 (αsdr)

)
Ta ≤ 0 ◦C

(1)

The sub-grid snow distribution is described by a three-
parameter gamma probability distribution snow depletion
curve (Liston, 1999; Kolberg and Gottschalk, 2006). The tra-
ditional gamma distribution is parameterized with two val-
ues, i.e., the average amount of snow at the onset of the melt
season m (mm) and the shape value (k), based on the as-
sumption that the ground is completely snow covered before
the onset of melt. Since this assumption may not hold true
for a number of grid cells especially in alpine areas, a third
parameter representing the bare ground fraction at the onset
of the snowmelt season has been introduced (Kolberg and
Gottschalk, 2006). The two-parameter gamma distribution
(Eq. 2) is thus applied only to the remaining portion of a grid
cell to estimate the fraction of the initially snow-covered area
where snow has disappeared (y′). The initial bare ground
fraction parameter is constant for all years. At each time step,
the state parameters such as snow water equivalent (SWE)
and snow cover area (SCA) are updated using the SDC func-
tion. In the GS method, the shape value is a direct transfor-
mation of the sub-grid snow coefficient of variation (CVs).

y′ =

λ(t)∫
0

f (x;k,θ)dx = γ (k,
λ

θ
), (2)

where f denotes the gamma probability density function and
γ is the incomplete gamma function. x and λ(t), respectively,
refer to point snow storage and the accumulated melt depth
(mm) at time t since the onset of the melt season. θ represents
the scale parameter with m= kθ and k = CV−2

s .
The catchment response function (CRF) is based on the

storage–discharge relationship concept described in Kirch-
ner (2009) and represents the sensitivity of discharge to
changes in storage (Eq. 3). This method is based on the idea
that catchment sensitivity to changes in storage, i.e., g(Q),
can be estimated from the time series of discharge alone
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Table 1. Range of model parameters used for the PT_GS_K model stack uncertainty analysis.

Name Min. Max. Description Method

c1 −5.0 1.0 constant in the catchment response function (CRF) K
c2 0.0 1.2 linear coefficient in CRF K
c3 −0.15 −0.05 quadratic coefficient in CRF K
tx −3.0 2.0 Solid or liquid threshold temperature (◦C) GS
Wind scale 1.0 6.0 slope in turbulent wind function GS
Fast ADR 1.0 15.0 fast albedo decay rate (days) GS
Slow ADR 20.0 40.0 slow albedo decay rate (days) GS
Snow CV 0.06 0.85 spatial coefficient of variation of snowfall GS

through fitting empirical functions to the data such as the
quadratic equation. Since discharge is generally nonlinear
and typically varies by many orders of magnitude, the rec-
ommended approach is to use log-transformed discharge val-
ues in order to avoid the risk of numerical instability. In this
method, the three parameters of the catchment response func-
tion, i.e., c1, c2, and c3, are parameterized.

d(ln(Q))
dt

= g (Q)

(
P −E

Q
− 1

)
, (3)

with g (Q)= ec1+ c2(ln(Q))+ c3(ln(Q))
2
,

in which E and Q, respectively, represent actual evapo-
transpiration and discharge. In the original formulation P
refers to precipitation, whereas in this method it refers to the
liquid water supply from rainfall and snowmelt.

The potential evaporation calculation in the PT method re-
quires net radiation and the slope of saturated vapor pressure
as well as the Priestley–Taylor parameter, the psychometric
constant, and the latent heat of vaporization (e.g., Matt et al.,
2018). The latter three variables are kept constant in the PT
method. Actual evapotranspiration is assumed to take place
only from snow-free areas and it is estimated as a function of
potential evapotranspiration and a scaling factor.

In the default parameter settings of the PT_GS_K model
seven parameters are considered as influential and thus al-
lowed to vary in conditioning the model. Preliminary model
calibration using the BOBYQA algorithm (Powell, 2009)
and the default setting gave reasonable model performance.
Hence, the same setting was also followed in this study with
the addition that the sub-grid snow coefficient of variation
was also considered an uncertain model parameter. A simi-
lar result was also observed when this setting was later veri-
fied using the method of Morris (Morris, 1991; Saltelli et al.,
2008) for screening the most influential out of the relevant
model parameters. The feasible ranges of parameter values
are set based on relevant literature and previous modeling
studies in the Nea-Nidelva catchment. Table 1 shows a list of
these parameters with their range of possible values.

2.2 Study area and data

This study was conducted using climatic and catchment data
from the Nea catchment (11.67390–12.46273◦ E, 62.77916–
63.20405◦ N). The Nea catchment constitutes the headwaters
of the Nea-Nidelva water resources management area which
is situated in Sør-Trøndelag county, Norway (Fig. 1). The hy-
dropower generated from this area is the main source of elec-
tric supply to several places in mid-Norway including to one
of the biggest cities in the country, Trondheim. As a result
this area has significance for Statkraft AS and other stake-
holders responsible for the development and management of
water resources in the region and has been selected for re-
search focused on better prediction and understanding of the
snow processes and their impact on hydrology of the down-
stream area.

The Nea catchment covers a total area of 703 km2 and it
is characterized by a wide range of physiographic and land
cover characteristics. Altitude of the catchment ranges from
1783 m a.s.l. on the eastern part around the mountains of
Storsylen to 649 m a.s.l. at its outlet on the western part of
the catchment. Mean annual precipitation for the hydrologi-
cal years 2011–2014 was 1120 mm. The highest and lowest
average daily temperature values for this period were 28 and
−30 ◦C, respectively.

As mentioned in Sect. 2.1, the PT_GS_K model requires
temperature, precipitation, radiation, relative humidity, and
wind speed as forcing data. In this study, daily time series
data of these variables for the study area were obtained from
Statkraft (2018) as point measurements, with the exception
of relative humidity. Daily gridded relative humidity data
were retrieved from ERA-Interim (Dee et al., 2011). The
Model uses a Bayesian kriging approach to distribute the
point temperature data over the domain, while for the other
forcing variables it uses an inverse distance weighting ap-
proach.

