Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1525-2018
https://doi.org/10.5194/hess-22-1525-2018
Research article
 | 
28 Feb 2018
Research article |  | 28 Feb 2018

Multiple causes of nonstationarity in the Weihe annual low-flow series

Bin Xiong, Lihua Xiong, Jie Chen, Chong-Yu Xu, and Lingqi Li

Related authors

Assessing the impacts of reservoirs on downstream flood frequency by coupling the effect of scheduling-related multivariate rainfall with an indicator of reservoir effects
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019,https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Toward interpretable LSTM-based modeling of hydrological systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024,https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024,https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
What controls the tail behaviour of flood series: rainfall or runoff generation?
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024,https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024,https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024,https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, 1974. 
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, 2002. 
Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of river flow regimes, P. Natl. Acad. Sci. USA, 110, 12925–12930, 2013. 
Bradford, M. J. and Heinonen, J. S.: Low Flows, Instream Flow Needs and Fish Ecology in Small Streams, Can. Water Resour. J., 33, 165–180, 2008. 
Buuren, S. V. and Fredriks, M.: Worm plot: a simple diagnostic device for modelling growth reference curves, Stat. Med., 20, 1259–1277, 2001. 
Download
Short summary
In changing environments, extreme low-flow events are expected to increase. Frequency analysis of low-flow events considering the impacts of changing environments has attracted increasing attention. This study developed a frequency analysis framework by applying 11 indices to trace the main causes of the change in the annual extreme low-flow events of the Weihe River. We showed that the fluctuation in annual low-flow series was affected by climate, streamflow recession and irrigation area.