Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 1525–1542, 2018
https://doi.org/10.5194/hess-22-1525-2018
Hydrol. Earth Syst. Sci., 22, 1525–1542, 2018
https://doi.org/10.5194/hess-22-1525-2018
Research article
28 Feb 2018
Research article | 28 Feb 2018

Multiple causes of nonstationarity in the Weihe annual low-flow series

Bin Xiong et al.

Related authors

Assessing the impacts of reservoirs on downstream flood frequency by coupling the effect of scheduling-related multivariate rainfall with an indicator of reservoir effects
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019,https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022,https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
A time-varying distributed unit hydrograph method considering soil moisture
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022,https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022,https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022,https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Improving hydrologic models for predictions and process understanding using neural ODEs
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022,https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, 1974. 
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, 2002. 
Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of river flow regimes, P. Natl. Acad. Sci. USA, 110, 12925–12930, 2013. 
Bradford, M. J. and Heinonen, J. S.: Low Flows, Instream Flow Needs and Fish Ecology in Small Streams, Can. Water Resour. J., 33, 165–180, 2008. 
Buuren, S. V. and Fredriks, M.: Worm plot: a simple diagnostic device for modelling growth reference curves, Stat. Med., 20, 1259–1277, 2001. 
Download
Short summary
In changing environments, extreme low-flow events are expected to increase. Frequency analysis of low-flow events considering the impacts of changing environments has attracted increasing attention. This study developed a frequency analysis framework by applying 11 indices to trace the main causes of the change in the annual extreme low-flow events of the Weihe River. We showed that the fluctuation in annual low-flow series was affected by climate, streamflow recession and irrigation area.