Two observational datasets, streamflow and snow cover,
were used in this study. Daily observed streamflow measure-
ments covering 4 hydrological years (1 September to 31 Au-
gust) were provided for the study area. The climatic data
show that these hydrological years represented periods both
above and below the long-term average annual precipitation.

Hydrol. Earth Syst. Sci., 22, 5021–5039, 2018 www.hydrol-earth-syst-sci.net/22/5021/2018/



A. T. Teweldebrhan et al.: Parameter uncertainty analysis for an operational hydrological model 5025

Figure 1. Physiographic and location map of the Nea catchment in Norway.

Years 2011 and 2013, respectively, were the wettest and dri-
est years in over 10 years. Daily snow cover fraction (SCF)
data were retrieved from NASA MODIS snow cover prod-
ucts (MODIS SCF) (Hall et al., 2006). Frequent cloud cover
is one of the major challenges when using MODIS and other
optical remote sensing data in Norway. In order to minimize
the effect of obstructions and misclassification errors ema-
nating from clouds and other sources, a composite dataset
was formed using data retrieved from the Aqua and Terra
satellites, MYD10A1 and MOD10A1 products, respectively.

In this analysis, PT_GS_K was set up in distributed mode
over 812 grid cells, requiring the following physiographic
data of each grid cell: average elevation and grid cell total
area, as well as the areal fractions of forest, reservoir, lake,
and glacier. Data for these physiographic variables were re-
trieved from two sources: the land cover data from Coper-
nicus land monitoring service (2016) and the 10 m digital
elevation model (10 m DEM) from the Norwegian mapping
authority (2016).

2.3 The uncertainty analysis methods

In this study a modeling and parameter uncertainty analysis
was conducted using two GLUE variants. First, the hydro-
logical model and its snow sub-model were subjected to un-
certainty analysis using the residual-based GLUE methodol-
ogy. When using this approach, the relevant model param-
eters were initially conditioned using either streamflow or

MODIS SCF. In the subsequent analysis, they were condi-
tioned using both streamflow and SCF. Following that, the
uncertainty analysis was conducted using the relaxed GLUE
LOA approach.

2.3.1 Sampling the parameter dimensions

The performance of all uncertainty analysis techniques de-
pends on the efficiency of the sample in representing the
entire response surface (Pappenberger et al., 2008). In this
study, prior distributions of the uncertain model parameters
were not known and hence a uniform distribution was as-
sumed. The challenge in using uniform distribution is, how-
ever, to adequately sample the entire parameter dimensions.
To overcome this challenge and to better identify regions of
behavioral simulations, a sample size of 100 000 runs was
used. Each model run is a realization of a parameter set ran-
domly drawn from the domains of the model parameters.
An all-at-a-time (AAT) sampling method (e.g., Pianosi et al.,
2016) was employed. This method involves random selection
of all parameter values simultaneously. The residual-based
GLUE (Sect. 2.3.2) and the relaxed GLUE LOA (Sect. 2.3.3)
approaches are used to identify the behavioral model runs.
Matlab scripts from the SAFE toolbox (Pianosi et al., 2015)
were used as a basis to characterize behavioral and non-
behavioral models.
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2.3.2 The residual-based GLUE approach

In this study, the performance of each model realization was
evaluated by using relevant likelihood measures. Residual-
based informal likelihood measures are considered suitable
measures of fit when large datasets such as rainfall-runoff
time series exist for model conditioning (Hassan et al., 2008).
The Nash–Sutcliffe efficiency (NSE, Eq. 4) belongs to these
groups of likelihood measures, and it is the most widely used
likelihood measure for assessing the fitness of model param-
eters in hydrological modeling (Xiong and O’Connor, 2008).
Further, the main end users of the model commonly use NSE
both in calibration and evaluation of hydrological models.
Thus, use of this performance measure as a streamflow like-
lihood measure makes it easier both in setting the threshold
value for behavioral models (i.e., based on previous expe-
rience) and in communicating model performance outputs.
However, the NSE calculated using raw values tends to over-
estimate model performance during peak streamflow and un-
derestimate during low-streamflow conditions (e.g., Krause
et al., 2005). To partly overcome this problem, NSE is often
calculated with log-transformed observed and simulated val-
ues. In this study, both NSE and NSE with log-transformed
streamflow values (LnNSE) were thus employed as likeli-
hood measures in evaluating each model run.

NSE= 1−

n∑
i=1
(Qsim, i −Qobs, i)

2

n∑
i=1
(Qobs, i − Q̄obs)2

, (4)

in which Qsim represents simulated streamflow, Qobs is ob-
served streamflow, and Q̄obs represents the mean value of
observed streamflow series.

Within the residual-based GLUE procedure, the defini-
tion of threshold likelihood value at which the model per-
formance is judged reasonable is a subjective choice by the
modeler. In this study, NSE and LnNSE of 0.7 and 0.6, re-
spectively, were considered as the threshold values for be-
havioral models. These values were chosen with due consid-
eration to the input and observational data quality as well
as the relative importance given to high streamflow in re-
lation to low-streamflow conditions in the hydropower in-
dustries. In the case of the combined likelihood measure, a
weighted average threshold value (e.g., Hassan et al., 2008)
was calculated assuming each likelihood measure to have a
weight proportional to its threshold value. Accordingly, the
NSE and LnNSE likelihood measures were respectively as-
signed weights of 0.54 and 0.46 (Eq. 5).

