Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-351-2018
https://doi.org/10.5194/hess-22-351-2018
Research article
 | 
16 Jan 2018
Research article |  | 16 Jan 2018

Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets

Wenbin Liu, Fubao Sun, Yanzhong Li, Guoqing Zhang, Yan-Fang Sang, Wee Ho Lim, Jiahong Liu, Hong Wang, and Peng Bai

Related authors

Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020,https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary
Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds
Wenbin Liu, Fubao Sun, Wee Ho Lim, Jie Zhang, Hong Wang, Hideo Shiogama, and Yuqing Zhang
Earth Syst. Dynam., 9, 267–283, https://doi.org/10.5194/esd-9-267-2018,https://doi.org/10.5194/esd-9-267-2018, 2018
Short summary
Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China
Hong Wang, Fubao Sun, Jun Xia, and Wenbin Liu
Hydrol. Earth Syst. Sci., 21, 1929–1945, https://doi.org/10.5194/hess-21-1929-2017,https://doi.org/10.5194/hess-21-1929-2017, 2017
The effect of water storage change in ET estimation in humid catchments based on Budyko framework and water balance models
Tingting Wang, Fubao Sun, Hong Wang, Wenbin Liu, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-151,https://doi.org/10.5194/hess-2017-151, 2017
Revised manuscript not accepted
Short summary
Seasonal cycles and trends of water budget components in 18 river basins across Tibetan Plateau: a multiple datasets perspective
Wenbin Liu, Fubao Sun, Yanzhong Li, Guoqing Zhang, Yan-Fang Sang, Jiahong Liu, Hong Wang, and Peng Bai
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-624,https://doi.org/10.5194/hess-2016-624, 2016
Revised manuscript not accepted

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
Theoretical Annual Exceedances from Moving Average Drought Indices
James Howard Stagge, Kyungmin Sung, Irenee Munyejuru, and Md Atif Ibne Haidar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1430,https://doi.org/10.5194/egusphere-2024-1430, 2024
Short summary
Estimating global precipitation fields from rain gauge observations using local ensemble data assimilation
Yuka Muto and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2024-960,https://doi.org/10.5194/egusphere-2024-960, 2024
Short summary
Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024,https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024,https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
The most extreme rainfall erosivity event ever recorded in China up to 2022: the 7.20 storm in Henan Province
Yuanyuan Xiao, Shuiqing Yin, Bofu Yu, Conghui Fan, Wenting Wang, and Yun Xie
Hydrol. Earth Syst. Sci., 27, 4563–4577, https://doi.org/10.5194/hess-27-4563-2023,https://doi.org/10.5194/hess-27-4563-2023, 2023
Short summary

Cited articles

Akhtar, M., Ahmad, N., and Booij, M. J.: Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region, Hydrol. Earth Syst. Sci., 13, 1075–1089, https://doi.org/10.5194/hess-13-1075-2009, 2009.
Bai, P., Liu, X. M., Yang, T. T., Liang, K., and Liu, C. M.: Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan Plateau, J. Geophys. Res.-Atmos., 121, 12180–12197, 2016.
Berrisford, P, Lee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-interim archive, ERA Reports Series No. 1 Version 2.0, available at: https://www.researchgate.net/publication/41571692_The_ERA-interim_ archive (last access: 12 January 2018), 2011.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Bouraoui, F., Vachaud, G., Li, L. Z. X., LeTreut, H., and Chen, T.: Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale, Clim. Dynam., 15, 153–161, 1999.
Download
Short summary
The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of hydro-climatic observations. In this study, we investigate seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982–2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations).