Articles | Volume 22, issue 3
https://doi.org/10.5194/hess-22-1767-2018
https://doi.org/10.5194/hess-22-1767-2018
Technical note
 | 
12 Mar 2018
Technical note |  | 12 Mar 2018

Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

Nicholas Voichick, David J. Topping, and Ronald E. Griffiths

Related authors

River suspended-sand flux computation with uncertainty estimation using water samples and high-resolution ADCP measurements
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024,https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023,https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023,https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022,https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022,https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022,https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary

Cited articles

ASTM International: Standard Guide for the Use of Various Turbidimeter Technologies for Measurement of Turbidity in Water, D7726-11, ASTM International, West Conshohocken, PA, USA, 1–17, 2011. 
Davies-Colley, R. J., Smith, D. G., and Vant, W. N.: Colour and Clarity of Natural Waters: Science and Management of Optical Water Quality, Ellis Horwood, London, 310 pp., 1993. 
Downing, J.: Twenty-five years with OBS sensors: the good, the bad, and the ugly, Cont. Shelf. Res., 26, 2299–2318, 2006. 
Edwards, T. K. and Glysson, G. D.: Field methods for measurement of fluvial sediment, U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter C2, 89 pp., available at: http://pubs.usgs.gov/twri/twri3-c2/ (last access: March 2018), 1999. 
Gippel, C. J.: The use of turbidimeters in suspended sediment research, Hydrobiologia, 176, 465–480, 1989. 
Download
Short summary
This paper describes instances in the Grand Canyon study area and a laboratory experiment in which very high suspended-sediment concentrations result in incorrectly low turbidity recorded with a commonly used field instrument. If associated with the monitoring of a construction or dredging project, false low turbidity could result in regulators being unaware of environmental damage caused by the actually much higher turbidity.