LNS (O | M(θi))= 0.46(LLnNSE)+ 0.54(LNSE), (5)

where LNS (O | M(θi)) represents the combined likelihood
measure for the ith model realization with model prediction
of M(θi), which is a function of the set of model param-
eters θi , and corresponding to the observations (O). LNSE

Table 2. Setup of the two-by-two contingency table for binary snow
cover data comparison. O and S, respectively, represent observed
and simulated binary snow cover and the subscripts refer to a snow-
free (0) and snow-covered (1) grid cell.

S1 S0 Sum

O1 n11 n01 nx1
O0 n10 n00 nx0
Sum n1x n0x nxx

CSI= n11
nxx−n00

and LLnNSE, respectively, represent the likelihood measures
based on NSE and LnNSE. Models producing likelihood
measure values greater than or equal to the threshold value
were labeled as behavioral models and were retained for use
in further analysis.

The root mean squared error (RMSE) of simulated and
MODIS fractional snow cover was used as a likelihood mea-
sure of SCF. A threshold value of 0.17 was set when using the
RMSE in model conditioning. This value was fixed based on
the average performance of similar conceptual hydrological
models as a reference (e.g., Skaugen and Weltzien, 2016) and
with due consideration to the inherent error in the MODIS
SCF data. The estimated annual average error of MODIS
SCF maps for the Northern Hemisphere is approximately
8 % in the absence of cloud (Pu et al., 2007), and in forest-
dominated areas it may reach up to 15 % (Hall et al., 2001).

Preliminary assessment of model performance indicates
that the snow yes/no-based model performance (critical suc-
cess index, CSI; Table 2) is very high both before the onset of
snowmelt and during the complete melt-out period. The low-
est match between simulated and MODIS SCF was observed
during early summer. It was thus decided to use a weighted
mean likelihood measure of SCF, with maximum weight as-
signed to likelihoods from the middle part of the observation
period. The likelihood of each SCF observation was assigned
a specific weight based on the location of the observation
date in a trapezoidal membership function (TMF). The start
and end of the MODIS SCF observation period locate the
feet of the trapezoid and the start and end of the month of
June locate the shoulders (Fig. 2). For each model realization,
the weighted average RMSE (wRMSE) of all SCF observa-
tions and their corresponding simulated values for the cali-
bration period were calculated and model realizations with
wRMSE below the threshold value were considered behav-
ioral. The weight of each behavioral model was calculated
as the inverse of wRMSE and was used in constructing the
cumulative distribution function (CDF), based on which the
predicted SCF values for different quantiles can be extracted.

When selecting behavioral models using the combined
likelihoods of streamflow and SCF, the merging of these like-
lihoods was carried out in two steps. First the likelihoods
representing low- and high-flow conditions, viz. LnNSE and
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Figure 2. A trapezoidal membership function for SCF likelihoods
in the observational period.

NSE, were combined following a similar procedure as de-
scribed above. The likelihoods of streamflow and SCF were
separately rescaled such that their respective weights would
sum to unity following a similar procedure to that used in
Brazier et al. (2000). The combined streamflow likelihood
and the SCF likelihood were subsequently multiplied to get
a combined likelihood measure of streamflow and SCF.

2.3.3 The relaxed GLUE LOA approach

Unlike the residual-based model selection approaches, in-
cluding the residual-based GLUE methodology, the GLUE
LOA approach relies on an assessment of uncertainty in the
observational data. The uncertainty analysis was also thus
conducted in this study using the GLUE LOA approach and
its results compared against those from the residual-based
GLUE methodology.

In this study when using the GLUE LOA approach, both
the streamflow and MODIS SCF data were considered as un-
certain observations. Since no uncertainty data were avail-
able for streamflow observations in the study site, mean
streamflow uncertainty of 25 % was assumed and the stream-
flow limits were defined using this value. Although, the max-
imum expected error of MODIS snow cover products under
clear-sky conditions is reported to be 15 % for forest areas
(Hall et al., 2001), cloud coverage coupled with a lack of
contrast between clouds and snow cover may severely affect
the accuracy. And in some cases this leads to misclassifica-
tion of snow as land (e.g., Parajka et al., 2012). Thus, a SCF
uncertainty of 25 %–50 % was assumed to represent the er-
rors associated with the SCF observations and the input data.

An alternative approach was employed to minimize the
risk of rejecting useful model realizations due to using as-
sumed average observational error bounds and due to a lack
of a viable means for explicitly accounting for the time-
varying level of observational and input data uncertainties.
The procedure involves relaxing the percentage of obser-
vations where model predictions fall within the acceptabil-
ity limits. Model realizations whose predictions fall within
the acceptable bounds in a defined percentage of the ob-
servations were considered behavioral. The minimum ac-
ceptable percentage of observations where model predictions

fall within the limits (hereafter referred as threshold pLOA)
in turn was set such that the 5 %–95 % prediction limit of
streamflow, reported as the containing ratio (CR, see Eq. 6),
is close to the value obtained using the residual-based GLUE
methodology. The procedure for relaxing the original GLUE
LOA requirement during the calibration period involves the
following steps.

– Step 1: define an acceptable prediction limit (CR) at a
chosen certainty level (e.g., 5 %–95 %). In this study the
CR value obtained for the calibration period using the
residual-based GLUE methodology was adopted as an
acceptable CR value.

– Step 2: relax the acceptable percentage of observations
where model predictions fall within the limits. This is
done by gradually lowering the requirement for brack-
eting the observations in 100 % of the time steps up to
the acceptable pLOA.

– Step 3: run a calibration and test whether each model re-
alization prediction falls within the limits at least for the
specified percentage of the total observations. If model
realizations that satisfy the relaxed acceptability criteria
are found, proceed to step 4, otherwise lower the thresh-
old pLOA further and repeat this step.

– Step 4: calculate the new CR and check if it is close
to the predefined acceptable CR value. If the calculated
CR is less than the predefined CR, repeat steps 2 to 4,
whereas if the two CR values are close (e.g., within 5 %)
then accept all model realizations that satisfy this pLOA
as behavioral and store their indices for use in further
analysis.

Model realizations that fulfill this relaxed LOA criteria
both in streamflow and SCF observations were considered
behavioral. A triangular membership function was used to
define the weights of each criterion, where a maximum
weight of 1.0 was assigned to predictions with a perfect
match to the observation and a minimum weight of 0.0 to
predictions outside the acceptability limits. For each model
realization, the weights of individual time steps were added
to give a generalized weight. Following the procedure by
Blazkova and Beven (2009), the weights associated with
streamflow and MODIS SCF were combined by taking the
sum of these two criteria and rescaling them such that the
sum of the weights for behavioral models is unity. The behav-
ioral model realizations were used for prediction weighted by
their overall degree of performance.

2.3.4 GLUE output analysis

A split-sample-based cross-validation of streamflow predic-
tions was used to alternately evaluate how well the behav-
ioral models identified at a given calibration period are able
to reproduce the observed values from another period. The
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hydrologic model was run for 4 years at a daily time step.
The first month of each hydrological year was considered
as a spin-up period and hence excluded from all uncertainty
analyses. Each of the 4 years was alternately used to identify
behavioral models and the remaining 3 years were individu-
ally used to assess the modeling uncertainty.

In this study the modeling uncertainty was evaluated us-
ing both qualitative and quantitative evaluation techniques.
The upper and lower streamflow prediction limits as well as
observed values were plotted on the same graph to visually
assess the capability of the identified behavioral models in
bracketing the observations. The containing ratio (CR) index
was also used to analyze the prediction uncertainty follow-
ing a similar procedure to that used in some studies involving
the GLUE methodology (e.g., Xiong et al., 2009; He et al.,
2011). CR is expressed as the ratio of the number of observa-
tions falling within respective prediction bounds to the total
number of observations (Eq. 6).

CR=

n∑
i=1
I (Qobs, i)

n
,

where

I (Qobs, i)=

{
1, Llim, i <Qobs, i <Ulim, i
0, Otherwise . (6)

Qobs, i represents observed streamflow at the ith time step,
and Llim, i and Ulim, i are the lower and upper prediction
bounds, respectively.

As an alternative to a crisp prediction for an observa-
tion (e.g., Xiong and O’Connor, 2008), the median (50 %)
streamflow prediction was also estimated from the behavioral
model simulations and compared against observations using
both NSE and LnNSE as goodness-of-fit measures. Simi-
larly, the critical success index (Table 2) and RMSE were
used as goodness-of-fit measures for median SCF prediction.
When using RMSE, the fractional snow cover data of each
grid cell were directly employed in validating median pre-
dictions. CSI represents the number of grid cells where the
snow events are correctly predicted out of the total number of
grid cells where snow is predicted in the model. It was calcu-
lated based on binary snow cover data using the two-by-two
contingency table analysis (Table 2) following a similar pro-
cedure to that used in Hanzer et al. (2016). When converting
the snow cover fraction to a binary measure, a grid cell was
classified as snow covered if at least 50 % of its area is snow
covered.

3 Results

3.1 Uncertainty analysis using the residual-based
GLUE approach

3.1.1 Uncertainty of model parameters

The uncertainty of model parameters was analyzed using all
years of record together as single time series data. The dotty
plots (Fig. 3) depict the goodness-of-fit response surface pro-
jected onto individual parameter dimensions. The parallel co-
ordinate plots (Fig. 4) also show the distribution of model pa-
rameters within their respective parameter dimensions. The
distribution of behavioral simulations across a parameter di-
mension varies from one parameter to another. The behav-
ioral models are scattered nearly across the entire range of
parameter dimension for fast ADR, slow ADR, and snow CV,
indicating low model sensitivity to these parameters. On the
other hand, the relatively localized distribution of behavioral
models towards lower values when projected onto the param-
eter ranges of c1, c2, tx, and wind scale as well as towards
higher values of c3 reflects higher sensitivity of simulated
streamflow to these calibration parameters. Furthermore, the
parallel coordinate plots show an increase in likelihood mea-
sure value towards the lower (for c1, c2, tx, and wind scale)
and higher (for c3) parts of their respective parameter dimen-
sions.

The aforementioned less sensitive model parameters can,
however, have a high effect on model outputs through in-
teraction with other parameters. Some degree of interaction
between model parameters can be seen from the correlation
shown in Fig. 5. For example, a general decreasing trend in
model performance can be noticed with a joint increase in c1
and c2. The strong influence of tx in constraining the output
is also evident in these plots. A considerable level of inter-
action can also be observed from the correlation coefficient
scores between c1 and c2 (0.56), c2 and c3, (0.53) and be-
tween tx and wind scale (0.66).

The posterior distribution histograms (Fig. 6) and the sta-
tistical summary table of posterior distribution (Table 3) il-
lustrate variability in distribution characteristics of the model
parameters. The catchment response parameters, viz. c1, c2,
and c3, showed relatively well-defined peaks, whereas fast
ADR, slow ADR, and snow CV appear less identifiable with
a relatively flat distribution across their respective parameter
dimensions. It should, however, be noted that, in the GLUE
methodology, it is the set of parameter values that gives a
behavioral model.

3.1.2 Uncertainty of streamflow predictions

Figure 7 shows a sample cross-validation of daily stream-
flow prediction limits against observed values. The upper and
lower prediction bounds as well as the median values are
generated with behavioral models identified in year 2011 us-
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Table 3. Statistical summary of the posterior distribution for model parameters.

Statistics c1 c2 c3 tx Wind Fast ADR Slow ADR Snow
(◦C) scale (days) (days) CV

Minimum −5.00 0.00 −0.12 −3.00 1.01 1.00 20.07 0.06
Maximum −2.32 0.70 −0.05 1.98 3.74 14.96 39.98 0.85
Mean −3.90 0.22 −0.07 −1.39 2.40 7.38 30.21 0.46
Median −3.92 0.20 −0.07 −1.57 2.48 7.01 30.71 0.47
Variance 0.33 0.02 0.00 1.15 0.48 15.46 33.15 0.05
Skewness 0.18 0.53 −0.58 0.81 −0.22 0.19 −0.05 −0.06

Figure 3. Dotty plots of the likelihood measure for behavioral and non-behavioral models identified using the residual-based GLUE method-
ology.

ing the combined NSE and LnNSE likelihood measure. The
calculated uncertainty in streamflow prediction indicated by
the 5–95 percentile range (shaded band) varied over time
and relatively higher uncertainty was noticed during high-
streamflow than low-streamflow periods.

As can be seen from the summary table of cross-validation
results (Table 4), the CR values range from 0.62 to 0.91 with
an overall mean value of 0.77. The mean CR values for the

calibration and validation periods are 0.78 and 0.76, respec-
tively. The evaluation result generally shows that the me-
dian prediction of behavioral models selected using the com-
bined likelihood was able to reproduce the observed values
remarkably well with average NSE and LnNSE of 0.86 and
0.72, respectively, for the validation period. However, per-
formance of the behavioral models identified using NSE was
very low when evaluated using LnNSE in year 2014. This
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Figure 4. Distribution of model parameters within their variability
ranges.

phenomenon can be attributed to the relatively low quality of
streamflow observations during the low-streamflow period of
this year. The validation result was also highly affected by
the nature of the likelihood measure used during the identi-
fication of behavioral models. For example, a persistent low
performance was observed during the early months of the hy-
drologic year when validating behavioral models identified
using NSE alone (Fig. 7c) as compared to those identified
using the combined likelihood (Fig. 7d). Similarly, excluding
the first 30 observations from the validation dataset resulted
in an improvement of LnNSE from −0.53 to 0.44.

3.1.3 Uncertainty of snow cover predictions

Snow cover fractions and snow water equivalent are two
main outputs of the snow sub-model (GS) of the PT_GS_K
model. In this study an initial single-likelihood-based condi-
tioning of the GS specific parameters was carried out using
MODIS SCF only and RMSE as a measure of model perfor-
mance.

The cross-validation result of predicted median values
against MODIS SCF observations is shown in Table 5. The
highest and lowest RMSE values during the calibration pe-
riod were 0.15 and 0.06, respectively, with an average RMSE
value of 0.11. Minimum and maximum RMSE values of 0.06
and 0.22, respectively, were observed during the validation
period with an average RMSE value of 0.13. Similarly the
lowest CSI values during the calibration and validation pe-
riods were 0.99 and 0.88, respectively. Comparable maxi-
mum CSI results were observed between the two periods.
The 5 %–95 % SCF prediction interval was able to reason-
ably bracket the observations in most of the calibration and
validation periods with mean CR values of 0.60 and 0.71, re-
spectively, without any explicit accounting for model resid-
uals for each parameter set. The inter-annual comparison of
model performance shows that relatively lower performance
was observed in years 2011 and 2012 as compared to the
other periods.

3.1.4 Uncertainty of streamflow and snow cover
predictions using both observations

The cross-validation result of simulated streamflow and SCF
against observations is shown in Table 6. A similar model
performance was observed when model parameters are con-
ditioned using both streamflow and MODIS SCF as com-
pared to when only streamflow was used for model con-
ditioning. The mean NSE and LnNSE values of the me-
dian streamflow prediction in the validation periods were
0.85 and 0.71, respectively. The average streamflow predic-
tion uncertainty (CR) in the validation period was 0.70. For
SCF, average RMSE and CSI values of 0.11 and 0.99, re-
spectively, were obtained when using the combined likeli-
hood. The streamflow and SCF median predictions obtained
in this analysis are similar to the results when model pa-
rameters are respectively conditioned with streamflow only
or MODIS SCF only. This result shows that contribution
from the MODIS SCF was less significant in constraining
the model parameters. The relatively low quality of MODIS
SCF data as compared to the streamflow data for the study
site may also partly explain this phenomenon.

3.2 Uncertainty analysis using the relaxed GLUE LOA
approach

The median streamflow prediction of behavioral models
identified using the relaxed GLUE LOA was able to mimic
the observed values very well with a mean NSE and LnNSE
of 0.85 and 0.7, respectively, for the validation period (Ta-
ble 7). A comparable performance was observed between
models selected using the residual-based GLUE and the
relaxed GLUE LOA. The similarity in median predicted
streamflow by these two GLUE methodologies can also be
noticed from visual comparison of the resulting hydrographs
(Figs. 7 and 8). A mean streamflow CR value of 0.75 was
obtained for the validation period when using the relaxed
GLUE LOA. This shows slightly better capability of the
5 %–95 % prediction bounds in bracketing the observations
as compared to predictions using the residual-based GLUE
methodology when both streamflow and SCF are used in
model conditioning.

The behavioral models selected using the relaxed GLUE
LOA approach were also able to adequately reproduce ob-
served SCF with a mean RMSE and CSI of 0.11 and 0.98,
respectively, for the validation period. Generally, high pre-
diction uncertainty of SCF was observed during the onset
of snowmelt and low uncertainty during the summer with
an average CR of 0.63. Thus, hydrological year 2011, hav-
ing most of its observations coming from April, showed the
lowest CR as compared to the other periods. Figure 9 shows
observed and simulated average catchment SCF for the sam-
ple calibration period (2011) and validation period (2012).
From this figure it can be noticed that the median prediction
tends to overestimate the observed SCF values, and many
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Figure 5. Model performance in response to the interaction between model parameters (upper diagonal cells) and correlation coefficient
scores between the parameters (lower diagonal cells)

of the observed values from the month of April fall outside
the 5 %–95 % prediction bounds. The overall result, however,
indicates an improved capability of the 5 %–95 % prediction
bounds in bracketing the SCF observations as compared to
predictions using the residual-based GLUE methodology.

4 Discussion

The streamflow prediction uncertainty analyses results show
that model performance was relatively lower during low-
streamflow than high-streamflow conditions throughout most
validation periods (e.g., Table 4). A similar result was re-
ported by Choi and Beven (2007) in their multiperiod cluster-
based uncertainty analysis in the Bukmoon catchment, South
Korea, where a high percentage of simulation bias was ob-
served during the drier seasons due to relatively poor model
performance during these periods. The result of this study

is thus consistent with the general observation that catch-
ment hydrologic models perform relatively well in wet con-
ditions but break down during low-streamflow conditions
(e.g., Kirchner, 2009). In the case of results from the residual-
based GLUE methodology, this can also be partly attributed
to the nature of the likelihood measure used to identify the
behavioral models. The result reveals this observation, where
model performance during low-streamflow periods (LnNSE)
was improved when using the combined likelihood measures
as compared to using NSE alone. This is because models
identified using NSE alone strongly reflect the hydrologic
characteristics of the high-streamflow periods and are ex-
pected to perform more poorly during low-streamflow con-
ditions.

In order to assess the potential value of MODIS SCF in
constraining model parameters, the snow sub-model param-
eters were constrained using this observation and the pos-
terior distribution of the individual parameters were com-
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Figure 6. Posterior distribution of calibration parameters after conditioning on flow observations.

Table 4. Cross-validation of streamflow predictions against observed values. Bold numbers show the result for the calibration period.

Validation Likelihood Calibration year

year (LH) 2011 2012 2013 2014

measure Comb. Comb. Comb. Comb.
NSE LH NSE LH NSE LH NSE LH

2011 NSE 0.893 0.890 0.770 0.806 0.809 0.790 0.697 0.840
LnNSE 0.712 0.855 0.366 0.812 0.693 0.719 0.521 0.771
CR 0.759 0.721 0.756 0.677 0.805 0.764 0.729 0.710

2012 NSE 0.842 0.869 0.920 0.930 0.818 0.787 0.910 0.874
LnNSE 0.753 0.878 0.694 0.890 0.640 0.616 0.685 0.792
CR 0.885 0.844 0.866 0.844 0.907 0.882 0.852 0.803

2013 NSE 0.922 0.925 0.878 0.877 0.934 0.942 0.862 0.916
LnNSE 0.780 0.914 0.391 0.799 0.887 0.936 0.531 0.792
CR 0.778 0.759 0.759 0.666 0.830 0.830 0.756 0.622

2014 NSE 0.828 0.884 0.860 0.892 0.826 0.810 0.901 0.924
LnNSE −0.346 0.566 −0.529 0.531 0.138 0.488 0.268 0.716
CR 0.737 0.658 0.721 0.666 0.773 0.721 0.718 0.647

No. of behavioral models 1573 749 3737 1031 4725 2245 4648 604
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Figure 7. Median, 5–95 percentile range, and observed values of streamflow for the sample calibration period (a) and validation periods (b,
c and d). The calibration result (a) and the validation results presented in (b) and (d) are based on behavioral models identified using the
combined likelihood, while the result shown in (c) is based on behavioral models identified using NSE alone.

Table 5. Cross-validation of SCF predictions against MODIS SCF.

Calib. Validation year No. of

year 2011 2012 2013 2014 behav.

RMSE CSI CR RMSE CSI CR RMSE CSI CR RMSE CSI CR models

2011 0.147 0.987 0.417 0.152 0.999 0.330 0.067 0.985 0.839 0.089 0.991 0.656 83922
2012 0.150 0.987 0.347 0.154 0.998 0.236 0.076 0.978 0.824 0.095 0.989 0.629 84945
2013 0.200 0.878 0.924 0.217 0.875 0.795 0.057 0.985 0.919 0.100 0.948 0.931 98400
2014 0.146 0.982 0.738 0.151 0.983 0.632 0.057 0.988 0.903 0.083 0.992 0.799 95039

pared against corresponding distributions that resulted from
model conditioning using streamflow only. Parameter in-
ference based on SCF only as a conditioning observation
gave some parameter estimates that deviate significantly
from those obtained when conditioned with streamflow only
(Fig. 10). The box plots depict the posterior distribution
of the snow-related parameters separately conditioned using
streamflow and SCF. For the ease of comparison, parame-
ter values were scaled between 0 and 1. From these plots it
can be seen that tx and wind scale are the model parameters
most sensitive to the conditioning data type with a significant
shift in their quartiles towards the upper part of the parame-
ter dimensions when conditioned using SCF, whereas the fast
ADR, slow ADR, and snow CV did not show significant dis-

placement in their posterior distribution. These parameters
were also identified as the least sensitive model parameters
when the model was constrained using streamflow only.

Generally, in snow models with the sub-grid snow distri-
bution component parameterized using the statistical proba-
bility distribution function, low snow CV results in a faster
depletion rate of the snow-covered fraction (e.g., Liston,
2004). Thus, the slight displacement of snow CV posterior
values towards the lower part of its parameter dimensions
coupled with the increased posterior values of wind scale
would give rise to lower snow cover fraction during the melt-
ing period when model parameters are constrained using SCF
only. On the other hand, the increased posterior values of the
rain–snow threshold (tx) would result in an increase in snow
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Figure 8. Prediction and acceptable flow bounds for the sample calibration period (a) and validation period (b).

Table 6. Cross-validation of streamflow and SCF predictions.

Validation Obs. Likelihood Calibration year

year measure 2011 2012 2013 2014

2011 flow NSE 0.888 0.773 0.790 0.841
LnNSE 0.856 0.780 0.711 0.769
CR 0.660 0.611 0.753 0.693

SCF RMSE 0.142 0.146 0.155 0.143
CSI 0.987 0.987 0.954 0.987
CR 0.461 0.341 0.610 0.430

2012 flow NSE 0.855 0.939 0.738 0.886
LnNSE 0.886 0.869 0.602 0.791
CR 0.811 0.803 0.852 0.811

SCF RMSE 0.158 0.150 0.165 0.150
CSI 0.985 0.999 0.960 0.992
CR 0.363 0.232 0.504 0.334

2013 flow NSE 0.914 0.874 0.946 0.917
LnNSE 0.913 0.749 0.941 0.785
CR 0.679 0.605 0.827 0.619

SCF RMSE 0.053 0.063 0.049 0.055
CSI 0.992 0.987 0.994 0.990
CR 0.846 0.824 0.869 0.841

2014 flow NSE 0.878 0.895 0.789 0.928
LnNSE 0.513 0.481 0.485 0.717
CR 0.627 0.627 0.712 0.647

SCF RMSE 0.079 0.087 0.078 0.078
CSI 0.996 0.993 0.990 0.996
CR 0.681 0.625 0.743 0.658

No. of acceptable models 726 988 2245 604

deposition and thereby in a partial or full canceling out of
the effects of changes in snow CV and wind scale. This phe-
nomenon may thus lead to equifinality, where different sets
of model parameters give comparable SCF responses.

In the GLUE LOA approach a particular model realization
is classified as acceptable if its prediction falls within the lim-

Table 7. Cross-validation of streamflow and SCF predictions after
relaxing the LOA criteria.

Validation Obs. Likelihood Calibration year

year measure 2011 2012 2013 2014

2011 flow NSE 0.881 0.861 0.769 0.854
LnNSE 0.839 0.838 0.711 0.796
CR 0.712 0.726 0.759 0.748

SCF RMSE 0.140 0.145 0.152 0.142
CSI 0.983 0.987 0.959 0.985
CR 0.551 0.450 0.615 0.552

2012 flow NSE 0.808 0.914 0.758 0.837
LnNSE 0.822 0.918 0.595 0.791
CR 0.797 0.833 0.866 0.852

SCF RMSE 0.162 0.150 0.161 0.153
CSI 0.970 0.995 0.963 0.986
CR 0.417 0.342 0.516 0.439

2013 flow NSE 0.947 0.896 0.940 0.941
LnNSE 0.940 0.880 0.934 0.914
CR 0.767 0.707 0.825 0.800

SCF RMSE 0.049 0.057 0.051 0.052
CSI 0.994 0.989 0.992 0.991
CR 0.857 0.843 0.871 0.862

2014 flow NSE 0.872 0.859 0.787 0.898
LnNSE 0.540 0.307 0.310 0.674
CR 0.641 0.627 0.704 0.671

SCF RMSE 0.077 0.082 0.079 0.078
CSI 0.994 0.994 0.989 0.995
CR 0.706 0.661 0.748 0.713

No. of acceptable models 419 813 2213 1029

its for all observed values. In continuous rainfall-runoff mod-
eling it is difficult for all predictions of a given model real-
ization to lie within the observation limits in a time series.
In some cases this phenomenon can be attributed to different
specific processes dominating the hydrologic behavior of a
catchment at different sub-periods, while in other instances
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Figure 9. Prediction and acceptable bounds of average SCF for the
sample calibration period (a) and validation period (b).

it may be due to a lack of a viable means for explicitly ac-
counting for the effect of variable sources and level of uncer-
tainties from the input data errors, which are difficult to set a
priori. Thus, the time-varying likely effects of other sources
of errors such as input errors on prediction uncertainty need
also be implicitly taken into account when defining the limits
of acceptability.

The use of GLUE LOA for testing hydrologic models as
hypotheses without a due consideration of errors in input
data may lead to a rejection of useful models that might
adequately represent the catchment behavior and thereby to
making a type II error (false negative). In the past, various at-
tempts have been made to minimize the risk of making type
II errors in model calibration studies using the GLUE and
other frameworks. In some studies an improved calibration
of hydrologic models was obtained through independent cal-
ibration of sub-periods of a time series (e.g., Boyle et al.,
2000; Samanta and Mackay, 2003). When it comes to the
GLUE LOA approach, extending the limits (e.g., Blazkova
and Beven, 2009; Liu et al., 2009) and using different model
realizations for different periods of a hydrological year (e.g.,
Choi and Beven, 2007) are some of the measures taken to
minimize the risk of making type II errors. Common to all
these measures is that they attempt to relax the selection cri-
teria for behavioral models.

In this study when using the GLUE LOA approach, the
streamflow bounds were set to ±25 % and the result shows
that none of the model realizations were able to satisfy the
LOA criteria without one or more of their predictions falling
outside the acceptable streamflow bounds. The failure rate
was higher during low-flow conditions as compared to high-
flow conditions. An initial attempt was made to relax the
limit of acceptability by extending the streamflow bounds.
Regardless, no model realization with its predictions falling

within the error bounds for all observations was found until
the limits were extended to over±85 %. This relaxed accept-
ability limit seems less reasonable in terms of its physical
meaning as an error bound. Therefore, rather than relaxing
the limits, an alternative empirical approach was followed by
relaxing the number of simulation time steps which fulfilled
the original LOA criterion. The procedure involves defining
the acceptable percentage of observations that are required
to be bracketed by model predictions (during the calibration
period) based on a predefined acceptable CR value.

This empirical approach is based on the observed rela-
tionship between prediction uncertainty and number of be-
havioral models, which in turn is a function of the selec-
tion criterion. As the threshold value of a likelihood measure
increases (in the case of residual-based GLUE) or absolute
value of the limits decreases (in the case of GLUE LOA),
the simulated runoff series gradually converges, though not
necessarily to the observations. A similar observation was
also reported in other GLUE-based uncertainty studies (e.g.,
Xiong et al., 2008). A further analysis in this study reveals
that, as the percentage of observations required to be brack-
eted by each model realization (pLOA) increases, the num-
ber of behavioral models decreases and thereby the simu-
lated runoff series converges, resulting in a low CR (Fig. 11).
In this study, the threshold pLOA for each calibration pe-
riod was defined in such a way that the 5 %–95 % prediction
uncertainties of streamflow using the residual and the LOA-
based GLUE methodologies are similar. Defining the thresh-
old pLOA this way helps to set a reasonable value that min-
imizes the risk of making type II errors while maintaining
the overall model accuracy by rejecting the inclusion of non-
behavioral models. Furthermore, it helps to roughly compare
the performance of behavioral models selected using the re-
laxed GLUE LOA against the residual-based GLUE in terms
of their ability to reproduce the median streamflow and SCF
predictions at a similar level of uncertainty (i.e., the CR used
to set pLOA).

Although it is difficult to single out the effects of input
data error from model structural error on model performance
using the GLUE methodology, the error patterns may aid
in assessing model performance in different periods of the
hydrologic year. Generally, a good model structure coupled
with good data is not expected to give a consistent bias (e.g.,
Liu et al., 2009). Figure 12 shows a sample daily percentage
of acceptable simulations satisfying the LOA criteria during
the hydrologic year 2012. The percentage of the acceptable
number of model realizations in each time step was generally
low during the calibration period (<65 %). However, for each
time step, predictions from some behavioral models are able
to mimic the corresponding observation within the assumed
error bound. The percentage of acceptable models was rel-
atively higher during high than low-streamflow conditions.
And this result is consistent with the general observation
that most hydrological models perform relatively well during
high-streamflow compared to low-streamflow periods. The
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Figure 10. Box plot showing posterior distribution of model parameters when separately conditioned using streamflow and SCF. Parameter
values are scaled between 0 and 1.

Figure 11. The effect of the percentage of observations required
to be bracketed by each model realization (pLOA) on prediction
uncertainty (CR) and efficiency of the median prediction (NSE) for
the sample calibration periods (years 2011 and 2012).

spike in the percentage of acceptable models in the month of
February 2012 when time steps around are so low, however,
reveals how model performances can unexpectedly vary be-
tween time steps in response to input data errors and/or the
observational error bounds. The observed spike could thus be
attributed to relatively low input data errors and/or lower ac-
tual observational error bounds as compared to the assumed
average values for the particular time step. The distribution
of the behavioral model weights over the calibration period
shows that the mean weight during the period where the spike
occurred is very low. Similarly the median weight of behav-
ioral models during this period is close to zero, implying
that most of the model realizations have their predictions that
barely fall within the limits.

This result reveals that the GLUE LOA with relaxation
in percentage of observations where model predictions fall
within observational error bounds can be used as an alter-
native approach for conditioning model parameters and con-
ducting an uncertainty analysis when there is a lack of meta-

Figure 12. Daily percentage of acceptable model realizations with
their predictions falling within the observation error bounds (a) and
the daily weight associated with each acceptable model realization
as well as daily mean and median value of the weights (b) in a
sample calibration period.

data on input and observational data uncertainty coupled with
a highly time-varying level of uncertainty from such sources.
After relaxation, a limited sample of the total observations,
i.e., 30 %–40 % of a hydrologic year, was able to effectively
identify behavioral models, and this result is consistent with
findings of other studies dealing with the effect of observa-
tion size on constraining model parameters (e.g., Seibert and
Beven, 2009; Liu and Han, 2010; Sun et al., 2017). The rela-
tive accuracy of an event and other factors that affect the in-
formation content of the input and observation datasets (e.g.,
Beven and Smith, 2015) are more important than the length
of the datasets, especially in continuous rainfall-runoff mod-
eling.
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5 Conclusions

Two GLUE methodology variants were applied for param-
eter uncertainty analysis of a distributed conceptual hydro-
logical model. The analysis result from the residual-based
GLUE methodology shows that the catchment response pa-
rameters, viz. c1, c2, and c3 as well as the wind scale, are
the most sensitive model parameters. More caution is thus
required when defining the value range of these parameters.
On the other hand, the fast and slow albedo decay rates as
well as the snow CV are relatively more uncertain model pa-
rameters.

Model conditioning using combined streamflow and
MODIS SCF did not improve the median prediction of
streamflow as compared to the result when model parame-
ters are conditioned using streamflow only. A similar result
was also observed for SCF predictions. The additional infor-
mation from the MODIS SCF data was generally less signif-
icant in constraining the rainfall-runoff model parameters.

When using the GLUE LOA approach, the model did
not provide any behavioral simulation that yields predictions
within the assumed observational error bound in over 90%
of the time steps. A relaxation was needed in order to partly
overcome the limitations of using constant observational er-
ror proportionality and not taking an explicit account of the
other sources of uncertainty such as from input data errors.
A relaxed GLUE LOA approach was introduced that allows
a relaxation on the number of time steps required to achieve
the LOA. Similar results are obtained using both the residual-
based GLUE and the relaxed GLUE LOA approaches. Re-
laxing the percentage of observations required to be brack-
eted per simulation period by a particular model realization
(pLOA) was found to be more effective than relaxing the
observational error bounds. In this study the 5 %–95 % pre-
diction uncertainty of the residual-based GLUE methodol-
ogy was used as a reference to define the pLOA in the re-
laxed GLUE LOA analysis using forcing and observational
datasets from a single catchment. More similar case studies
should be conducted on catchments with different hydrologic
characteristics to assess the scope of this approach under dif-
ferent condition.
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